Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Mini-Review Article

Hot Melt Extrusion Technique for Developing Pharmaceutical Co-crystals: A Review

Author(s): Ritu Rathi, Sanshita and Inderbir Singh*

Volume 14, Issue 2, 2024

Published on: 15 December, 2023

Page: [97 - 108] Pages: 12

DOI: 10.2174/0122103031269230231213061146

Price: $65

Abstract

Background: In the era of pharmaceutical research and development, the most challenging aspect is to enhance the physicochemical properties of drugs. Hot Melt Extrusion (HME) is a solvent-free, one-step, continuous, scalable, and industrially feasible method for developing pharmaceutical co-crystals. Co-crystallization, as a technique, has gained significant attention for its potential to modify various physicochemical properties of drugs like solubility, stability, compressibility, permeability, taste masking, and therapeutic efficacy.

Methods: We determine the characteristic features of HME and explore published literature using the keywords, HME, co-crystals, and PAT, in databases, such as PubMed, Google Scholar, ScienceDirect, and Research Gate.

Results: The present review embarks on a detailed journey through the multifaceted domain of HME and its pivotal role in co-crystal development. The process parameters, such as temperature, extruder type, screw configuration, screw speed, and feed rate, are involved in determining the characteristics of the co-crystals produced. Additionally, the review explores the role of materials, including Active Pharmaceutical Ingredients (APIs), plasticizers, polymers, and other pharmaceutical aids, underlining their impact on co-crystal development. The existing literature on HME and its application for pharmaceutical co-crystal production is comprehensively surveyed.

Conclusion: The review highlights the utility of Process Analytical Technology (PAT) in realtime process control. The role of HME in the future of pharmaceutical co-crystal development is discussed, making this review essential for researchers and industry professionals alike.

Graphical Abstract

[1]
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm., 2011, 419(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037] [PMID: 21827842]
[2]
Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des., 2009, 9(6), 2950-2967.
[http://dx.doi.org/10.1021/cg900129f] [PMID: 19503732]
[3]
Rathi, R.; Kushwaha, R.; Goyal, A.; Singh, I. Oxaliplatin-flavone pharmaceutical co-crystal-CN111205332A: Patent spotlight. Pharm. Pat. Anal., 2022, 11(5), 147-154.
[http://dx.doi.org/10.4155/ppa-2022-0011] [PMID: 36052571]
[4]
Dalpiaz, A.; Pavan, B.; Ferretti, V. Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs? Drug Discov. Today, 2017, 22(8), 1134-1138.
[http://dx.doi.org/10.1016/j.drudis.2017.01.010] [PMID: 28130117]
[5]
Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B, 2021, 11(8), 2537-2564.
[http://dx.doi.org/10.1016/j.apsb.2021.03.030] [PMID: 34522597]
[6]
Kavanagh, O.N.; Croker, D.M.; Walker, G.M.; Zaworotko, M. J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discov. Today, 2019, 24(3), 796-804.
[http://dx.doi.org/10.1016/j.drudis.2018.11.023] [PMID: 30521935]
[7]
Panzade, P.S.; Shendarkar, G.R.; Kulkarni, D.A. Hot Melt Extrusion: An emerging green technique for the synthesis of high-quality pharmaceutical cocrystals. J. Pharm. Innov., 2022, 17(2), 283-293.
[http://dx.doi.org/10.1007/s12247-020-09512-7]
[8]
Rodrigues, M.; Baptista, B.; Lopes, J.A.; Sarraguça, M.C. Pharmaceutical cocrystallization techniques. Advances and challenges. Int. J. Pharm., 2018, 547(1-2), 404-420.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.024] [PMID: 29890258]
[9]
Ross, S.A.; Lamprou, D.A.; Douroumis, D. Engineering and manufacturing of pharmaceutical co-crystals: A review of solvent-free manufacturing technologies. Chem. Commun. (Camb.), 2016, 52(57), 8772-8786.
[http://dx.doi.org/10.1039/C6CC01289B] [PMID: 27302311]
[10]
Pawar, N.; Saha, A.; Nandan, N.; Parambil, J. Solution cocrystallization: A scalable approach for cocrystal production. Crystals, 2021, 11(3), 303.
[http://dx.doi.org/10.3390/cryst11030303]
[11]
Kumar, S.; Prakash, O.; Gupta, A.; Singh, S. Solvent-free methods for co-crystal synthesis: A review. Curr. Org. Synth., 2019, 16(3), 385-397.
[http://dx.doi.org/10.2174/1570179416666190329194926] [PMID: 31984900]
[12]
Rathi, R.; Kaur, S.; Singh, I. A review on co-crystals of herbal bioactives for solubility enhancement: Preparation methods and characterization techniques. Cryst. Growth Des., 2022, 22(3), 2023-2042.
[http://dx.doi.org/10.1021/acs.cgd.1c01408]
[13]
Powell, K.A.; Croker, D.M.; Rielly, C.D.; Nagy, Z.K. PAT-based design of agrochemical co-crystallization processes: A case-study for the selective crystallization of 1:1 and 3:2 co-crystals of p-toluenesulfonamide/triphenylphosphine oxide. Chem. Eng. Sci., 2016, 152, 95-108.
[http://dx.doi.org/10.1016/j.ces.2016.06.005]
[14]
Tambe, S.; Jain, D.; Agarwal, Y.; Amin, P. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications. J. Drug Deliv. Sci. Technol., 2021, 63, 102452.
[http://dx.doi.org/10.1016/j.jddst.2021.102452]
[15]
Tan, D.; Maniruzzaman, M.; Nokhodchi, A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (fdm) 3d printing for personalised drug delivery. Pharmaceutics, 2018, 10(4), 203.
[http://dx.doi.org/10.3390/pharmaceutics10040203] [PMID: 30356002]
[16]
Alshetaili, A.; Almutairy, B.K.; Alshehri, S.M.; Repka, M.A. Development and characterization of sustained-released donepezil hydrochloride solid dispersions using hot melt extrusion technology. Pharmaceutics, 2021, 13(2), 213.
[http://dx.doi.org/10.3390/pharmaceutics13020213] [PMID: 33557076]
[17]
Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-Melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech, 2016, 17(1), 20-42.
[http://dx.doi.org/10.1208/s12249-015-0360-7] [PMID: 26159653]
[18]
Ma, D.; Djemai, A.; Gendron, C.M.; Xi, H.; Smith, M.; Kogan, J.; Li, L. Development of a HPMC-based controlled release formulation with hot melt extrusion (HME). Drug Dev. Ind. Pharm., 2013, 39(7), 1070-1083.
[http://dx.doi.org/10.3109/03639045.2012.702350] [PMID: 22803806]
[19]
Narayan Sahoo, R.; De, A.; Kataria, V.; Mallick, S. Solvent-free hot melt extrusion technique in improving mesalamine release for better management of inflammatory bowel disease. Indian J. Pharma.l Edu. and Res., 2019, 53(4s), s554-s562.
[http://dx.doi.org/10.5530/ijper.53.4s.150]
[20]
Nashed, N.; Lam, M.; Nokhodchi, A. A comprehensive overview of extended release oral dosage forms manufactured through hot melt extrusion and its combination with 3D printing. Int. J. Pharm., 2021, 596, 120237.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120237] [PMID: 33484928]
[21]
Maniruzzaman, M.; Boateng, J.S.; Chowdhry, B.Z.; Snowden, M.J.; Douroumis, D. A review on the taste masking of bitter APIs: Hot-melt extrusion (HME) evaluation. Drug Dev. Ind. Pharm., 2014, 40(2), 145-156.
[http://dx.doi.org/10.3109/03639045.2013.804833] [PMID: 23763436]
[22]
Maniruzzaman, M. Pharmaceutical applications of hot-melt extrusion: continuous manufacturing, twin-screw granulations, and 3d printing. Pharmaceutics, 2019, 11(5), 218.
[http://dx.doi.org/10.3390/pharmaceutics11050218] [PMID: 31067649]
[23]
Tiwari, R.V.; Patil, H.; Repka, M.A. Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opin. Drug Deliv., 2016, 13(3), 451-464.
[http://dx.doi.org/10.1517/17425247.2016.1126246] [PMID: 26886062]
[24]
Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des., 2018, 18(10), 6370-6387.
[http://dx.doi.org/10.1021/acs.cgd.8b00933]
[25]
Hwang, I.; Kang, C.Y.; Park, J.B. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J. Pharm. Investig., 2017, 47(2), 123-132.
[http://dx.doi.org/10.1007/s40005-017-0309-9]
[26]
Maniruzzaman, M.; Boateng, J.S.; Snowden, M.J.; Douroumis, D. A review of hot-melt extrusion: Process technology to pharmaceutical products. ISRN Pharm., 2012, 2012, 1-9.
[http://dx.doi.org/10.5402/2012/436763] [PMID: 23326686]
[27]
Repka, M.A.; Majumdar, S.; Kumar Battu, S.; Srirangam, R.; Upadhye, S.B. Applications of hot-melt extrusion for drug delivery. Expert Opin. Drug Deliv., 2008, 5(12), 1357-1376.
[http://dx.doi.org/10.1517/17425240802583421] [PMID: 19040397]
[28]
Crowley, M.M.; Zhang, F.; Repka, M.A.; Thumma, S.; Upadhye, S.B.; Kumar Battu, S.; McGinity, J.W.; Martin, C. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev. Ind. Pharm., 2007, 33(9), 909-926.
[http://dx.doi.org/10.1080/03639040701498759] [PMID: 17891577]
[29]
Chausov, F.F.; Suksin, N. E.; Kholzakov, A. V.; Lomova, N. V.; Kazantseva, I. S.; Rybin, D. S. The cluster structure of crystalline phases according to TGA/DTA and XPS data in isodimorphic substitution series [Cu x Ni (1− x ) {N(CH2PO3)3}]Na4 • n H2O ( x = 0 … 1). Z Für Krist - Cryst Mater., 2022, 237(10-12), 377-383.
[http://dx.doi.org/10.1515/zkri-2022-0034]
[30]
Srinivasan, P.; Almutairi, M.; Dumpa, N.; Sarabu, S.; Bandari, S.; Zhang, F.; Ashour, E.; Repka, M.A. Theophylline-nicotinamide pharmaceutical co-crystals generated using hot melt extrusion technology: Impact of polymeric carriers on processability. J. Drug Deliv. Sci. Technol., 2021, 61, 102128.
[http://dx.doi.org/10.1016/j.jddst.2020.102128] [PMID: 33717231]
[31]
Liu, L.; Zou, D.; Zhang, Y.; Zhang, Q.; Feng, Y.; Guo, Y.; Liu, Y.; Zhang, X.; Cheng, G.; Wang, C.; Zhang, Y.; Zhang, L.; Wu, L.; Chang, L.; Su, X.; Duan, Y.; Zhang, Y.; Liu, M. Pharmaceutical salts/cocrystals of enoxacin with dicarboxylic acids: Enhancing in vitro antibacterial activity of enoxacin by improving the solubility and permeability. Eur. J. Pharm. Biopharm., 2020, 154, 62-73.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.018] [PMID: 32645384]
[32]
Kshirsagar, S.M.; Chatale, B.C.; Amin, P.D. Comparative evaluation of ibuprofen co-crystals prepared by solvent evaporation and hot melt extrusion technology. J. Drug Deliv. Sci. Technol., 2022, 67, 103003.
[http://dx.doi.org/10.1016/j.jddst.2021.103003]
[33]
Chierotti, M.R.; Gobetto, R. NMR crystallography: the use of dipolar interactions in polymorph and co-crystal investigation. CrystEngComm, 2013, 15(43), 8599.
[http://dx.doi.org/10.1039/c3ce41026a]
[34]
Butreddy, A.; Bandari, S.; Repka, M.A. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur. J. Pharm. Sci., 2021, 158, 105655.
[http://dx.doi.org/10.1016/j.ejps.2020.105655] [PMID: 33253883]
[35]
Karimi-Jafari, M.; Ziaee, A.; O’Reilly, E.; Croker, D.; Walker, G. Formation of ciprofloxacin-isonicotinic acid cocrystal using mechanochemical synthesis routes—an investigation into critical process parameters. Pharmaceutics, 2022, 14(3), 634.
[http://dx.doi.org/10.3390/pharmaceutics14030634] [PMID: 35336009]
[36]
Daurio, D.; Medina, C.; Saw, R.; Nagapudi, K.; Alvarez-Núñez, F. Application of twin screw extrusion in the manufacture of cocrystals, part I: Four case studies. Pharmaceutics, 2011, 3(3), 582-600.
[http://dx.doi.org/10.3390/pharmaceutics3030582] [PMID: 24310598]
[37]
Gajda, M.; Nartowski, K.P.; Pluta, J.; Karolewicz, B. Continuous, one-step synthesis of pharmaceutical cocrystals via hot melt extrusion from neat to matrix-assisted processing - State of the art. Int. J. Pharm., 2019, 558, 426-440.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.016] [PMID: 30664997]
[38]
Alshetaili, A.; Alshahrani, S.M.; Almutairy, B.K.; Repka, M.A. Hot melt extrusion processing parameters optimization. Processes, 2020, 8(11), 1516.
[http://dx.doi.org/10.3390/pr8111516]
[39]
Narala, S.; Nyavanandi, D.; Srinivasan, P.; Mandati, P.; Bandari, S.; Repka, M.A. Pharmaceutical co-crystals, salts, and co-amorphous systems: A novel opportunity of hot-melt extrusion. J. Drug Deliv. Sci. Technol., 2021, 61, 102209.
[http://dx.doi.org/10.1016/j.jddst.2020.102209] [PMID: 33717230]
[40]
Thiry, J.; Krier, F.; Evrard, B. A review of pharmaceutical extrusion: Critical process parameters and scaling-up. Int. J. Pharm., 2015, 479(1), 227-240.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.036] [PMID: 25541517]
[41]
Hancock, B.C.; Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci., 1997, 86(1), 1-12.
[http://dx.doi.org/10.1021/js9601896] [PMID: 9002452]
[42]
Rajadhyax, A.; Shinde, U.; Desai, H.; Mane, S. Hot melt extrusion in engineering of drug cocrystals: A review. Asian J. Pharm. Clin. Res., 2021, 10-19.
[http://dx.doi.org/10.22159/ajpcr.2021.v14i8.41857]
[43]
Butreddy, A.; Sarabu, S.; Bandari, S.; Dumpa, N.; Zhang, F.; Repka, M.A. Polymer-assisted aripiprazole-adipic acid cocrystals produced by hot melt extrusion techniques. Cryst. Growth Des., 2020, 20(7), 4335-4345.
[http://dx.doi.org/10.1021/acs.cgd.0c00020] [PMID: 33935595]
[44]
Follonier, N.; Doelker, E.; Cole, E.T. Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs. Drug Dev. Ind. Pharm., 1994, 20(8), 1323-1339.
[http://dx.doi.org/10.3109/03639049409038373]
[45]
de Brabander, C.; van den Mooter, G.; Vervaet, C.; Remon, J.P. Characterization of ibuprofen as a nontraditional plasticizer of ethyl cellulose. J. Pharm. Sci., 2002, 91(7), 1678-1685.
[http://dx.doi.org/10.1002/jps.10159] [PMID: 12115829]
[46]
Lakshman, J.P.; Cao, Y.; Kowalski, J.; Serajuddin, A.T.M. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm., 2008, 5(6), 994-1002.
[http://dx.doi.org/10.1021/mp8001073] [PMID: 19434852]
[47]
Verreck, G.; Decorte, A.; Li, H.; Tomasko, D.; Arien, A.; Peeters, J.; Rombaut, P.; Van den Mooter, G.; Brewster, M.E. The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers. J. Supercrit. Fluids, 2006, 38(3), 383-391.
[http://dx.doi.org/10.1016/j.supflu.2005.11.022]
[48]
Raina, N.; Rani, R.; Khan, A.; Nagpal, K.; Gupta, M. Interpenetrating polymer network as a pioneer drug delivery system: a review. Polym. Bull., 2020, 77(9), 5027-5050.
[http://dx.doi.org/10.1007/s00289-019-02996-5]
[49]
Thakkar, R.; Thakkar, R.; Pillai, A.; Ashour, E.A.; Repka, M.A. Systematic screening of pharmaceutical polymers for hot melt extrusion processing: A comprehensive review. Int. J. Pharm., 2020, 576, 118989.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118989] [PMID: 31931076]
[50]
Thanawuth, K.; Sutthapitaksakul, L.; Konthong, S.; Suttiruengwong, S.; Huanbutta, K.; Dass, C.R.; Sriamornsak, P. Impact of drug loading method on drug release from 3d-printed tablets made from filaments fabricated by hot-melt extrusion and impregnation processes. Pharmaceutics, 2021, 13(10), 1607.
[http://dx.doi.org/10.3390/pharmaceutics13101607] [PMID: 34683900]
[51]
Buddhadev, S.S.; Garala, K.C. Pharmaceutical cocrystals-a review. 2021, 62(1), 14.
[http://dx.doi.org/10.3390/proceedings2020062014]
[52]
Rathi, R.; Singh, I. Multicomponent crystal compromising dasatinib and selected co-crystals formers: A patent evaluation of EP2861589B1. Pharm. Pat. Anal., 2022, 11(1), 15-21.
[http://dx.doi.org/10.4155/ppa-2021-0024] [PMID: 35172634]
[53]
Fernandes, G.J.; Rathnanand, M.; Kulkarni, V. Mechanochemical synthesis of carvedilol cocrystals utilizing hot melt extrusion technology. J. Pharm. Innov., 2019, 14(4), 373-381.
[http://dx.doi.org/10.1007/s12247-018-9360-y]
[54]
Li, S.; Yu, T.; Tian, Y.; Lagan, C.; Jones, D.S.; Andrews, G.P. Mechanochemical synthesis of pharmaceutical cocrystal suspensions via hot melt extrusion: Enhancing cocrystal yield. Mol. Pharm., 2018, 15(9), 3741-3754.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00979] [PMID: 29166563]
[55]
Narala, S.; Nyavanandi, D.; Alzahrani, A.; Bandari, S.; Zhang, F.; Repka, M.A. Creation of hydrochlorothiazide pharmaceutical cocrystals via hot-melt extrusion for enhanced solubility and permeability. AAPS PharmSciTech, 2022, 23(1), 56.
[http://dx.doi.org/10.1208/s12249-021-02202-8] [PMID: 35043282]
[56]
Moradiya, H.G.; Islam, M.T.; Halsey, S.; Maniruzzaman, M.; Chowdhry, B.Z.; Snowden, M.J.; Douroumis, D. Continuous cocrystallisation of carbamazepine and trans-cinnamic acid via melt extrusion processing. CrystEngComm, 2014, 16(17), 3573-3583.
[http://dx.doi.org/10.1039/C3CE42457J]
[57]
Karimi-Jafari, M.; Soto, R.; Albadarin, A.B.; Croker, D.; Walker, G. In-line Raman spectroscopy and chemometrics for monitoring cocrystallisation using hot melt extrusion. Int. J. Pharm., 2021, 601, 120555.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120555] [PMID: 33798686]
[58]
Ross, S.A.; Ward, A.; Basford, P.; McAllister, M.; Douroumis, D. Coprocessing of pharmaceutical cocrystals for high quality and enhanced physicochemical stability. Cryst. Growth Des., 2019, 19(2), 876-888.
[http://dx.doi.org/10.1021/acs.cgd.8b01440]
[59]
Ross, S.A.; Hurt, A.P.; Antonijevic, M.; Bouropoulos, N.; Ward, A.; Basford, P.; McAllister, M.; Douroumis, D. Continuous manufacture and scale-up of theophylline-nicotinamide cocrystals. Pharmaceutics, 2021, 13(3), 419.
[http://dx.doi.org/10.3390/pharmaceutics13030419] [PMID: 33804705]
[60]
Chavan, R.B.; Thipparaboina, R.; Yadav, B.; Shastri, N.R. Continuous manufacturing of co-crystals: Challenges and prospects. Drug Deliv. Transl. Res., 2018, 8(6), 1726-1739.
[http://dx.doi.org/10.1007/s13346-018-0479-7] [PMID: 29352367]
[61]
Moradiya, H.G.; Islam, M.T.; Scoutaris, N.; Halsey, S.A.; Chowdhry, B.Z.; Douroumis, D. Continuous manufacturing of high quality pharmaceutical cocrystals integrated with process analytical tools for in-line process control. Cryst. Growth Des., 2016, 16(6), 3425-3434.
[http://dx.doi.org/10.1021/acs.cgd.6b00402]
[62]
Ishihara, S.; Hattori, Y.; Otsuka, M. MCR-ALS analysis of IR spectroscopy and XRD for the investigation of ibuprofen - nicotinamide cocrystal formation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 221, 117142.
[http://dx.doi.org/10.1016/j.saa.2019.117142] [PMID: 31158774]
[63]
Islam, M.T.; Scoutaris, N.; Maniruzzaman, M.; Moradiya, H.G.; Halsey, S.A.; Bradley, M.S.A.; Chowdhry, B.Z.; Snowden, M.J.; Douroumis, D. Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing. Eur. J. Pharm. Biopharm., 2015, 96, 106-116.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.021] [PMID: 26209124]
[64]
Kelly, A.L.; Gough, T.; Isreb, M.; Dhumal, R.; Jones, J.W.; Nicholson, S.; Dennis, A.B.; Paradkar, A. In-process rheometry as a PAT tool for hot melt extrusion. Drug Dev. Ind. Pharm., 2018, 44(4), 670-676.
[http://dx.doi.org/10.1080/03639045.2017.1408641] [PMID: 29161918]
[65]
Dumpa, N.; Butreddy, A.; Wang, H.; Komanduri, N.; Bandari, S.; Repka, M.A. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int. J. Pharm., 2021, 600, 120501.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120501] [PMID: 33746011]
[66]
Bandari, S.; Nyavanandi, D.; Dumpa, N.; Repka, M.A. Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance. Adv. Drug Deliv. Rev., 2021, 172, 52-63.
[http://dx.doi.org/10.1016/j.addr.2021.02.006] [PMID: 33571550]
[67]
Sarraguça, M.C.; Ribeiro, P.R.S.; Santos, A.O.; Silva, M.C.D.; Lopes, J.A. A PAT approach for the on-line monitoring of pharmaceutical co-crystals formation with near infrared spectroscopy. Int. J. Pharm., 2014, 471(1-2), 478-484.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.003] [PMID: 24907598]
[68]
Soares, F.L.F.; Carneiro, R.L. Evaluation of analytical tools and multivariate methods for quantification of co-former crystals in ibuprofen-nicotinamide co-crystals. J. Pharm. Biomed. Anal., 2014, 89, 166-175.
[http://dx.doi.org/10.1016/j.jpba.2013.11.005] [PMID: 24291798]
[69]
Otaki, T.; Tanabe, Y.; Kojima, T.; Miura, M.; Ikeda, Y.; Koide, T.; Fukami, T. In situ monitoring of co-crystals in formulation development using low-frequency Raman spectroscopy. Int. J. Pharm., 2018, 542, 56-65.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.008]
[70]
Barmpalexis, P.; Karagianni, A.; Nikolakakis, I.; Kachrimanis, K. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy. J. Pharm. Biomed. Anal., 2018, 158, 214-224.
[http://dx.doi.org/10.1016/j.jpba.2018.06.004] [PMID: 29886369]
[71]
Otsuka, Y.; Goto, S. Dry mechanochemical synthesis of ethenzamide and saccharin 1:1 cocrystal and their evaluation using powder X-ray diffraction and FT-MIR and NIR spectroscopy. J. Drug Deliv. Sci. Technol., 2022, 67, 102918.
[http://dx.doi.org/10.1016/j.jddst.2021.102918]
[72]
Powell, K.A.; Saleemi, A.N.; Rielly, C.D.; Nagy, Z.K. Monitoring continuous crystallization of paracetamol in the presence of an additive using an integrated PAT array and multivariate methods. Org. Process Res. Dev., 2016, 20(3), 626-636.
[http://dx.doi.org/10.1021/acs.oprd.5b00373]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy