Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Pharmacokinetics, Mass Balance, Tissue Distribution and Metabolism of [14C]101BHG-D01, a Novel Muscarinic Receptor Antagonist, in Rats

Author(s): Huaye Gao, Cheng Yang, Wenhui Hu, Juefang Ding, Xingxing Diao, Yuandong Zheng, Chang Shu* and Li Ding*

Volume 24, Issue 11, 2023

Published on: 08 December, 2023

Page: [770 - 779] Pages: 10

DOI: 10.2174/0113892002275839231205111422

Price: $65

Abstract

Background: 101BHG-D01, a novel long-acting and selective muscarinic receptor antagonist for the treatment of chronic obstructive pulmonary disease (COPD), is undergoing Phase Ib clinical trial in patients and has shown its potential efficacy. Its preparation method and medical use thereof have been patented in the United States (Patent No.US9751875B2).

Objective: In this study, the pharmacokinetics, mass balance, tissue distribution and metabolism of radioactive 101BHG-D01 were investigated in rats after an intravenous dose of 1 mg/kg [14C]101BHG-D01 (100 μCi/kg).

Methods: Radioactivity in rat plasma, urine, feces, and tissues was measured by liquid scintillation counting (LSC), and metabolite profiling and identification were conducted by UHPLC-β-RAM and UHPLC-Q-Exactive Plus MS.

Results: The total radioactivity of the study drug in rat plasma rapidly declined with an average terminal elimination half-life of 0.35 h. The radioactivity in most tissues reached the maximum concentration at 0.25 h post-- dosing. The radioactivity mainly concentrated in the kidney and pancreas. The drug-related substances tended to be distributed into the blood cells in the circulation. At 168 h post dosing, the mean recovery of the total radioactivity in urine and feces was 78.82%. Fecal excretion was the major excretion route, accounting for approximately 61% of the radioactive dose. The study drug was metabolized extensively, and a total of 17 metabolites were identified in rat plasma, urine, and feces. The major metabolic pathways involved oxidation, oxidation and dehydrogenation, and O-dephenylation.

Conclusion: In conclusion, the study results are useful for better understanding the pharmacokinetic profiles of 101BHG-D01 and provide a robust foundation for subsequent clinical studies.

Graphical Abstract

[1]
Wu, J.; Zhao, X.; Xiao, C.; Xiong, G.; Ye, X.; Li, L.; Fang, Y.; Chen, H.; Yang, W.; Du, X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir. Med., 2022, 205, 107035.
[http://dx.doi.org/10.1016/j.rmed.2022.107035] [PMID: 36343504]
[2]
Alisamir, M.; Ebrahimi, M.; Rahim, F. Anemia in chronic obstructive pulmonary disease: A systematic review. Respir. Investig., 2022, 60(4), 510-521.
[http://dx.doi.org/10.1016/j.resinv.2022.03.006] [PMID: 35484075]
[3]
Hu, Y.; Zong, Y.; Jin, L.; Zou, J.; Wang, Z. Reduced Apela/APJ system expression in patients with pulmonary artery hypertension secondary to chronic obstructive pulmonary disease. Heart Lung, 2023, 59, 8-15.
[http://dx.doi.org/10.1016/j.hrtlng.2023.01.008] [PMID: 36669444]
[4]
Wei, Y.; Sun, L.; Liu, C.; Li, L. Causal association between iron deficiency anemia and chronic obstructive pulmonary disease: A bidirectional two-sample Mendelian randomization study. Heart Lung, 2023, 58, 217-222.
[http://dx.doi.org/10.1016/j.hrtlng.2023.01.003] [PMID: 36623443]
[5]
Matera, M.G.; Page, C.P.; Cazzola, M. Novel bronchodilators for the treatment of chronic obstructive pulmonary disease. Trends Pharmacol. Sci., 2011, 32(8), 495-506.
[http://dx.doi.org/10.1016/j.tips.2011.04.003] [PMID: 21683458]
[6]
Chen, H.; Wang, K.; Yuan, T.; Wang, X.; Huanng, L.; Jiang, Z.; Chen, K.; Du, Y. Dual bronchodilator versus inhaled corticosteroid/long-acting β2-agonist in patients with chronic obstructive pulmonary disease: A meta-analysis of randomized controlled trials. Int. Immunopharmacol., 2021, 93, 107447.
[http://dx.doi.org/10.1016/j.intimp.2021.107447] [PMID: 33601247]
[7]
Nakanishi, T.; Haruta, T.; Shirasaka, Y.; Tamai, I. Organic cation transporter-mediated renal secretion of ipratropium and tiotropium in rats and humans. Drug Metab. Dispos., 2011, 39(1), 117-122.
[http://dx.doi.org/10.1124/dmd.110.035402] [PMID: 20962061]
[8]
Anzueto, A.; Miravitlles, M. Tiotropium in chronic obstructive pulmonary disease – a review of clinical development. Respir. Res., 2020, 21(1), 199.
[http://dx.doi.org/10.1186/s12931-020-01407-y] [PMID: 32727455]
[9]
Halpin, D.M.; Kaplan, A.G.; Russell, R.K. Why choose tiotropium for my patient? A comprehensive review of actions and outcomes versus other bronchodilators. Respir. Med., 2017, 128, 28-41.
[http://dx.doi.org/10.1016/j.rmed.2017.04.008] [PMID: 28610667]
[10]
Mundy, C.; Kirkpatrick, P. Tiotropium bromide. Nat. Rev. Drug Discov., 2004, 3(8), 643-644.
[http://dx.doi.org/10.1038/nrd1472] [PMID: 15317149]
[11]
Meurs, H.; Oenema, T.A.; Kistemaker, L.E.M.; Gosens, R. A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Curr. Opin. Pharmacol., 2013, 13(3), 316-323.
[http://dx.doi.org/10.1016/j.coph.2013.04.004] [PMID: 23643733]
[12]
Currie, G.P.; Rossiter, C.; Miles, S.A.; Lee, D.K.C.; Dempsey, O.J. Effects of tiotropium and other long acting bronchodilators in chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther., 2006, 19(2), 112-119.
[http://dx.doi.org/10.1016/j.pupt.2005.04.003] [PMID: 15970450]
[13]
Rogliani, P.; Calzetta, L.; Matera, M.G.; di Daniele, N.; Girolami, A.; Cazzola, M.; Ora, J. Inhaled therapies and cardiovascular risk in patients with chronic obstructive pulmonary disease. Expert Opin. Pharmacother., 2019, 20(6), 737-750.
[http://dx.doi.org/10.1080/14656566.2019.1570133] [PMID: 30707637]
[14]
Wang, M.T.; Lai, J.H.; Tsai, C.L.; Liou, J.T. Risk of adverse cardiovascular events with use of inhaled long-acting bronchodilators in management of chronic obstructive pulmonary disease. Yao Wu Shi Pin Fen Xi, 2019, 27(3), 657-670.
[PMID: 31324282]
[15]
Yang, M.; Zhang, Y.; Cheng, H.; Xu, Z.; He, J. Association of tiotropium use and the risk of adverse cardiovascular events in patients with chronic obstructive pulmonary disease: A meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol., 2020, 76(6), 795-805.
[http://dx.doi.org/10.1007/s00228-020-02853-9] [PMID: 32274526]
[16]
Gao, H.; Li, J.; Chen, X.; Sun, Z.; Cui, G.; Cheng, M.; Ding, L. Pharmacokinetics, metabolite profiling, safety, and tolerability of inhalation aerosol of 101BHG-D01, a novel, long-acting and selective muscarinic receptor antagonist, in healthy Chinese subjects. Front. Pharmacol., 2022, 13, 1064364.
[http://dx.doi.org/10.3389/fphar.2022.1064364] [PMID: 36588683]
[17]
Wei, H.; Wu, L.; Jia, Y.; Shen, J.; Li, Y.; Sun, P.; Xie, Q.; Chen, X.; Xie, Y.; Wang, Y.; Zhao, Z. Pharmacokinetics and tissue distribution of nasal spray of a novel muscarinic receptor blocker, 101BHG-D01, in dogs and rats. Curr. Drug Metab., 2022, 23(13), 1080-1088.
[http://dx.doi.org/10.2174/1389200224666221201123254] [PMID: 36464876]
[18]
Chu, N.; Huang, K.; Que, L.L.; Ding, Y.; Gu, X.; Zhang, L.; Wang, J.; Chen, X.; Sun, Z.; He, Q. Safety, tolerability, and pharmacokinetic study of 101bhg-d01 nasal spray, a novel long-acting and selective cholinergic m receptor antagonist, in healthy chinese volunteers: A randomized, double-blind, placebo-controlled, single-dose escalation, first-in-human study. Eur. J. Drug Metab. Pharmacokinet., 2022, 47(4), 509-521.
[http://dx.doi.org/10.1007/s13318-022-00769-6] [PMID: 35429285]
[19]
Gao, H.; Cheng, M.; Liu, H.; Ding, L. Development and validation of LC-MS/MS methods for the quantification of 101BHG-D01, a novel, long-acting and selective muscarinic receptor antagonist, and its main metabolite M6 in human plasma, urine and feces: Application to a clinical study in healthy Chinese subjects. J. Pharm. Biomed. Anal., 2023, 233, 115498.
[http://dx.doi.org/10.1016/j.jpba.2023.115498] [PMID: 37285657]
[20]
Kagan, M.; Dain, J.; Peng, L.; Reynolds, C. Metabolism and pharmacokinetics of indacaterol in humans. Drug Metab. Dispos., 2012, 40(9), 1712-1722.
[http://dx.doi.org/10.1124/dmd.112.046151] [PMID: 22648561]
[21]
Harrell, A.W.; Siederer, S.K.; Bal, J.; Patel, N.H.; Young, G.C.; Felgate, C.C.; Pearce, S.J.; Roberts, A.D.; Beaumont, C.; Emmons, A.J.; Pereira, A.I.; Kempsford, R.D. Metabolism and disposition of vilanterol, a long-acting β(2)-adrenoceptor agonist for inhalation use in humans. Drug Metab. Dispos., 2013, 41(1), 89-100.
[http://dx.doi.org/10.1124/dmd.112.048603] [PMID: 23043183]
[22]
He, Y.; Liu, Y.; Yu, J.; Cheng, H.; Odilov, A.; Yang, F.; Tian, G.; Yao, X.; Duan, H.; Yu, C.; Yu, C.; Liu, Y.; Liu, G.; Shen, J.; Wang, Z.; Diao, X. Pharmacokinetics, mass balance, and metabolism of [14C]TPN171, a novel PDE5 inhibitor, in humans for the treatment of pulmonary arterial hypertension. Acta Pharmacol. Sin., 2023, 44(1), 221-233.
[http://dx.doi.org/10.1038/s41401-022-00922-6] [PMID: 35676531]
[23]
Reddy, V.B.; Boteju, L.; Boteju, A.; Shen, L.; Kassahun, K.; Reddy, N.; Sheldon, A.; Luther, S.; Hu, K. In vitro and in vivo metabolism of a novel antimitochondrial cancer metabolism agent, CPI-613, in rat and human. Drug Metab. Dispos., 2022, 50(4), 361-373.
[http://dx.doi.org/10.1124/dmd.121.000726] [PMID: 35086846]
[24]
Ma, S.; Cho, S.; Sahasranaman, S.; Zhao, W.; Pang, J.; Ding, X.; Dean, B.; Wang, B.; Hsu, J.Y.; Ware, J.; Salphati, L. Absorption, metabolism, and excretion of taselisib (GDC-0032), a potent β -sparing PI3K inhibitor in rats, dogs, and humans. Drug Metab. Dispos., 2023, 51(4), 436-450.
[http://dx.doi.org/10.1124/dmd.122.001096] [PMID: 36623882]
[25]
Tian, J.; Lei, P.; He, Y.; Zhang, N.; Ge, X.; Luo, L.; Yan, S.; Diao, X. Absorption, distribution, metabolism, and excretion of [14C]NBP (3-n-butylphthalide) in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1181, 122915.
[http://dx.doi.org/10.1016/j.jchromb.2021.122915] [PMID: 34500404]
[26]
Yang, J.M.; Kim, B.; Kwak, J.; Lee, M.K.; Kim, J.H.; Baek, I.J.; Sung, Y.H.; Lee, J.Y. Development of a novel knockout model of retinitis pigmentosa using Pde6b-knockout Long–Evans rats. Front. Med., 2022, 9, 909182.
[http://dx.doi.org/10.3389/fmed.2022.909182] [PMID: 36213678]
[27]
Gygi, S.P.; Joseph, R.E., Jr; Cone, E.J.; Wilkins, D.G.; Rollins, D.E. Incorporation of codeine and metabolites into hair. Role of pigmentation. Drug Metab. Dispos., 1996, 24(4), 495-501.
[PMID: 8801066]
[28]
The US FDA. Guidance for industry: Safety testing of drug metabolites 2020. Available from: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm079266.pdf

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy