Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Redox Modulation of Meniere Disease by Coriolus versicolor Treatment, a Nutritional Mushroom Approach with Neuroprotective Potential

Author(s): Rosanna Di Paola, Rosalba Siracusa, Roberta Fusco, Marialaura Ontario, Gaetano Cammilleri, Licia Pantano, Maria Scuto, Mario Tomasello, Sestina Spanò, Angela Trovato Salinaro, Ali S. Abdelhameed, Vincenzo Ferrantelli, Antonio Arcidiacono, Tilman Fritsch, Gabriella Lupo*, Anna Signorile*, Luigi Maiolino, Salvatore Cuzzocrea and Vittorio Calabrese

Volume 22, Issue 12, 2024

Published on: 08 December, 2023

Page: [2079 - 2098] Pages: 20

DOI: 10.2174/1570159X22666231206153936

Price: $65

Abstract

Background: Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear.

Objective: Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes

Methods: Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months.

Results: MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking supplements for 6 months.

Conclusion: Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on a-synuclein expression and on inflammatory processes NF-kB-mediated.

« Previous
[1]
Harris, J.P.; Alexander, T.H. Current-day prevalence of Ménière’s syndrome. Audiol. Neurotol., 2010, 15(5), 318-322.
[http://dx.doi.org/10.1159/000286213] [PMID: 20173319]
[2]
Celestino, D.; Ralli, G. Incidence of Menière’s disease in Italy. Am. J. Otol., 1991, 12(2), 135-138.
[PMID: 2053606]
[3]
Bixenstine, P.J.; Maniglia, M.P.; Vasanji, A.; Alagramam, K.N.; Megerian, C.A. Spiral ganglion degeneration patterns in endolymphatic hydrops. Laryngoscope, 2008, 118(7), 1217-1223.
[http://dx.doi.org/10.1097/MLG.0b013e31816ba9cd] [PMID: 18364591]
[4]
Nadol, J.B., Jr Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear. Res., 1990, 49(1-3), 141-154.
[http://dx.doi.org/10.1016/0378-5955(90)90101-T] [PMID: 2292494]
[5]
Trovato, S.A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; Calabrese, E.J.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun. Ageing, 2018, 15(1), 8.
[http://dx.doi.org/10.1186/s12979-017-0108-1] [PMID: 29456585]
[6]
Yokota, Y.; Kitahara, T.; Sakagami, M.; Ito, T.; Kimura, T.; Okayasu, T.; Yamashita, A.; Yamanaka, T. Surgical results and psychological status in patients with intractable Ménière’s disease. Auris Nasus Larynx, 2016, 43(3), 287-291.
[http://dx.doi.org/10.1016/j.anl.2015.10.007] [PMID: 26559747]
[7]
De Berardis, D.; Campanella, D.; Gambi, F.; La Rovere, R.; Carano, A.; Conti, C.M.; Silvestrini, C.; Serroni, N.; Piersanti, D.; Di Giuseppe, B.; Moschetta, F.S.; Cotellessa, C.; Fulcheri, M.; Salerno, R.M.; Ferro, F.M. The role of C-reactive protein in mood disorders. Int. J. Immunopathol. Pharmacol., 2006, 19(4), 721-725.
[http://dx.doi.org/10.1177/039463200601900402] [PMID: 17166394]
[8]
Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannantonio, M.; Perna, G.; Olivieri, L.; De Berardis, D. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review. Curr. Neuropharmacol., 2018, 16(5), 583-606.
[http://dx.doi.org/10.2174/1570159X16666180119144538] [PMID: 29357805]
[9]
Calabrese, V.; Cornelius, C.; Trovato-Salinaro, A.; Cambria, M.; Locascio, M.; Rienzo, L.; Condorelli, D.; Mancuso, C.; De Lorenzo, A.; Calabrese, E. The hormetic role of dietary antioxidants in free radical-related diseases. Curr. Pharm. Des., 2010, 16(7), 877-883.
[http://dx.doi.org/10.2174/138161210790883615] [PMID: 20388101]
[10]
Calabrese, V.; Giordano, J.; Crupi, R.; Di Paola, R.; Ruggieri, M.; Bianchini, R.; Ontario, M.L.; Cuzzocrea, S.; Calabrese, E.J. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J. Neurosci. Res., 2017, 95(5), 1182-1193.
[http://dx.doi.org/10.1002/jnr.23967] [PMID: 27898171]
[11]
Xia, Y.; Wang, D.; Li, J.; Chen, M.; Wang, D.; Jiang, Z.; Liu, B. Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front. Pharmacol., 2022, 13, 974794.
[http://dx.doi.org/10.3389/fphar.2022.974794] [PMID: 36160418]
[12]
Calabrese, V.; Scapagnini, G.; Davinelli, S.; Koverech, G.; Koverech, A.; De Pasquale, C.; Salinaro, A.T.; Scuto, M.; Calabrese, E.J.; Genazzani, A.R. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J. Cell Commun. Signal., 2014, 8(4), 369-384.
[http://dx.doi.org/10.1007/s12079-014-0253-7] [PMID: 25381162]
[13]
Trovato Salinaro, A.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; Uva, M.G.; Calabrese, V. Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer’s disease. Front. Pharmacol., 2014, 5, 129.
[http://dx.doi.org/10.3389/fphar.2014.00129] [PMID: 24936186]
[14]
Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; Castellino, P. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 729-736.
[http://dx.doi.org/10.1016/j.bbadis.2011.12.003] [PMID: 22186191]
[15]
Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Graziano, A.; Crupi, R.; Cuzzocrea, S.; Pennisi, G.; Calabrese, V. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun. Ageing, 2013, 10(1), 41.
[http://dx.doi.org/10.1186/1742-4933-10-41] [PMID: 24498895]
[16]
Amara, I.; Timoumi, R.; Annabi, E.; Di Rosa, G.; Scuto, M.; Najjar, M.F.; Calabrese, V.; Abid-Essefi, S. Di (2‐ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. Environ. Toxicol., 2020, 35(1), 78-86.
[http://dx.doi.org/10.1002/tox.22844] [PMID: 31486570]
[17]
Concetta, S.M.; Mancuso, C.; Tomasello, B.; Laura, O.M.; Cavallaro, A.; Frasca, F.; Maiolino, L.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V. Curcumin, hormesis and the nervous system. Nutrients, 2019, 11(10), 2417.
[http://dx.doi.org/10.3390/nu11102417] [PMID: 31658697]
[18]
Bhambri, A.; Srivastava, M.; Mahale, V.G.; Mahale, S.; Karn, S.K. Mushrooms as potential sources of active metabolites and medicines. Front. Microbiol., 2022, 13837266.
[http://dx.doi.org/10.3389/fmicb.2022.837266] [PMID: 35558110]
[19]
Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem., 2018, 243, 373-381.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.149] [PMID: 29146352]
[20]
Paterson, R.R.M.; Lima, N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed. J., 2014, 37(6), 357-368.
[http://dx.doi.org/10.4103/2319-4170.143502] [PMID: 25355390]
[21]
Komura, D.L.; Ruthes, A.C.; Carbonero, E.R.; Gorin, P.A.J.; Iacomini, M. Water-soluble polysaccharides from Pleurotus ostreatus var. florida mycelial biomass. Int. J. Biol. Macromol., 2014, 70, 354-359.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.007] [PMID: 25008131]
[22]
Wong, J.H.; Ng, T.B.; Chan, H.H.L.; Liu, Q.; Man, G.C.W.; Zhang, C.Z.; Guan, S.; Ng, C.C.W.; Fang, E.F.; Wang, H.; Liu, F.; Ye, X.; Rolka, K.; Naude, R.; Zhao, S.; Sha, O.; Li, C.; Xia, L. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl. Microbiol. Biotechnol., 2020, 104(11), 4675-4703.
[http://dx.doi.org/10.1007/s00253-020-10476-4] [PMID: 32274562]
[23]
Zhang, X.; Cai, Z.; Mao, H.; Hu, P.; Li, X. Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. Int. J. Biol. Macromol., 2021, 166, 1387-1395.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.018] [PMID: 33161080]
[24]
Liu, X.; Yu, Z.; Jia, W.; Wu, Y.; Wu, D.; Zhang, H.; Liu, Z.; Yang, Y.; Zhang, J.; Liu, Y.; Tang, C.; Wang, W.; Zhu, L. A review on linking the medicinal functions of mushroom prebiotics with gut microbiota. Int. J. Med. Mushrooms, 2020, 22(10), 943-951.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2020035799] [PMID: 33426824]
[25]
Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Ontario, M.L.; Bua, O.; Di Mauro, P.; Toscano, M.A.; Petralia, C.C.T.; Maiolino, L.; Serra, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun. Ageing, 2016, 13(1), 23.
[http://dx.doi.org/10.1186/s12979-016-0078-8] [PMID: 27398086]
[26]
Fang, X.; Jiang, Y.; Ji, H.; Zhao, L.; Xiao, W.; Wang, Z.; Ding, G. The synergistic beneficial effects of Ginkgo flavonoid and Coriolus versicolor polysaccharide for memory improvements in a mouse model of dementia. Evid. Based Complement. Alternat. Med., 2015, 2015(9), 128394.
[PMID: 25821476]
[27]
Bains, A.; Chawla, P.; Kaur, S.; Najda, A.; Fogarasi, M.; Fogarasi, S. Bioactives from mushroom: health attributes and food industry applications. Materials (Basel), 2021, 14(24), 7640.
[http://dx.doi.org/10.3390/ma14247640] [PMID: 34947237]
[28]
Nagy, M.; Socaci, S.; Tofană, M.; Biris-Dorhoi, E.S.; Țibulcă, D.; Petruț, G.; Salanta, C.L. Chemical composition and bioactive compounds of some wild edible mushrooms. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol., 2017, 74(1), 1-8.
[http://dx.doi.org/10.15835/buasvmcn-fst:12629]
[29]
Kim, M.Y.; Seguin, P.; Ahn, J.K.; Kim, J.J.; Chun, S.C.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Kim, S.L.; Park, Y.J.; Ro, H.M.; Chung, I.M. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem., 2008, 56(16), 7265-7270.
[http://dx.doi.org/10.1021/jf8008553] [PMID: 18616260]
[30]
Pawlikowska, M.; Jędrzejewski, T.; Piotrowski, J.; Kozak, W. Fever-range hyperthermia inhibits cells immune response to protein-bound polysaccharides derived from Coriolus versicolor extract. Mol. Immunol., 2016, 80, 50-57.
[http://dx.doi.org/10.1016/j.molimm.2016.10.013] [PMID: 27825050]
[31]
Li, X.Y.; Wang, J.F.; Zhu, P.P.; Liu, L.; Ge, J.B.; Yang, S.X. Immune enhancement of a polysaccharides peptides isolated from Coriolus versicolor. Chung Kuo Yao Li Hsueh Pao, 1990, 11(6), 542-545.
[PMID: 1718146]
[32]
D’Amico, R.; Trovato, S.A.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; Siracusa, R.; Calabrese, V. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants, 2021, 10(6), 898.
[http://dx.doi.org/10.3390/antiox10060898] [PMID: 34199629]
[33]
Ferreiro, E.; Pita, I.R.; Mota, S.I.; Valero, J.; Ferreira, N.R.; Fernandes, T.; Calabrese, V.; Fontes-Ribeiro, C.A.; Pereira, F.C.; Rego, A.C. Coriolus versicolor biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget, 2018, 9(68), 32929-32942.
[http://dx.doi.org/10.18632/oncotarget.25978] [PMID: 30250640]
[34]
Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.; Petralia, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology, 2016, 53, 350-358.
[http://dx.doi.org/10.1016/j.neuro.2015.09.012] [PMID: 26433056]
[35]
Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Trovato, S.A.; Maiolino, L.; Calabrese, V. Nutritional mushroom treatment in Meniere’s disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int. J. Mol. Sci., 2019, 21(1), 284.
[http://dx.doi.org/10.3390/ijms21010284] [PMID: 31906226]
[36]
Monro, J.A. Treatment of cancer with mushroom products. Arch. Environ. Health, 2003, 58(8), 533-537.
[http://dx.doi.org/10.3200/AEOH.58.8.533-537] [PMID: 15259434]
[37]
Gil-Antuñano, S.P.; Serrano, C.L.; López, D.A.C.; González, R.S.P.; Dexeus, C.D.; Centeno, M.C.; Coronado, M.P.; de la Fuente, V.J.; López, Fernández, J.A.; Vanrell, B.C.; Cortés Bordoy, J. Efficacy of a Coriolusversicolor-based vaginal gel in human papillomavirus-positive women older than 40 years: A sub-analysis of PALOMA study. J. Pers. Med., 2022, 12(10), 1559.
[http://dx.doi.org/10.3390/jpm12101559] [PMID: 36294699]
[38]
Committee on Hearing and equilibrium guidelines for the diagnosis and evaluation of therapy in Meniere’s disease. Otolaryngol. Head Neck Surg., 1995, 113(3), 181-185.
[http://dx.doi.org/10.1016/S0194-5998(95)70102-8] [PMID: 7675476]
[39]
Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature, 2014, 510(7503), 92-101.
[http://dx.doi.org/10.1038/nature13479] [PMID: 24899309]
[40]
Di Paola, R.; Impellizzeri, D.; Fusco, R.; Cordaro, M.; Siracusa, R.; Crupi, R.; Esposito, E.; Cuzzocrea, S. Ultramicronized palmitoylethanolamide (PEA-um®) in the treatment of idiopathic pulmonary fibrosis. Pharmacol. Res., 2016, 111, 405-412.
[http://dx.doi.org/10.1016/j.phrs.2016.07.010] [PMID: 27402190]
[41]
Fusco, R.; Cordaro, M.; Siracusa, R.; D’Amico, R.; Genovese, T.; Gugliandolo, E.; Peritore, A.F.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Biochemical evaluation of the antioxidant effects of hydroxytyrosol on pancreatitis-associated gut injury. Antioxidants, 2020, 9(9), 781.
[http://dx.doi.org/10.3390/antiox9090781] [PMID: 32842687]
[42]
Schapira, A.H.V.; Mann, V.M.; Cooper, J.M.; Dexter, D.; Daniel, S.E.; Jenner, P.; Clark, J.B.; Marsden, C.D. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem., 1990, 55(6), 2142-2145.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb05809.x] [PMID: 2121905]
[43]
Barrientos, A.; Fontanesi, F.; Díaz, F. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr. Protoc. Hum. Genet., 2009, Chapter 19, Unit19.3.
[http://dx.doi.org/10.1002/0471142905.hg1903s63] [PMID: 19806590]
[44]
Amara, I.; Ontario, M.L.; Scuto, M.; Lo Dico, G.M.; Sciuto, S.; Greco, V.; Abid-Essefi, S.; Signorile, A.; Salinaro, A.T.; Calabrese, V. Moringa oleifera protects SH-SY5Y cells from DEHP-induced endoplasmic reticulum stress and apoptosis. Antioxidants, 2021, 10(4), 532.
[http://dx.doi.org/10.3390/antiox10040532] [PMID: 33805396]
[45]
Wolfer, A.M.; Gaudin, M.; Taylor-Robinson, S.D.; Holmes, E.; Nicholson, J.K. Development and validation of a high-throughput ultrahigh-performance liquid chromatography-mass spectrometry approach for screening of oxylipins and their precursors. Anal. Chem., 2015, 87(23), 11721-11731.
[http://dx.doi.org/10.1021/acs.analchem.5b02794] [PMID: 26501362]
[46]
Merchant, S.N.; Adams, J.C.; Nadol, J.B., Jr. Pathology and pathophysiology of idiopathic sudden sensorineural hearing loss. Otol. Neurotol., 2005, 26(2), 151-160.
[http://dx.doi.org/10.1097/00129492-200503000-00004] [PMID: 15793397]
[47]
Capaccio, P.; Pignataro, L.; Gaini, L.M.; Sigismund, P.E.; Novembrino, C.; De Giuseppe, R.; Uva, V.; Tripodi, A.; Bamonti, F. Unbalanced oxidative status in idiopathic sudden sensorineural hearing loss. Eur. Arch. Otorhinolaryngol., 2012, 269(2), 449-453.
[http://dx.doi.org/10.1007/s00405-011-1671-2] [PMID: 21706323]
[48]
Momin, S.R.; Melki, S.J.; Alagramam, K.N.; Megerian, C.A. Spiral ganglion loss outpaces inner hair cell loss in endolymphatic hydrops. Laryngoscope, 2010, 120(1), 159-165.
[PMID: 19877178]
[49]
Perez-Carpena, P.; Lopez-Escamez, J.A. Current understanding and clinical management of Meniere’s disease: A systematic review. Semin. Neurol., 2020, 40(1), 138-150.
[http://dx.doi.org/10.1055/s-0039-3402065] [PMID: 31887752]
[50]
Verdoodt, D.; Van Camp, G.; Ponsaerts, P.; Van Rompaey, V. On the pathophysiology of DFNA9: Effect of pathogenic variants in the COCH gene on inner ear functioning in human and transgenic mice. Hear. Res., 2021, 401, 108162.
[http://dx.doi.org/10.1016/j.heares.2020.108162] [PMID: 33421658]
[51]
Baruah, P. Cochlin in autoimmune inner ear disease: Is the search for an inner ear autoantigen over? Auris Nasus Larynx, 2014, 41(6), 499-501.
[http://dx.doi.org/10.1016/j.anl.2014.08.014] [PMID: 25199741]
[52]
Kouhi, A.; Shakeri, S.; Yazdani, N.; Shababi, N.; Mohseni, A.; Mohseni, A.; Sadr, M.; Mohammad, A.M.; Rezaei, A.; Rezaei, N. Association of pro-inflammatory cytokine gene polymorphism with Meniere’s disease in an Iranian sample. Iran. J. Allergy Asthma Immunol., 2021, 20(6), 734-739.
[http://dx.doi.org/10.18502/ijaai.v20i6.8024] [PMID: 34920656]
[53]
Calabrese, V.; Cornelius, C.; Mancuso, C.; Lentile, R.; Stella, A.G.; Butterfield, D.A. Redox homeostasis and cellular stress response in aging and neurodegeneration; Free Radicals and Antioxidant Protocols, 2010, pp. 285-308.
[http://dx.doi.org/10.1007/978-1-60327-029-8_17]
[54]
Calabrese, V.; Cornelius, C.; Maiolino, L.; Luca, M.; Chiaramonte, R.; Toscano, M.A.; Serra, A. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of vitagenes. Neurochem. Res., 2010, 35(12), 2208-2217.
[http://dx.doi.org/10.1007/s11064-010-0304-2] [PMID: 21042850]
[55]
Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol., 2008, 8(5), 349-361.
[http://dx.doi.org/10.1038/nri2294] [PMID: 18437155]
[56]
Megerian, C.A. Diameter of the cochlear nerve in endolymphatic hydrops: Implications for the etiology of hearing loss in Ménière’s disease. Laryngoscope, 2005, 115(9), 1525-1535.
[http://dx.doi.org/10.1097/01.mlg.0000167804.82950.9e] [PMID: 16148690]
[57]
Jung, J.; Yoo, J.E.; Choe, Y.H.; Park, S.C.; Lee, H.J.; Lee, H.J.; Noh, B.; Kim, S.H.; Kang, G.-Y.; Lee, K.-M.; Yoon, S.S.; Jang, D.S.; Yoon, J.-H.; Hyun, Y.-M.; Choi, J.Y. Cleaved cochlin sequesters pseudomonas aeruginosa and activates innate immunity in the inner ear. Cell Host Microbe., 2019, 25(4), 513-525.e6.
[http://dx.doi.org/10.1016/j.chom.2019.02.001] [PMID: 30905438]
[58]
Jędrzejewski, T.; Pawlikowska, M.; Piotrowski, J.; Kozak, W. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation. Immunol. Lett., 2016, 178, 140-147.
[http://dx.doi.org/10.1016/j.imlet.2016.08.013] [PMID: 27594322]
[59]
Danial-Farran, N.; Chervinsky, E.; Nadar-Ponniah, P.T.; Cohen Barak, E.; Taiber, S.; Khayat, M.; Avraham, K.B.; Shalev, S.A. Homozygote loss-of-function variants in the human COCH gene underlie hearing loss. Eur. J. Hum. Genet., 2021, 29(2), 338-342.
[http://dx.doi.org/10.1038/s41431-020-00724-6] [PMID: 32939038]
[60]
Ishiyama, G.; Lopez, I.A.; Acuna, D.; Ishiyama, A. Investigations of the microvasculature of the human macula utricle in Meniere’s disease. Front. Cell. Neurosci., 2019, 13, 445.
[http://dx.doi.org/10.3389/fncel.2019.00445] [PMID: 31636542]
[61]
Wu, S.H.; Liao, P.Y.; Dong, L.; Chen, Z.Q. Signal pathway involved in inhibition by lipoxin A4 of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflamm. Res., 2008, 57(9), 430-437.
[http://dx.doi.org/10.1007/s00011-008-7147-1] [PMID: 18777114]
[62]
Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm., 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/805841] [PMID: 25505823]
[63]
Calabrese, V.; Santoro, A.; Trovato Salinaro, A.; Modafferi, S.; Scuto, M.; Albouchi, F.; Monti, D.; Giordano, J.; Zappia, M.; Franceschi, C.; Calabrese, E.J. Hormetic approaches to the treatment of Parkinson’s disease: Perspectives and possibilities. J. Neurosci. Res., 2018, 96(10), 1641-1662.
[http://dx.doi.org/10.1002/jnr.24244] [PMID: 30098077]
[64]
Kawaguchi, S.; Hagiwara, A.; Suzuki, M. Polymorphic analysis of the heat-shock protein 70 gene (HSPA1A) in Ménière’s disease. Acta Otolaryngol., 2008, 128(11), 1173-1177.
[http://dx.doi.org/10.1080/00016480801901675] [PMID: 19241595]
[65]
Møller, M.N.; Kirkeby, S.; Vikeså, J.; Nielsen, F.C.; Cayé-Thomasen, P. Gene expression demonstrates an immunological capacity of the human endolymphatic sac. Laryngoscope, 2015, 125(8), E269-E275.
[http://dx.doi.org/10.1002/lary.25242] [PMID: 25779626]
[66]
Requena, T.; Gazquez, I.; Moreno, A.; Batuecas, A.; Aran, I.; Soto-Varela, A.; Santos-Perez, S.; Perez, N.; Perez-Garrigues, H.; Lopez-Nevot, A.; Martin, E.; Sanz, R.; Perez, P.; Trinidad, G.; Alarcon-Riquelme, M.E.; Teggi, R.; Zagato, L.; Lopez-Nevot, M.A.; Lopez-Escamez, J.A. Allelic variants in TLR10 gene may influence bilateral affectation and clinical course of Meniere’s disease. Immunogenetics, 2013, 65(5), 345-355.
[http://dx.doi.org/10.1007/s00251-013-0683-z] [PMID: 23370977]
[67]
Nakanishi, H.; Kawashima, Y.; Kurima, K.; Chae, J.J.; Ross, A.M.; Pinto-Patarroyo, G.; Patel, S.K.; Muskett, J.A.; Ratay, J.S.; Chattaraj, P.; Park, Y.H.; Grevich, S.; Brewer, C.C.; Hoa, M.; Kim, H.J.; Butman, J.A.; Broderick, L.; Hoffman, H.M.; Aksentijevich, I.; Kastner, D.L.; Goldbach-Mansky, R.; Griffith, A.J. NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc. Natl. Acad. Sci. USA, 2017, 114(37), E7766-E7775.
[http://dx.doi.org/10.1073/pnas.1702946114] [PMID: 28847925]
[68]
Nakanishi, H.; Prakash, P.; Ito, T.; Kim, H.J.; Brewer, C.C.; Harrow, D.; Roux, I.; Hosokawa, S.; Griffith, A.J. Genetic hearing loss associated with autoinflammation. Front. Neurol., 2020, 11, 141.
[http://dx.doi.org/10.3389/fneur.2020.00141] [PMID: 32194497]
[69]
Frejo, L.; Lopez-Escamez, J.A. Cytokines and inflammation in Meniere disease. Clin. Exp. Otorhinolaryngol., 2022, 15(1), 49-59.
[http://dx.doi.org/10.21053/ceo.2021.00920] [PMID: 35124944]
[70]
Cabrera, S.; Sanchez, E.; Requena, T.; Martinez-Bueno, M.; Benitez, J.; Perez, N.; Trinidad, G.; Soto-Varela, A.; Santos-Perez, S.; Martin-Sanz, E.; Fraile, J.; Perez, P.; Alarcon-Riquelme, M.E.; Batuecas, A.; Espinosa-Sanchez, J.M.; Aran, I.; Lopez-Escamez, J.A. Intronic variants in the NFKB1 gene may influence hearing forecast in patients with unilateral sensorineural hearing loss in Meniere’s disease. PLoS One, 2014, 9(11), e112171.
[http://dx.doi.org/10.1371/journal.pone.0112171] [PMID: 25397881]
[71]
Frejo, L.; Requena, T.; Okawa, S.; Gallego-Martinez, A.; Martinez-Bueno, M.; Aran, I.; Batuecas-Caletrio, A.; Benitez-Rosario, J.; Espinosa-Sanchez, J.M.; Fraile-Rodrigo, J.J.; García-Arumi, A.M.; González-Aguado, R.; Marques, P.; Martin-Sanz, E.; Perez-Fernandez, N.; Pérez-Vázquez, P.; Perez-Garrigues, H.; Santos-Perez, S.; Soto-Varela, A.; Tapia, M.C.; Trinidad-Ruiz, G.; del Sol, A.; Alarcon Riquelme, M.E.; Lopez-Escamez, J.A. Regulation of Fn14 receptor and NF-κB underlies inflammation in Meniere’s disease. Front. Immunol., 2017, 8, 1739.
[http://dx.doi.org/10.3389/fimmu.2017.01739] [PMID: 29326686]
[72]
Shameli, A.; Xiao, W.; Zheng, Y.; Shyu, S.; Sumodi, J.; Meyerson, H.J.; Harding, C.V.; Maitta, R.W. A critical role for alpha-synuclein in development and function of T lymphocytes. Immunobiology, 2016, 221(2), 333-340.
[http://dx.doi.org/10.1016/j.imbio.2015.10.002] [PMID: 26517968]
[73]
Grozdanov, V.; Danzer, K.M. Intracellular Alpha-Synuclein and Immune Cell Function. Front. Cell Dev. Biol., 2020, 8562692.
[http://dx.doi.org/10.3389/fcell.2020.562692] [PMID: 33178682]
[74]
Gazquez, I.; Soto-Varela, A.; Aran, I.; Santos, S.; Batuecas, A.; Trinidad, G.; Perez-Garrigues, H.; Gonzalez-Oller, C.; Acosta, L.; Lopez-Escamez, J.A. High prevalence of systemic autoimmune diseases in patients with Menière’s disease. PLoS One, 2011, 6(10), e26759.
[http://dx.doi.org/10.1371/journal.pone.0026759] [PMID: 22053211]
[75]
Wang, Y.; Ren, D. Mechanism of aseptic inflammation upon the inner ear injury. J. Bio-X Res., 2020, 3(2), 72-77.
[http://dx.doi.org/10.1097/JBR.0000000000000041]
[76]
Cordaro, M.; Modafferi, S.; D’Amico, R.; Fusco, R.; Genovese, T.; Peritore, A.F.; Gugliandolo, E.; Crupi, R.; Interdonato, L.; Di Paola, D.; Impellizzeri, D.; Cuzzocrea, S.; Calabrese, V.; Di Paola, R.; Siracusa, R. Natural compounds such as Hericium erinaceus and Coriolus versicolor modulate neuroinflammation, oxidative stress and Lipoxin A4 expression in rotenone-induced Parkinson’s disease in mice. Biomedicines, 2022, 10(10), 2505.
[http://dx.doi.org/10.3390/biomedicines10102505] [PMID: 36289766]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy