Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Enantioselective Synthesis, Computational Molecular Docking and In Vitro Anticoagulant Activity of Warfarin-based Derivatives

Author(s): Zakia Afzal*, Naghmana Rashid, Humaira Nadeem, Arif-Ullah Khan and Zaman Ashraf

Volume 27, Issue 21, 2023

Published on: 11 December, 2023

Page: [1896 - 1908] Pages: 13

DOI: 10.2174/0113852728266600231128060248

Price: $65

Abstract

Warfarin containing a 4-hydroxycoumarin moiety possesses excellent anticoagulant activity, with the (S) enantiomer being the eutomer. The present work is designed to synthesize warfarin based derivatives enantioselectivity to explore their anticoagulant potential. The substituted chalcones were reacted with 4-hydroxycoumarin in the presence of the chiral organocatalyst 9-amino-9-deoxyepiquinine to afford warfarin-based analogues 5a- 5k. The structures of synthesized compounds 5a-5k were confirmed by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) and electron ionization mass spectroscopy (EIMS) data. The enantiomeric excess (ee) has been found in the range of 16-99% as determined by chiral high-performance liquid chromatography (HPLC) analysis. The in vitro anticoagulant activity of the products 5a-5k was evaluated by plasma recalcification time (PRT) method, and it was found that most of the derivatives showed good anticoagulant activity, specifically compound 5b exhibited excellent results compared to that of warfarin. Compound 5b displayed an IC50 value of 249.88 μM, which is better than that of warfarin (IC50 408.70 μM). The molecular docking studies have been performed against vitamin K epoxide reductase with PDBID 3kp9. The synthesized compounds bind well in the active binding site of the target enzyme. The derivative 5b showed π-π stacking interactions with the amino acid phenylalanine (Phe 114). The antimicrobial activity of synthesized compounds has also been evaluated, and results showed moderate antimicrobial activity. Based on our results, it is proposed that derivative 5b may act as a lead compound to design more potent anticoagulant derivatives.

Graphical Abstract

[1]
Kresge, N.; Simoni, R.D.; Hill, R.L. The finding that prothrombin contains γ-carboxyglutamic acid: The work of Johan Stenflo. J. Biol. Chem., 2009, 284(18), e1-e2.
[http://dx.doi.org/10.1016/S0021-9258(20)58416-0]
[2]
Palareti, G.; Manotti, C.; D’Angelo, A.; Pengo, V.; Erba, N.; Moia, M.; Ciavarella, N.; Devoto, G.; Berrettini, M.; Leali, N.; Poggi, M.; Legnani, C.; Musolesi, S.; Coccheri, S. Thrombotic events during oral anticoagulant treatment: Results of the inception-cohort, prospective, collaborative ISCOAT study: ISCOAT study group (Italian Study on Complications of Oral Anticoagulant Therapy). Thromb. Haemost., 1997, 78(6), 1438-1443.
[http://dx.doi.org/10.1055/s-0038-1665430] [PMID: 9423791]
[3]
Kjerpeseth, L.J.; Ellekjær, H.; Selmer, R.; Ariansen, I.; Furu, K.; Skovlund, E. Trends in use of warfarin and direct oral anticoagulants in atrial fibrillation in Norway, 2010 to 2015. Eur. J. Clin. Pharmacol., 2017, 73(11), 1417-1425.
[http://dx.doi.org/10.1007/s00228-017-2296-1] [PMID: 28735494]
[4]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[http://dx.doi.org/10.2174/1389557516666160801094919] [PMID: 27488585]
[5]
Reilly, R.A.O. Studies on the optical enantiomorphs of warfarin in man. Clin. Pharmacol. Ther., 1974, 16(2), 348-354.
[http://dx.doi.org/10.1002/cpt1974162348] [PMID: 4605176]
[6]
Gouda, M.A.; Salem, M.A.; Helal, M.H. A review on synthesis and pharmacological activity of coumarins and their analogs. Curr. Bioact. Compd., 2020, 16(6), 818-836.
[http://dx.doi.org/10.2174/1573407215666190405154406]
[7]
Takahashi, H.; Echizen, H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin. Pharmacokinet., 2001, 40(8), 587-603.
[http://dx.doi.org/10.2165/00003088-200140080-00003] [PMID: 11523725]
[8]
Hallak, H.O.; Wedlund, P.J.; Modi, M.W.; Patel, I.H.; Lewis, G.L.; Woodruff, B.; Trowbridge, A.A. High clearance of (S)-warfarin in a warfarin-resistant subject. Br. J. Clin. Pharmacol., 1993, 35(3), 327-330.
[http://dx.doi.org/10.1111/j.1365-2125.1993.tb05703.x] [PMID: 8471414]
[9]
Gao, L.; Wang, F.; Chen, Y.; Li, F.; Han, B.; Liu, D. The antithrombotic activity of natural and synthetic coumarins. Fitoterapia, 2021, 154, 104947.
[http://dx.doi.org/10.1016/j.fitote.2021.104947] [PMID: 34352355]
[10]
Halland, N.; Hansen, T.; Jørgensen, K.A. Organocatalytic asymmetric Michael reaction of cyclic 1,3-dicarbonyl compounds and αβ-unsaturated ketones--a highly atom-economic catalytic one-step formation of optically active warfarin anticoagulant. Angew. Chem. Int. Ed., 2003, 42(40), 4955-4957.
[http://dx.doi.org/10.1002/anie.200352136] [PMID: 14579449]
[11]
Porter, W.R. Warfarin: History, tautomerism and activity. J. Comput. Aided Mol. Des., 2010, 24(6-7), 553-573.
[http://dx.doi.org/10.1007/s10822-010-9335-7] [PMID: 20352297]
[12]
Fang, M.C.; Chang, Y.; Hylek, E.M.; Rosand, J.; Greenberg, S.M.; Go, A.S.; Singer, D.E. Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation. Ann. Intern. Med., 2004, 141(10), 745-752.
[http://dx.doi.org/10.7326/0003-4819-141-10-200411160-00005] [PMID: 15545674]
[13]
Pirmohamed, M. Warfarin: Almost 60 years old and still causing problems. Br. J. Clin. Pharmacol., 2006, 62(5), 509-511.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02806.x] [PMID: 17061959]
[14]
Uysal, E.; Çevik, E.; Solak, S.; Acar, Y.A.; Yalimol, M.A. life-threatening complication of warfarin therapy in ED diffuse alveolar hemorrhage. Am. J. Emerg. Med., 2015, 1, 690-e3.
[http://dx.doi.org/10.1155/2015/350532] [PMID: 24412020]
[15]
Nutescu, E.; Chuatrisorn, I.; Hellenbart, E. Drug and dietary interactions of warfarin and novel oral anticoagulants: An update. J. Thromb. Thrombolysis, 2011, 31(3), 326-343.
[http://dx.doi.org/10.1007/s11239-011-0561-1] [PMID: 21359645]
[16]
Schelleman, H.; Bilker, W.B.; Brensinger, C.M.; Han, X.; Kimmel, S.E.; Hennessy, S. Warfarin with fluoroquinolones, sulfonamides, or azole antifungals: interactions and the risk of hospitalization for gastrointestinal bleeding. Clin. Pharmacol. Ther., 2008, 84(5), 581-588.
[http://dx.doi.org/10.1038/clpt.2008.150] [PMID: 18685566]
[17]
Holbrook, A.M.; Pereira, J.A.; Labiris, R.; McDonald, H.; Douketis, J.D.; Crowther, M.; Wells, P.S. Systematic overview of warfarin and its drug and food interactions. Arch. Intern. Med., 2005, 165(10), 1095-1106.
[http://dx.doi.org/10.1001/archinte.165.10.1095] [PMID: 15911722]
[18]
Valente, E.J.; Lingafelter, E.C.; Porter, W.R.; Trager, W.F. Structure of warfarin in solution. J. Med. Chem., 1977, 20(11), 1489-1493.
[http://dx.doi.org/10.1021/jm00221a025] [PMID: 915911]
[19]
Bharatam, P.V.; Valanju, O.R.; Wani, A.A.; Dhaked, D.K. Importance of tautomerism in drugs. Drug Discov. Today, 2023, 28(4), 103494.
[http://dx.doi.org/10.1016/j.drudis.2023.103494] [PMID: 36681235]
[20]
Antonov, L. Tautomerism: Concepts and applications in science and technology; Wiley‐VCH Verlag GmbH & Co. KGaA., 2016.
[http://dx.doi.org/10.1002/9783527658824]
[21]
Malde, A.K.; Stroet, M.; Caron, B.; Visscher, K.M.; Mark, A.E. Predicting the prevalence of alternative Warfarin tautomers in solution. J. Chem. Theory Comput., 2018, 14(8), 4405-4415.
[http://dx.doi.org/10.1021/acs.jctc.8b00453] [PMID: 29999318]
[22]
Guasch, L.; Peach, M.L.; Nicklaus, M.C. Tautomerism of warfarin: Combined chemoinformatics, quantum chemical, and NMR investigation. J. Org. Chem., 2015, 80(20), 9900-9909.
[http://dx.doi.org/10.1021/acs.joc.5b01370] [PMID: 26372257]
[23]
Kasperkiewicz, K. Małecka, M.; Ponczek, M.B.; Nowak, P.; Budzisz, E. Design, synthesis, X-ray structures of the new coumarin derivatives and perspectives of binding them to albumin and vitamin K epoxide reductase complex subunit 1. Cryst. Growth Des., 2016, 16(1), 456-466.
[http://dx.doi.org/10.1021/acs.cgd.5b01456]
[24]
D’Andrea, G.; D’Ambrosio, R.L.; Di Perna, P.; Chetta, M.; Santacroce, R.; Brancaccio, V.; Grandone, E.; Margaglione, M. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood, 2005, 105(2), 645-649.
[http://dx.doi.org/10.1182/blood-2004-06-2111] [PMID: 15358623]
[25]
Cho, A.E.; Guallar, V.; Berne, B.J.; Friesner, R. Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem., 2005, 26(9), 915-931.
[http://dx.doi.org/10.1002/jcc.20222] [PMID: 15841474]
[26]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[27]
David, J.T. Dicoumarol: A drug which hits at least two very different targets in vitamin K metabolism. Curr. Drug Targets, 2017, 18, 500-510.
[28]
Hashemi, S.A.; Kyani, A.; Bathaie, S.Z. The in silico mechanism of hVKOR interaction with acetaminophen and its metabolite, as well as N-acetyl cysteine: Caution on application in COVID-19 patients. J. Biomol. Struct. Dyn., 2022, 40(18), 8274-8285.
[http://dx.doi.org/10.1080/07391102.2021.1910570] [PMID: 33879035]
[29]
Kasperkiewicz, K.; Ponczek, M.B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of vitamin K—popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules, 2020, 25(6), 1465.
[http://dx.doi.org/10.3390/molecules25061465] [PMID: 32213944]
[30]
Iyer, V.B.; Gurupadayya, B.M.; Inturi, B.; Pujar, G.V. Synthesis of 1, 3, 4-oxadiazoles as promising anticoagulant agents. RSC Advances, 2016, 6, 24797-24807.
[http://dx.doi.org/10.1039/C6RA01158F]
[31]
Lewis, B.C.; Nair, P.C.; Heran, S.S.; Somogyi, A.A.; Bowden, J.J.; Doogue, M.P.; Miners, J.O. Warfarin resistance associated with genetic polymorphism of VKORC1. Pharmacogenet. Genomics, 2016, 26(1), 44-50.
[http://dx.doi.org/10.1097/FPC.0000000000000184] [PMID: 26513304]
[32]
Bell, R.G.; Matschiner, J.T. Warfarin and the inhibition of vitamin K activity by an oxide metabolite. Nature, 1972, 237(5349), 32-33.
[http://dx.doi.org/10.1038/237032a0] [PMID: 4555434]
[33]
Sato, Y.; Inaba, K. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J., 2012, 279(13), 2262-2271.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08593.x] [PMID: 22487145]
[34]
Montagut-Romans, A.; Boulven, M.; Jacolot, M.; Moebs-Sanchez, S.; Hascoët, C.; Hammed, A.; Besse, S.; Lemaire, M.; Benoit, E.; Lattard, V.; Popowycz, F. Synthesis and biological evaluation of C-3 aliphatic coumarins as vitamin K antagonists. Bioorg. Med. Chem. Lett., 2017, 27(7), 1598-1601.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.017] [PMID: 28254487]
[35]
Dong, Z.; Wang, L.; Chen, X.; Liu, X.; Lin, L.; Feng, X. Organocatalytic enantioselective Michael addition of 4-hydroxycoumarin to α β-unsaturated ketones: A simple synthesis of warfarin. Eur. J. Org. Chem., 2009, 2009(30), 5192-5197.
[http://dx.doi.org/10.1002/ejoc.200900831]
[36]
Zhu, X.; Lin, A.; Shi, Y.; Guo, J.; Zhu, C.; Cheng, Y. Enantioselective synthesis of polycyclic coumarin derivatives catalyzed by an in situ formed primary amine-imine catalyst. Org. Lett., 2011, 13(16), 4382-4385.
[http://dx.doi.org/10.1021/ol201715h] [PMID: 21770363]
[37]
Mei, R.Q.; Xu, X.Y.; Li, Y.C.; Fu, J.Y.; Huang, Q.C.; Wang, L.X. Highly effective and enantioselective Michael addition of 4-hydroxycoumarin to α,β-unsaturated ketones promoted by simple chiral primary amine thiourea bifunctional catalysts. Tetrahedron Lett., 2011, 52(14), 1566-1568.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.054]
[38]
Li, H.; Wang, B.; Deng, L. Enantioselective nitroaldol reaction of α-ketoesters catalyzed by cinchona alkaloids. J. Am. Chem. Soc., 2006, 128(3), 732-733.
[http://dx.doi.org/10.1021/ja057237l] [PMID: 16417358]
[39]
Hanessian, S.; Pham, V. Catalytic asymmetric conjugate addition of nitroalkanes to cycloalkenones. Org. Lett., 2000, 2(19), 2975-2978.
[http://dx.doi.org/10.1021/ol000170g] [PMID: 10986086]
[40]
Northrup, A.B.; MacMillan, D.W.C. The first general enantioselective catalytic Diels-Alder reaction with simple α,β-unsaturated ketones. J. Am. Chem. Soc., 2002, 124(11), 2458-2460.
[http://dx.doi.org/10.1021/ja017641u] [PMID: 11890793]
[41]
Halland, N.; Hazell, R.G.; Jørgensen, K.A. Organocatalytic asymmetric conjugate addition of nitroalkanes to α,β-unsaturated enones using novel imidazoline catalysts. J. Org. Chem., 2002, 67(24), 8331-8338.
[http://dx.doi.org/10.1021/jo0261449] [PMID: 12444609]
[42]
Dong, J.; Du, D.M. Highly enantioselective synthesis of Warfarin and its analogs catalysed by primary amine–phosphinamide bifunctional catalysts. Org. Biomol. Chem., 2012, 10(40), 8125-8131.
[http://dx.doi.org/10.1039/c2ob26334c] [PMID: 22956019]
[43]
Kucherenko, A.S.; Kostenko, A.A.; Zhdankina, G.M.; Kuznetsova, O.Y.; Zlotin, S.G. Green asymmetric synthesis of Warfarin and Coumachlor in pure water catalyzed by quinoline-derived 1,2-diamines. Green Chem., 2018, 20(3), 754-759.
[http://dx.doi.org/10.1039/C7GC03626D]
[44]
Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective Michael addition to α,β-unsaturated imides catalyzed by a bifunctional organocatalyst. Angew. Chem. Int. Ed., 2005, 44(26), 4032-4035.
[http://dx.doi.org/10.1002/anie.200500459] [PMID: 15906403]
[45]
Thirumalaikumar, M. Enantioselective michael addition reactions. Org. Prep. Proced. Int., 2011, 43(1), 67-129.
[http://dx.doi.org/10.1080/00304948.2011.547102]
[46]
Das, T.; Mohapatra, S.; Mishra, N.P.; Nayak, S.; Raiguru, B.P. Recent advances in organocatalytic asymmetric michael addition reactions to α β‐Unsaturated nitroolefins. ChemistrySelect, 2021, 6(15), 3745-3781.
[http://dx.doi.org/10.1002/slct.202100679]
[47]
Avila, A.; Chinchilla, R.; Gómez-Bengoa, E.; Nájera, C. Enantioselective Michael addition of aldehydes to maleimides organocatalysed by chiral 1,2-diamines: an experimental and theoretical study. Tetrahedron Asymmetry, 2013, 24(23), 1531-1535.
[http://dx.doi.org/10.1016/j.tetasy.2013.10.001]
[48]
Cao, C.L.; Ye, M.C.; Sun, X.L.; Tang, Y. Pyrrolidine-thiourea as a bifunctional organocatalyst: highly enantioselective Michael addition of cyclohexanone to nitroolefins. Org. Lett., 2006, 8(14), 2901-2904.
[http://dx.doi.org/10.1021/ol060481c] [PMID: 16805512]
[49]
Mossé, S.; Alexakis, A. First organocatalyzed asymmetric Michael addition of aldehydes to vinyl sulfones. Org. Lett., 2005, 7(20), 4361-4364.
[http://dx.doi.org/10.1021/ol051488h] [PMID: 16178533]
[50]
Jana, B.; Mondal, M.; Halder, S.; Mahata, A.; Saurav, S.; Paladhi, S. Recent advancement on the organocatalyzed asymmetric conjugate addition using maleimide as a potential substrate. Asian J. Org. Chem., 2023, 12(10), e202300387.
[http://dx.doi.org/10.1002/ajoc.202300387]
[51]
Kuan, J-Y.; Chen, I.T.; Lin, H.; Han, J.L. Organocatalytic Vinylogous Michael Addition/Cyclization Cascade of 2-Alkylidene Indane‐1,3‐diones with Enals: A Regio- and Stereocontrolled Diversity-Oriented Route to Indane‐1,3‐dione Derivatives. Adv. Synth. Catal., 2023, 2023, 202300767.
[http://dx.doi.org/10.1002/adsc.202300767]
[52]
Abdullah, N.; Shaameri, Z.; Hamzah, A.S.; Mohammat, M.F. Asymmetric michael addition of cyclohexanones to trans-β-nitrostyrene catalyzes by prolineamide- based organocatalyst AIP Conf. Proc; , 2023, pp. 2614-030007.
[http://dx.doi.org/10.1063/5.0127594]
[53]
Kacprzak, K. Gawroński, J. Cinchona alkaloids and their derivatives: Versatile catalysts and ligands in asymmetric synthesis. Synthesis. 2001, 07, 0961-0998.
[http://dx.doi.org/10.1055/s-2001-14560]
[54]
Marcelli, T.; Hiemstra, H. Cinchona alkaloids in asymmetric organocatalysis. Synthesis, 2010, 2010(8), 1229-1279.
[http://dx.doi.org/10.1055/s-0029-1218699]
[55]
Yeboah, E.M.O.; Yeboah, S.O.; Singh, G.S. Recent applications of Cinchona alkaloids and their derivatives as catalysts in metal-free asymmetric synthesis. Tetrahedron, 2011, 67(10), 1725-1762.
[http://dx.doi.org/10.1016/j.tet.2010.12.050]
[56]
Afzal, Z.; Rashid, N.; Nadeem, H. Stereoselective synthesis, spectral characterization, docking and biological screening of coumarin derivatives. J. Chem. Soc. Pakistan., 2021, 43(3)
[57]
Xie, J.W.; Yue, L.; Chen, W.; Du, W.; Zhu, J.; Deng, J.G.; Chen, Y.C. Highly enantioselective michael addition of cyclic 1,3-dicarbonyl compounds to α,β-unsaturated ketones. Org. Lett., 2007, 9(3), 413-415.
[http://dx.doi.org/10.1021/ol062718a] [PMID: 17249775]
[58]
Manolov, I.; Danchev, N.D. Synthesis and pharmacological investigations of some 4-hydroxycoumarin derivatives. Arch. Pharm. , 2003, 336(2), 83-94.
[http://dx.doi.org/10.1002/ardp.200390010] [PMID: 12761761]
[59]
Trager, W.F.; Lewis, R.J.; Garland, W.A. Mass spectral analysis in the identification of human metabolites of warfarin. J. Med. Chem., 1970, 13(6), 1196-1204.
[http://dx.doi.org/10.1021/jm00300a041] [PMID: 5479866]
[60]
Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The antimicrobial agents. Systematic Reviews in Pharmacy, 2017, 8(1), 62-70.
[http://dx.doi.org/10.5530/srp.2017.1.11]
[61]
Guetat, A. The Genus Deverra DC. (Syn. Pituranthos Viv.): A natural valuable source of bioactive phytochemicals: A review of traditional uses, phytochemistry and pharmacological properties. J. Ethnopharmacol., 2022, 284, 114447.
[http://dx.doi.org/10.1016/j.jep.2021.114447] [PMID: 34737008]
[62]
Khan, K.M.; Saify, Z.S.; Khan, M.Z. Zia-Ullah; Choudhary, M.I.; Atta-ur-Rahman; Perveen, S.; Chohan, Z.H.; Supuran, C.T. Synthesis of coumarin derivatives with cytotoxic, antibacterial and antifungal activity. J. Enzyme Inhib. Med. Chem., 2004, 19(4), 373-379.
[http://dx.doi.org/10.1080/14756360409162453] [PMID: 15558956]
[63]
Montagner, C.; de Souza, S.M.; Groposo, C.; Delle Monache, F.; Smânia, E.F.A.; Smânia, A., Jr Antifungal activity of coumarins. Z. Naturforsch. C J. Biosci., 2008, 63(1-2), 21-28.
[http://dx.doi.org/10.1515/znc-2008-1-205] [PMID: 18386483]
[64]
Zhang, R.R.; Liu, J.; Zhang, Y.; Hou, M.Q.; Zhang, M.Z.; Zhou, F.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: Pyrano[3,2- c]chromene-2,5-diones. Eur. J. Med. Chem., 2016, 116, 76-83.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.069] [PMID: 27060759]
[65]
Yu, X.; Teng, P.; Zhang, Y.L.; Xu, Z.J.; Zhang, M.Z.; Zhang, W.H. Design, synthesis and antifungal activity evaluation of coumarin-3-carboxamide derivatives. Fitoterapia, 2018, 127, 387-395.
[http://dx.doi.org/10.1016/j.fitote.2018.03.013] [PMID: 29631016]
[66]
Jadhav, M.R.; Shinde, D.B. Synthesis and biological activity of 4-Hydroxy-3-(1,5-diaryl-3- oxo-pent-4-enyl)chromen-2-ones. Chin. J. Chem., 2010, 28(4), 555-560.
[http://dx.doi.org/10.1002/cjoc.201090111]
[67]
Ustalar, A.; Yilmaz, M. Osmaniı̇; A.; Keçeli̇ S.A. Synthesis and antifungal activity of new dihydrofurocoumarins and dihydrofuroquinolines. Turk. J. Chem., 2017, 41, 80-88.
[http://dx.doi.org/10.3906/kim-1604-22]
[68]
Li, W.; Schulman, S.; Dutton, R.J.; Boyd, D.; Beckwith, J.; Rapoport, T.A. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature, 2010, 463(7280), 507-512.
[http://dx.doi.org/10.1038/nature08720] [PMID: 20110994]
[69]
Goodstadt, L.; Ponting, C.P. Vitamin K epoxide reductase: Homology, active site and catalytic mechanism. Trends Biochem. Sci., 2004, 29(6), 289-292.
[http://dx.doi.org/10.1016/j.tibs.2004.04.004] [PMID: 15276181]
[70]
Singh, A. K.; Bhattacharyya-Pakrasi, M.; Pakrasi, H. B. Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J. boil. chem.,, 2008, 283
[http://dx.doi.org/10.1074/jbc.M80098200]
[71]
Dutton, R.J.; Boyd, D.; Berkmen, M.; Beckwith, J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11933-11938.
[http://dx.doi.org/10.1073/pnas.0804621105] [PMID: 18695247]
[72]
Nielsen, A.T.; Houlihan, W.J. The aldol condensation. Organic reactions, 1st ed; Wiley: New York, 2011, pp. 1-438.
[http://dx.doi.org/10.1002/0471264180.or016.01]
[73]
Climent, M.J.; Corma, A.; Iborra, S.; Primo, J. Base catalysis for fine chemicals production: Claisen-Schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest. J. Catal., 1995, 151(1), 60-66.
[http://dx.doi.org/10.1006/jcat.1995.1008]
[74]
Mohammed, S.J.; Salih, A.K.; Rashid, M.A.M.; Omer, K.M.; Abdalkarim, K.A. Synthesis, spectroscopic studies and keto-enol tautomerism of Novel 1,3,4-Thiadiazole derivative containing 3-Mercaptobutan-2-one and Quinazolin-4-one moieties. Molecules, 2020, 25(22), 5441.
[http://dx.doi.org/10.3390/molecules25225441] [PMID: 33233669]
[75]
Kang, I.K.; Kwon, O.H.; Kim, M.K.; Lee, Y.M.; Sung, Y.K. In vitro blood compatibility of functional group-grafted and heparin-immobilized polyurethanes prepared by plasma glow discharge. Biomaterials, 1997, 18(16), 1099-1107.
[http://dx.doi.org/10.1016/S0142-9612(97)00035-5] [PMID: 9247347]
[76]
Reis, R.S.; Neves, I., Jr; Lourenço, S.L.S.; Fonseca, L.S.; Lourenço, M.C.S. Comparison of flow cytometric and Alamar Blue tests with the proportional method for testing susceptibility of Mycobacterium tuberculosis to rifampin and isoniazid. J. Clin. Microbiol., 2004, 42(5), 2247-2248.
[http://dx.doi.org/10.1128/JCM.42.5.2247-2248.2004] [PMID: 15131202]
[77]
Bauernfeind, A.; Petermüller, C. In vitro activity of ciprofloxacin, norfloxacin and nalidixic acid. Eur. J. Clin. Microbiol., 1983, 2(2), 111-115.
[http://dx.doi.org/10.1007/BF02001575] [PMID: 6222896]
[78]
Ewing, T.J.A.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des., 2001, 15(5), 411-428.
[http://dx.doi.org/10.1023/A:1011115820450] [PMID: 11394736]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy