Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Biosensor Detection of COVID-19 in Lung Cancer: Hedgehog and Mucin Signaling Insights

Author(s): Harneet Marwah, Janmejay Pant, Jiten Yadav, Kamal Shah and Hitesh Kumar Dewangan*

Volume 29, Issue 43, 2023

Published on: 14 December, 2023

Page: [3442 - 3457] Pages: 16

DOI: 10.2174/0113816128276948231204111531

Price: $65

Abstract

Coronavirus disease 2019 is a global pandemic, particularly affecting individuals with pre-existing lung conditions and potentially leading to pulmonary fibrosis. Age and healthcare system limitations further amplify susceptibility to both diseases, especially in low- and middle-income countries. The intricate relationship between Coronavirus disease 2019 and lung cancer highlights their clinical implications and the potential for early detection through biosensor techniques involving hedgehog and mucin signaling. This study highlights the connection between Coronavirus disease 2019 and lung cancer, focusing on the mucosa, angiotensin- altering enzyme 2 receptors, and their impact on the immune system. It details the inflammatory mechanisms triggered by Coronavirus disease 2019, which can result in pulmonary fibrosis and influence the cancer microenvironment. Various cytokines like Interleukins-6 and Tumor Necrosis Factor-alpha are examined for their roles in both diseases. Moreover, the review delves into the Hedgehog signaling pathways and their significance in lung cancer, particularly their influence on embryonic cell proliferation and tissue integrity. Mucin signaling is another vital aspect, highlighting the diverse mucin expression patterns in respiratory epithelial tissues and their potential as biomarkers. The review concludes with insights into diagnostic imaging techniques like chest computed tomography, Positron Emission Tomography and Computed Tomography, and Magnetic Resonance Imaging for early lung cancer detection, emphasizing the crucial role of biosensors in identifying specific biomarkers for early disease detection. This review provides a comprehensive overview of the clinical impact of Coronavirus disease 2019 on lung cancer patients and the potential for biosensors utilizing hedgehog and mucin signaling for early detection. It underscores the ongoing need for research and innovation to address these critical healthcare challenges.

[1]
Ahn DG, Shin HJ, Kim MH, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 30(3): 313-24.
[http://dx.doi.org/10.4014/jmb.2003.03011] [PMID: 32238757]
[2]
Passaro A, Peters S, Mok TSK, Attili I, Mitsudomi T, de Marinis F. Testing for COVID-19 in lung cancer patients. Ann Oncol 2020; 31(7): 832-4.
[http://dx.doi.org/10.1016/j.annonc.2020.04.002] [PMID: 32278879]
[3]
Milette S, Fiset PO, Walsh LA, Spicer JD, Quail DF. The innate immune architecture of lung tumors and its implication in disease progression. J Pathol 2019; 247(5): 589-605.
[http://dx.doi.org/10.1002/path.5241] [PMID: 30680732]
[4]
Taheri R, Hamzkanlu N, Rezvani Y, et al. Exploring the HSA/DNA/lung cancer cells binding behavior of p-synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022; 368: 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[5]
Samandar F, Amiri Tehranizadeh Z, Saberi MR, Chamani J. 1,2,3,4,6-pentagalloyl glucose of Pistacia lentiscus can inhibit the replication and transcription processes and viral pathogenesis of SARS-COV-2. Mol Cell Probes 2022; 65: 101847.
[http://dx.doi.org/10.1016/j.mcp.2022.101847] [PMID: 35843391]
[6]
Samandar F, Tehranizadeh ZA, Saberi MR, Chamani J. CB1 as a novel target for Ginkgo biloba’s terpene trilactone for controlling chemotherapy-induced peripheral neuropathy (CIPN). J Mol Model 2022; 28(9): 283.
[http://dx.doi.org/10.1007/s00894-022-05284-8] [PMID: 36044079]
[7]
World Health Organization (WHO). Cancer. Available from: https://www.who.int/health-topics/cancer#tab=tab_1 (Accessed on: 03 February 2021).
[8]
World Health Organization (WHO). Outlines steps to save 7 million lives from cancer. Available from: https://www.who.int/ news/item/04-02-2020-who-outlines-steps-to-save-7-million- lives-from-cancer#:~:text=These%20include%20controlling%20tobacco%20use,for%20money%20and%20ensuring%20access (Accessed on: 04 February 2020).
[9]
Dewangan HK, Singh N, Kumar Megh S, Singh S, Lakshmi. Optimisation and evaluation of Gymnema sylvestre extract loaded polymeric nanoparticles for enhancement of in vivo efficacy and reduction of toxicity. J Microencapsul 2022; 39(2): 125-35.
[http://dx.doi.org/10.1080/02652048.2022.2051625] [PMID: 35282781]
[10]
Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020; 251(3): 228-48.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[11]
Ciaglia E, Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 levels: Protective role in women and children. Front Pediatr 2020; 8: 206.
[http://dx.doi.org/10.3389/fped.2020.00206] [PMID: 32391299]
[12]
South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318(5): H1084-90.
[http://dx.doi.org/10.1152/ajpheart.00217.2020] [PMID: 32228252]
[13]
Luo J, Rizvi H, Preeshagul IR, et al. COVID-19 in patients with lung cancer. Ann Oncol 2020; 31(10): 1386-96.
[http://dx.doi.org/10.1016/j.annonc.2020.06.007] [PMID: 32561401]
[14]
Sharma AN, Upadhyay PK, Dewangan HK. Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting. J Microencapsul 2022; 39(6): 563-74.
[http://dx.doi.org/10.1080/02652048.2022.2135785] [PMID: 36222429]
[15]
Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24(1): 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[16]
Aramini B, Masciale V, Samarelli AV, et al. Biological effects of COVID-19 on lung cancer: Can we drive our decisions. Front Oncol 2022; 12: 1029830.
[http://dx.doi.org/10.3389/fonc.2022.1029830] [PMID: 36300087]
[17]
Bian J, Li Z. Angiotensin-converting enzyme 2 (ACE2): SARS- CoV-2 receptor and RAS modulator. Acta Pharm Sin B 2021; 11(1): 1-12.
[http://dx.doi.org/10.1016/j.apsb.2020.10.006] [PMID: 33072500]
[18]
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS- CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23(1): 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[19]
Khan SS. The Central Role of PAI-1 in COVID-19: Thrombosis and beyond. Am J Respir Cell Mol Biol 2021; 65(3): 238-40.
[http://dx.doi.org/10.1165/rcmb.2021-0208ED] [PMID: 34086538]
[20]
Thunders M, Delahunt B. Gene of the month: TMPRSS2 (transmembrane serine protease 2). J Clin Pathol 2020; 73(12): 773-6.
[http://dx.doi.org/10.1136/jclinpath-2020-206987] [PMID: 32873700]
[21]
Schönfelder K, Breuckmann K, Elsner C, et al. Transmembrane serine protease 2 polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus type 2 infection: A german case-control study. Front Genet 2021; 12: 667231.
[http://dx.doi.org/10.3389/fgene.2021.667231] [PMID: 33968142]
[22]
Ming Y, Qiang L. Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-Related cardiovascular complications. SN Compr Clin Med 2020; 2(8): 1103-8.
[http://dx.doi.org/10.1007/s42399-020-00400-2] [PMID: 32838164]
[23]
Vardhan S, Sahoo SK. Virtual screening by targeting proteolytic sites of furin and TMPRSS2 to propose potential compounds obstructing the entry of SARS-CoV-2 virus into human host cells. J Tradit Complement Med 2022; 12(1): 6-15.
[http://dx.doi.org/10.1016/j.jtcme.2021.04.001] [PMID: 33868970]
[24]
Hasan A, Paray BA, Hussain A, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 2021; 39(8): 3025-33.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[25]
Sharma V, Dewangan HK. Rational design and in vivo estimation of ivabradine hydrochloride loaded nanoparticles for management of stable angina. J Drug Deliv Sci Technol 2019; 54: 101337-46.
[26]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[27]
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[28]
Lakshmi SK, Singh S, Shah K, Dewangan HK. Dual Vinorelbine bitartrate and Resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer. J Microencapsul 2022; 39(4): 299-313.
[http://dx.doi.org/10.1080/02652048.2022.2070679] [PMID: 35470755]
[29]
Malek-Esfandiari Z, Rezvani-Noghani A, Sohrabi T, Mokaberi P, Amiri-Tehranizadeh Z, Chamani J. Molecular   dynamics   and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf Thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J Fluoresc 2023; 33(4): 1537-57.
[http://dx.doi.org/10.1007/s10895-023-03169-4] [PMID: 36787038]
[30]
Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 2006; 97(6): 439-47.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00197.x] [PMID: 16734720]
[31]
Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N, Ségui B. The TNF paradox in cancer progression and immunotherapy. Front Immunol 2019; 10: 1818.
[http://dx.doi.org/10.3389/fimmu.2019.01818] [PMID: 31417576]
[32]
Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-α as a tumour promoter. Eur J Cancer 2006; 42(6): 745-50.
[http://dx.doi.org/10.1016/j.ejca.2006.01.012] [PMID: 16517151]
[33]
Yadav D, Semwal BC, Dewangan HK. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell. J Biomater Sci Polym Ed 2022; 14: 1-14.
[PMID: 36469754]
[34]
Yan B, Wang H, Rabbani ZN, et al. Tumor necrosis factor-alpha is a potent endogenous mutagen that promotes cellular transformation. Cancer Res 2006; 66(24): 11565-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2540] [PMID: 17178846]
[35]
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26(1): 54-74.
[http://dx.doi.org/10.1016/j.smim.2014.01.001] [PMID: 24552665]
[36]
Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 2005; 128(7): 2054-65.
[http://dx.doi.org/10.1053/j.gastro.2005.03.010] [PMID: 15940637]
[37]
Kai H, Kitadai Y, Kodama M, et al. Involvement of proinflammatory cytokines IL-1beta and IL-6 in progression of human gastric carcinoma. Anticancer Res 2005; 25(2A): 709-13.
[PMID: 15868900]
[38]
Wang L, Cao L, Wang H, et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget 2017; 8(44): 76116-28.
[http://dx.doi.org/10.18632/oncotarget.18814] [PMID: 29100297]
[39]
Wang DH, Lee HS, Yoon D, et al. Progression of EGFR-mutant lung adenocarcinoma is driven by alveolar macrophages. Clin Cancer Res 2017; 23(3): 778-88.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2597] [PMID: 27496865]
[40]
Wolf JS, Chen Z, Dong G, et al. IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res 2001; 7(6): 1812-20.
[PMID: 11410524]
[41]
McLoed AG, Sherrill TP, Cheng DS, et al. Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer. Cell Rep 2016; 16(1): 120-32.
[http://dx.doi.org/10.1016/j.celrep.2016.05.085] [PMID: 27320908]
[42]
Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 2005; 175(9): 6177-89.
[http://dx.doi.org/10.4049/jimmunol.175.9.6177] [PMID: 16237115]
[43]
Yang L, Liu S, Liu J, et al. COVID-19: Immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther 2020; 5(1): 128.
[http://dx.doi.org/10.1038/s41392-020-00243-2] [PMID: 32712629]
[44]
Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020; 26(6): 842-4.
[http://dx.doi.org/10.1038/s41591-020-0901-9] [PMID: 32398875]
[45]
Sun L, Louie MC, Vannella KM, et al. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. Am J Physiol Lung Cell Mol Physiol 2011; 300(3): L341-53.
[http://dx.doi.org/10.1152/ajplung.00122.2010] [PMID: 21131395]
[46]
Wu J. Tackle the free radicals damage in COVID-19. Nitric Oxide 2020; 102: 39-41.
[http://dx.doi.org/10.1016/j.niox.2020.06.002] [PMID: 32562746]
[47]
Tao SL, Wang X, Feng Y, et al. Is the presence of lung injury in COVID-19 an independent risk factor for secondary lung cancer? Med Hypotheses 2020; 143: 110074.
[http://dx.doi.org/10.1016/j.mehy.2020.110074] [PMID: 32645661]
[48]
Ojo AS, Balogun SA, Williams OT, Ojo OS. Pulmonary fibrosis in COVID-19 survivors: Predictive factors and risk reduction strategies. Pulm Med 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/6175964] [PMID: 32850151]
[49]
Wang J, Wang BJ, Yang JC, et al. Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures. Zhonghua Shao Shang Za Zhi 2020; 36(8): 691-7.
[PMID: 32174095]
[50]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[51]
Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir Med 2020; 8(8): 750-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30222-8] [PMID: 32422177]
[52]
Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[53]
Park CM, Goo JM, Lee HJ, Lee CH, Chun EJ, Im JG. Nodular ground-glass opacity at thin-section CT: Histologic correlation and evaluation of change at follow-up. Radiographics 2007; 27(2): 391-408.
[http://dx.doi.org/10.1148/rg.272065061] [PMID: 17374860]
[54]
Sahoo PK, Mishra AK, Pandey M, Dewangan HK, Sl N. A comprehensive review on liver targeting: Emphasis on nanotechnology-based molecular targets and receptors mediated approaches. Curr Drug Targets 2022; 23(15): 1381-405.
[http://dx.doi.org/10.2174/1389450123666220906091432] [PMID: 36065923]
[55]
Calabrò L, Peters S, Soria JC, et al. Challenges in lung cancer therapy during the COVID-19 pandemic. Lancet Respir Med 2020; 8(6): 542-4.
[http://dx.doi.org/10.1016/S2213-2600(20)30170-3] [PMID: 32278368]
[56]
Delaunay M, Prévot G, Collot S, Guilleminault L, Didier A, Mazières J. Management of pulmonary toxicity associated with immune checkpoint inhibitors. Eur Respir Rev 2019; 28(154): 190012.
[http://dx.doi.org/10.1183/16000617.0012-2019] [PMID: 31694838]
[57]
Remon J, Passiglia F, Ahn MJ, et al. Immune checkpoint inhibitors in thoracic malignancies: Review of the existing evidence by an IASLC expert panel and recommendations. J Thorac Oncol 2020; 15(6): 914-47.
[http://dx.doi.org/10.1016/j.jtho.2020.03.006] [PMID: 32179179]
[58]
Chang HL, Wei PJ, Wu KL, Huang HL, Yang CJ. Checkpoint inhibitor pneumonitis mimicking COVID-19 infection during the COVID-19 pandemic. Lung Cancer 2020; 146: 376-7.
[http://dx.doi.org/10.1016/j.lungcan.2020.06.013] [PMID: 32576385]
[59]
Valizadeh H, Abdolmohammadi-vahid S, Danshina S, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 2020; 89(Pt B): 107088.
[http://dx.doi.org/10.1016/j.intimp.2020.107088] [PMID: 33129099]
[60]
Sharifi-Rad A, Mehrzad J, Darroudi M, Saberi MR, Chamani J. Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J Biomol Struct Dyn 2021; 39(3): 1029-43.
[http://dx.doi.org/10.1080/07391102.2020.1724568] [PMID: 32000592]
[61]
Dewangan HK. The emerging role of nanosuspensions for drug delivery and stability. Curr Nanomed 2021; 11(4): 213-23.
[http://dx.doi.org/10.2174/2468187312666211222123307]
[62]
Kalhori F, Yazdyani H, Khademorezaeian F, et al. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence 2022; 37(11): 1836-45.
[http://dx.doi.org/10.1002/bio.4360] [PMID: 35946171]
[63]
Khan A, Iqtadar S, Mumtaz SU, et al. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19-results from a pilot open-label, randomized controlled trial. Front Pharmacol 2022; 13: 898062.
[http://dx.doi.org/10.3389/fphar.2022.898062] [PMID: 35747751]
[64]
Hosseinzadeh M, Nikjoo S, Zare N, Delavar D, Beigoli S, Chamani J. Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Res Chem Intermed 2019; 45(2): 401-23.
[http://dx.doi.org/10.1007/s11164-018-3608-5]
[65]
Zohoorian-Abootorabi T, Sanee H, Iranfar H, Saberi MR, Chamani J. Separate and simultaneous binding effects through a non- cooperative behavior between cyclophosphamide hydrochloride and fluoxymesterone upon interaction with human serum albumin: Multi-spectroscopic and molecular modeling approaches. Spectrochim Acta A Mol Biomol Spectrosc 2012; 88: 177-91.
[http://dx.doi.org/10.1016/j.saa.2011.12.026] [PMID: 22217702]
[66]
Lakshmi , Singh S, Vijayakumar MR, Dewangan HK. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr Drug Deliv 2018; 15(9): 1284-93.
[http://dx.doi.org/10.2174/1567201815666180716112457] [PMID: 30009708]
[67]
Miller A, McLeod L, Alhayyani S, et al. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene 2017; 36(21): 3059-66.
[http://dx.doi.org/10.1038/onc.2016.437] [PMID: 27893707]
[68]
Roy A, Kumar A. ER stress and unfolded protein response in cancer cachexia. Cancers 2019; 11(12): 1929.
[http://dx.doi.org/10.3390/cancers11121929] [PMID: 31817027]
[69]
Morley JE, Kalantar-Zadeh K, Anker SD. COVID-19: A major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle 2020; 11(4): 863-5.
[http://dx.doi.org/10.1002/jcsm.12589] [PMID: 32519505]
[70]
Komatsu R, Okazaki T, Ebihara S, et al. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems. J Cachexia Sarcopenia Muscle 2018; 9(4): 643-53.
[http://dx.doi.org/10.1002/jcsm.12297] [PMID: 29790300]
[71]
Lee RTH, Zhao Z, Ingham PW. Hedgehog signalling. Development 2016; 143(3): 367-72.
[http://dx.doi.org/10.1242/dev.120154] [PMID: 26839340]
[72]
Ebrahimi A, Larijani L, Moradi A, Ebrahimi MR. Hedgehog signalling pathway: Carcinogenesis and targeted therapy. Iran J Cancer Prev 2013; 6(1): 36-43.
[PMID: 25250108]
[73]
Katoh Y, Katoh M. Hedgehog signaling pathway and gastric cancer. Cancer Biol Ther 2005; 4(10): 1050-4.
[http://dx.doi.org/10.4161/cbt.4.10.2184] [PMID: 16258256]
[74]
Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 2011; 12(6): 393-406.
[http://dx.doi.org/10.1038/nrg2984] [PMID: 21502959]
[75]
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: Beyond smoothened. Oncotarget 2015; 6(16): 13899-913.
[http://dx.doi.org/10.18632/oncotarget.4224] [PMID: 26053182]
[76]
Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci 2018; 18(1): 8-20.
[http://dx.doi.org/10.17305/bjbms.2018.2756] [PMID: 29274272]
[77]
Oro AE. The primary cilia, a ‘Rab-id’ transit system for hedgehog signaling. Curr Opin Cell Biol 2007; 19(6): 691-6.
[http://dx.doi.org/10.1016/j.ceb.2007.10.008] [PMID: 18061425]
[78]
Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science 2007; 317(5836): 372-6.
[http://dx.doi.org/10.1126/science.1139740] [PMID: 17641202]
[79]
Jia J, Tong C, Wang B, Luo L, Jiang J. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 2004; 432(7020): 1045-50.
[http://dx.doi.org/10.1038/nature03179] [PMID: 15616566]
[80]
Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 2005; 1(4): e53.
[http://dx.doi.org/10.1371/journal.pgen.0010053] [PMID: 16254602]
[81]
Endoh-Yamagami S, Evangelista M, Wilson D, et al. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 2009; 19(15): 1320-6.
[http://dx.doi.org/10.1016/j.cub.2009.06.046] [PMID: 19592253]
[82]
Nozawa YI, Lin C, Chuang PT. Hedgehog signaling from the primary cilium to the nucleus: An emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev 2013; 23(4): 429-37.
[http://dx.doi.org/10.1016/j.gde.2013.04.008] [PMID: 23725801]
[83]
Méthot N, Basler K. Suppressor of fused opposes Hedgehog signal transduction by impeding nuclear accumulation of the activator form of cubitus interruptus. Development 2000; 127(18): 4001-10.
[http://dx.doi.org/10.1242/dev.127.18.4001] [PMID: 10952898]
[84]
Chen MH, Wilson CW, Li YJ, et al. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 2009; 23(16): 1910-28.
[http://dx.doi.org/10.1101/gad.1794109] [PMID: 19684112]
[85]
Chuang PT, McMahon AP. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 1999; 397(6720): 617-21.
[http://dx.doi.org/10.1038/17611] [PMID: 10050855]
[86]
Rose MC. Mucins: Structure, function, and role in pulmonary diseases. Am J Physiol 1992; 263(4 Pt 1): L413-29.
[PMID: 1415719]
[87]
Buisine MP, Devisme L, Copin MC, et al. Developmental mucin gene expression in the human respiratory tract. Am J Respir Cell Mol Biol 1999; 20(2): 209-18.
[http://dx.doi.org/10.1165/ajrcmb.20.2.3259] [PMID: 9922211]
[88]
Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I. Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem 2002; 277(35): 32258-67.
[http://dx.doi.org/10.1074/jbc.M204862200] [PMID: 12077147]
[89]
Demirag F, Cakir E, Bayiz H, Eren Yazici U. MUC1 and bcl-2 expression in preinvasive lesions and adenosquamous carcinoma of the lung. Acta Chir Belg 2013; 113(1): 19-24.
[http://dx.doi.org/10.1080/00015458.2013.11680879] [PMID: 23550464]
[90]
Copin MC, Devisme L, Buisine MP, et al. From normal respiratory mucosa to epidermoid carcinoma: Expression of human mucin genes. Int J Cancer 2000; 86(2): 162-8.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000415)86:2<162::AID-IJC3>3.0.CO;2-R] [PMID: 10738241]
[91]
Kwon KY, Ro JY, Singhal N, et al. MUC4 expression in non-small cell lung carcinomas: Relationship to tumor histology and patient survival. Arch Pathol Lab Med 2007; 131(4): 593-8.
[http://dx.doi.org/10.5858/2007-131-593-MEINCL] [PMID: 17425390]
[92]
Kurosaki T, Higuchi N, Kawakami S, et al. Self-assemble gene delivery system for molecular targeting using nucleic acid aptamer. Gene 2012; 491(2): 205-9.
[http://dx.doi.org/10.1016/j.gene.2011.09.021] [PMID: 22001405]
[93]
Park HJ, Lee SH, Chang YS. Recent advances in diagnostic technologies in lung cancer. Korean J Intern Med (Korean Assoc Intern Med) 2020; 35(2): 257-68.
[http://dx.doi.org/10.3904/kjim.2020.030] [PMID: 32131569]
[94]
Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365(5): 395-409.
[http://dx.doi.org/10.1056/NEJMoa1102873] [PMID: 21714641]
[95]
Griffeth LK. Use of PET/CT scanning in cancer patients: Technical and practical considerations. Proc Bayl Univ Med Cent 2005; 18(4): 321-30.
[http://dx.doi.org/10.1080/08998280.2005.11928089] [PMID: 16252023]
[96]
Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47(6): 1202-10.
[http://dx.doi.org/10.1002/mrm.10171] [PMID: 12111967]
[97]
Vanshita Garg A. Review: Recent advances of nanotechnology in brain targeting. Curr Nanosci 2022; 19: 350-61.
[http://dx.doi.org/10.2174/1570180819999220204110306]
[98]
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999; 42(5): 952-62.
[http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S] [PMID: 10542355]
[99]
Yadav RK, Shah K, Dewangan HK. Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting. Drug Dev Ind Pharm 2022; 48(1): 21-8.
[http://dx.doi.org/10.1080/03639045.2022.2090575] [PMID: 35703403]
[100]
Kurpad KN, Boskamp EB, Wright SM. Eight channel transmit array volume coil using on-coil radiofrequency current sources. Quant Imaging Med Surg 2014; 4(2): 71-8.
[PMID: 24834418]
[101]
Pang Y, Vigneron DB, Zhang X. Parallel traveling-wave MRI: A feasibility study. Magn Reson Med 2012; 67(4): 965-78.
[http://dx.doi.org/10.1002/mrm.23073] [PMID: 21858863]
[102]
Chaudhary B, Chawla A. Recent advances of magnetic resonance imaging in the diagnosis of spinal cord injury. Biointer Res Appl chem 2021; 13(3): 1-22.
[103]
Pang Y, Yu B, Vigneron DB, Zhang X. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging. Quant Imaging Med Surg 2014; 4(1): 11-8.
[PMID: 24649430]
[104]
Geethanath S, Reddy R, Konar AS, et al. Compressed sensing MRI: A review. Crit Rev Biomed Eng 2013; 41(3): 183-204.
[http://dx.doi.org/10.1615/CritRevBiomedEng.2014008058] [PMID: 24579643]
[105]
Hu X, Chen X, Liu X, Zheng H, Li Y, Zhang X. Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI. Quant Imaging Med Surg 2014; 4(1): 33-42.
[PMID: 24649433]
[106]
Li Y, Pang Y, Vigneron D, Glenn O, Xu D, Zhang X. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system. Quant Imaging Med Surg 2011; 1(1): 24-30.
[PMID: 22408747]
[107]
Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting. J Pharm Sci 2019; 108(2): 851-9.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013] [PMID: 30053555]
[108]
Liang D, Liu B, Ying L. Accelerating sensitivity encoding using compressed sensing. Annu Int Conf IEEE Eng Med Biol Soc 2008; 2008: 1667-70.
[PMID: 19162998]
[109]
Pang Y, Yu B, Zhang X. Enhancement of the low resolution image quality using randomly sampled data for multi-slice MR imaging. Quant Imaging Med Surg 2014; 4(2): 136-44.
[PMID: 24834426]
[110]
Li Y, Xie Z, Pang Y, Vigneron D, Zhang X. ICE decoupling technique for RF coil array designs. Med Phys 2011; 38(7): 4086-93.
[http://dx.doi.org/10.1118/1.3598112] [PMID: 21859008]
[111]
Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: An overview and new approaches for their isolation and characterization. FASEB J 2013; 27(1): 13-24.
[http://dx.doi.org/10.1096/fj.12-218222] [PMID: 23024375]
[112]
Al-Wadei MH, Banerjee J, Al-Wadei HAN, Schuller HM. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling. Eur J Cancer 2016; 52: 188-96.
[http://dx.doi.org/10.1016/j.ejca.2015.10.003] [PMID: 26689865]
[113]
Banerjee J, Papu John AMS, Schuller HM. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides. Int J Cancer 2015; 137(12): 2815-24.
[http://dx.doi.org/10.1002/ijc.29646] [PMID: 26088878]
[114]
Schuller HM. Neurotransmitters and their receptors as the upstream regulators of the most common human cancers and their stem cells. J Neurol Neuromedicine 2018; 3(6): 17-26.
[115]
Asghari A, Wang C, Yoo KM, et al. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. Appl Phys Rev 2021; 8(3): 031313.
[http://dx.doi.org/10.1063/5.0022211] [PMID: 34552683]
[116]
Bora A, Sharma R, Gupta I, et al. Review-magneto-electrochemical-based biosensors devices for recognition of tumour vesicles from blood plasma. J Electrochem Soc 2023; 170(5): 057520.
[http://dx.doi.org/10.1149/1945-7111/acd350]
[117]
Tao C, Rouhi J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. Environ Res 2023; 238(Pt 1): 117113.
[http://dx.doi.org/10.1016/j.envres.2023.117113] [PMID: 37696325]
[118]
Giovanella L, Piantanida R, Ceriani L, et al. Immunoassay of neuron-specific enolase (NSE) and serum fragments of cytokeratin 19 (CYFRA 21.1) as tumor markers in small cell lung cancer: Clinical evaluation and biological hypothesis. Int J Biol Markers 1997; 12(1): 22-6.
[http://dx.doi.org/10.1177/172460089701200105] [PMID: 9176714]
[119]
Perrone F, Mazzaschi G, Minari R, et al. Multicenter observational study on metastatic non-small cell lung cancer harboring BRAF mutations: Focus on clinical characteristics and treatment outcome of V600E and Non-V600E subgroups. Cancers 2022; 14(8): 2019.
[http://dx.doi.org/10.3390/cancers14082019] [PMID: 35454926]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy