Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Aluminum Oxide Nanoparticles from Aluminum Door and Window Factory Wastes for the Removal of Methyl Green Dye from Wastewater: A Comparative Study

Author(s): Wrea Mohammed Ibrahim, Ibrahim Qadr Saeed, Hunar Yasin Muhammad and Hijran Sanaan Jabbar*

Volume 19, Issue 10, 2023

Published on: 06 December, 2023

Page: [732 - 742] Pages: 11

DOI: 10.2174/0115734110281748231204062132

Price: $65

Abstract

Background: It has become increasingly important to use non-toxic nanomaterials for treating industrial wastewater that contains organic dyes, such as methyl green.

Method: A sol-gel method was used to synthesize aluminum oxide nanoparticles from waste aluminum and investigate the physicochemical process involved in their removal from methyl green.

Result: The synthesized adsorbent was characterized using EDX, UV-visible, SEM, FTIR, XRD, and HRTEM techniques. The effects of various parameters, such as the initial concentration, the contact time, and the mass of the adsorbent, were studied for the removal of methyl green in the sunlight, dark, sonication and under UV radiation. It was suspected that Al2O3 nanoparticles and methyl green dye interacted electrostatically in water to cause degradation. The degradation rates of 15 mg/L methyl green were 94.13% and 82.33% after 15 min using ultrasound and UV light. While 70% and 3.33% of the dye degraded after 20 min under sunlight and in the dark.

Conclusion: These readily made nanoparticles may well prove useful in wastewater treatment.

Graphical Abstract

[1]
Awual, M.R.; Hasan, M.N.; Hasan, M.M.; Salman, M.S.; Sheikh, M.C.; Kubra, K.T.; Islam, M.S.; Marwani, H.M.; Islam, A.; Khaleque, M.A.; Waliullah, R.M.; Hossain, M.S.; Rasee, A.I.; Rehan, A.I.; Awual, M.E. Green and robust adsorption and recovery of Europium(III) with a mechanism using hybrid donor conjugate materials. Separ. Purif. Tech., 2023, 319, 124088.
[http://dx.doi.org/10.1016/j.seppur.2023.124088]
[2]
Hanifar, K.; Almajidi, Y.Q.; Sanaan Jabbar, H.; Alexis Ramírez-Coronel, A.; Altalbawy, F.M.A.; Almulla, A.F.; Turki Jalil, A.; Awad, S.A.; Andres Barboza-Arenas, L. An environmental-friendly procedure based on deep eutectic solvent for extraction and determination of toxic elements in fish species from different regions of Iraq. J. Food Prot., 2023, 86(7), 100102.
[http://dx.doi.org/10.1016/j.jfp.2023.100102] [PMID: 37172905]
[3]
Pattnaik, P.; Dangayach, G.S.; Bhardwaj, A.K. A review on the sustainability of textile industries wastewater with and without treatment methodologies. Rev. Environ. Health, 2018, 33(2), 163-203.
[http://dx.doi.org/10.1515/reveh-2018-0013] [PMID: 29858909]
[4]
Acevedo, B.; Rocha, R.P.; Pereira, M.F.R.; Figueiredo, J.L.; Barriocanal, C. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH. J. Colloid Interface Sci., 2015, 459, 189-198.
[http://dx.doi.org/10.1016/j.jcis.2015.07.068] [PMID: 26295195]
[5]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 2001, 77(3), 247-255.
[http://dx.doi.org/10.1016/S0960-8524(00)00080-8] [PMID: 11272011]
[6]
Bedekar, P.A.; Bhalkar, B.N.; Patil, S.M.; Govindwar, S.P. Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum. Environ. Sci. Pollut. Res. Int., 2016, 23(20), 20963-20976.
[http://dx.doi.org/10.1007/s11356-016-7279-8] [PMID: 27488711]
[7]
Petzold, G.; Schwarz, S.; Mende, M.; Jaeger, W. Dye flocculation using polyampholytes and polyelectrolyte‐surfactant nanoparticles. J. Appl. Polym. Sci., 2007, 104(2), 1342-1349.
[http://dx.doi.org/10.1002/app.25876]
[8]
Kong, L.; Diao, Z.; Chang, X.; Xiong, Y.; Chen, D. Synthesis of recoverable and reusable granular MgO-SCCA-Zn hybrid ozonation catalyst for degradation of methylene blue. J. Environ. Chem. Eng., 2016, 4(4), 4385-4391.
[http://dx.doi.org/10.1016/j.jece.2016.10.002]
[9]
Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett., 2018, 16(3), 947-967.
[http://dx.doi.org/10.1007/s10311-018-0738-3]
[10]
Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 2018, 197, 210-227.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.195] [PMID: 29366952]
[11]
Ji, J.; Liu, Y.; Yang, X.; Xu, J.; Li, X. Multiple response optimization for high efficiency energy saving treatment of rhodamine B wastewater in a three-dimensional electrochemical reactor. J. Environ. Manage., 2018, 218, 300-308.
[http://dx.doi.org/10.1016/j.jenvman.2018.04.071] [PMID: 29689533]
[12]
Zhao, X.; Niu, C.; Zhang, L.; Guo, H.; Wen, X.; Liang, C.; Zeng, G. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere, 2018, 204, 11-21.
[http://dx.doi.org/10.1016/j.chemosphere.2018.04.023] [PMID: 29649659]
[13]
Vaiano, V.; Iervolino, G. Facile method to immobilize ZnO particles on glass spheres for the photocatalytic treatment of tannery wastewater. J. Colloid Interface Sci., 2018, 518, 192-199.
[http://dx.doi.org/10.1016/j.jcis.2018.02.033] [PMID: 29455103]
[14]
Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 2011, 280(1-3), 1-13.
[http://dx.doi.org/10.1016/j.desal.2011.07.019]
[15]
Islam, A.; Teo, S.H.; Taufiq-Yap, Y.H.; Ng, C.H.; Vo, D.V.N.; Ibrahim, M.L.; Hasan, M.M.; Khan, M.A.R.; Nur, A.S.M.; Awual, M.R. Step towards the sustainable toxic dyes removal and recycling from aqueous solution- A comprehensive review. Resour. Conserv. Recycling, 2021, 175, 105849.
[http://dx.doi.org/10.1016/j.resconrec.2021.105849]
[16]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[17]
Shelash Al-Hawary, S.I.; Malviya, J.; Althomali, R.H.; Almalki, S.G.; Kim, K.; Romero-Parra, R.M.; Fahad Ahmad, A.; Sanaan Jabbar, H.; Vaseem Akram, S.; Hussien Radie, A. Emerging insights into the use of advanced nanomaterials for the electrochemiluminescence biosensor of pesticide residues in plant-derived foodstuff. Crit. Rev. Anal. Chem., 2023, 1-18.
[http://dx.doi.org/10.1080/10408347.2023.2258971] [PMID: 37728973]
[18]
Alameri, A.A.; Sanaan Jabbar, H.; Altimari, U.S.; Sultonov, M.M.; Mahdi, A.B.; Solanki, R.; Shaker Shafik, S.; Sivaraman, R.; Aravindhan, S.; Hadi, J.M.; Mahmood Saleh, M.; Mustafa, Y.F. Advances in biosensing of chemical food contaminants based on the mofs-graphene nanohybrids. Crit. Rev. Anal. Chem., 2022, 1-17.
[http://dx.doi.org/10.1080/10408347.2022.2160923] [PMID: 36580293]
[19]
Alhammadi, M.; Aliya, S.; Umapathi, R.; Oh, M.H.; Huh, Y.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine. Microchem. J., 2023, 195, 109427.
[http://dx.doi.org/10.1016/j.microc.2023.109427]
[20]
Khalaf, E.M.; Sanaan Jabbar, H.; Mireya Romero-Parra, R.; Raheem Lateef Al-Awsi, G.; Setia Budi, H.; Altamimi, A.S.; Abdulfadhil Gatea, M.; Falih, K.T.; Singh, K.; Alkhuzai, K.A. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications. Microchem. J., 2023, 190, 108692.
[http://dx.doi.org/10.1016/j.microc.2023.108692]
[21]
Jabbar, H.S.; Othman, H.O. Batch and flow injection spectrophotometric determination of nitrite and nitrate in wastewater samples of erbil city. Indo Am. J. Pharmaceut. Sci., 2017, 4(9), 3254-3263.
[22]
Jabbar, H.; Faizullah, A.T. Extraction, preconcentration and spectrophotometric determination of ethylene glycol in antifreeze samples. Am. Chem. Sci. J., 2013, 3(3), 338-355.
[http://dx.doi.org/10.9734/ACSJ/2013/3675]
[23]
Jabbar, H.; Faizullah, A.T. A novel chemiluminescence assay of ethylene glycol in antifreeze samples using FIA with merging zone principle. Br. J. Appl. Sci. Technol., 2013, 3(4), 1414-1429.
[http://dx.doi.org/10.9734/BJAST/2014/4709]
[24]
Jabbar, H.; Faizullah, A. Reverse flow injection–spectrophotometric determination of ethylene glycol in antifreeze solutions via periodate–o-tolidine reaction. Int. Res. J. Pure Appl. Chem., 2015, 6(1), 31-45.
[http://dx.doi.org/10.9734/IRJPAC/2015/6440]
[25]
Demirbas, A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. J. Hazard. Mater., 2009, 167(1-3), 1-9.
[http://dx.doi.org/10.1016/j.jhazmat.2008.12.114] [PMID: 19181447]
[26]
Esmail, L.A.; Jabbar, H.S. Ultra small carbon dots from Crocus cancellatus as a highly fluorescence probe for synthetic Ponceau 4R dye sensing in food samples. Diamond Related Materials, 2023, 139, 110334.
[http://dx.doi.org/10.1016/j.diamond.2023.110334]
[27]
Esmail, L.A.; Jabbar, H.S. Encapsulation of amaranth CDs at ZIF-7 MOFs as a novel adsorbent for ultrasonic-assisted dispersive nano-solid-phase microextraction and ultrasensitive determination of allura red in food samples. Microchem. J., 2023, 195, 109474.
[http://dx.doi.org/10.1016/j.microc.2023.109474]
[28]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[29]
Xie, S.; Zheng, B.; Kuang, Q.; Wang, X.; Xie, Z.; Zheng, L. Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. CrystEngComm, 2012, 14(22), 7715-7720.
[http://dx.doi.org/10.1039/c2ce25797a]
[30]
Hu, J.S.; Zhong, L.S.; Song, W.G.; Wan, L.J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater., 2008, 20(15), 2977-2982.
[http://dx.doi.org/10.1002/adma.200800623]
[31]
Yu, P.; Zhang, X.; Wang, D.; Wang, L.; Ma, Y. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des., 2009, 9(1), 528-533.
[http://dx.doi.org/10.1021/cg800834g]
[32]
Lorencgrabowska, E.; Gryglewicz, G. Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigments, 2007, 74(1), 34-40.
[http://dx.doi.org/10.1016/j.dyepig.2006.01.027]
[33]
Ramírez-Coronel, A.A.; Alameri, A.A.; Altalbawy, F.; Sanaan Jabbar, H.; Lateef Al-Awsi, G.R.; Iswanto, A.H.; Altamimi, A.S.; Shareef Mohsen, K.; Almulla, A.F.; Mustafa, Y.F. Smartphone-facilitated mobile colorimetric probes for rapid monitoring of chemical contaminations in food: Advances and outlook. Crit. Rev. Anal. Chem., 2023, 1-19.
[http://dx.doi.org/10.1080/10408347.2022.2164173] [PMID: 36598426]
[34]
Omar, N.A.; Jabbar, H.S. NiFe2O4 nanoparticles as nanozymes, a new colorimetric probe for 2,4-dichlorophenoxyacetic acid herbicide detection. Inorg. Chem. Commun., 2022, 146, 110104.
[http://dx.doi.org/10.1016/j.inoche.2022.110104]
[35]
Othman, H.O.; Omar, N.A.; Jabbar, H.S. CaO nanozyme from environmentally friendly waste as a colorimetric probe for selective determination of 2,4-dichlorophenoxyacetic acid herbicide in water and soil samples. J. Inorg. Organomet. Polym. Mater., 2023.
[http://dx.doi.org/10.1007/s10904-023-02906-3]
[36]
Sharma, Y.C.; Srivastava, V.; Singh, V.K.; Kaul, S.N.; Weng, C.H. Nano‐adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol., 2009, 30(6), 583-609.
[http://dx.doi.org/10.1080/09593330902838080] [PMID: 19603705]
[37]
Kasprzyk-Hordern, B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv. Colloid Interface Sci., 2004, 110(1-2), 19-48.
[http://dx.doi.org/10.1016/j.cis.2004.02.002] [PMID: 15142822]
[38]
Giles, D.E.; Mohapatra, M.; Issa, T.B.; Anand, S.; Singh, P. Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manage., 2011, 92(12), 3011-3022.
[http://dx.doi.org/10.1016/j.jenvman.2011.07.018] [PMID: 21871703]
[39]
Kim, P.; Joo, J.B.; Kim, H.; Kim, W.; Kim, Y.; Song, I.K.; Yi, J. Preparation of mesoporous Ni–alumina catalyst by one-step sol–gel method: control of textural properties and catalytic application to the hydrodechlorination of o-dichlorobenzene. Catal. Lett., 2005, 104(3-4), 181-189.
[http://dx.doi.org/10.1007/s10562-005-7949-5]
[40]
Kim, S.M.; Lee, Y.J.; Bae, J.W.; Potdar, H.S.; Jun, K.W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether. Appl. Catal. A Gen., 2008, 348(1), 113-120.
[http://dx.doi.org/10.1016/j.apcata.2008.06.032]
[41]
Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. uman health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B Crit. Rev., 2007, 10((sup1)), 1-269.
[http://dx.doi.org/10.1080/10937400701597766] [PMID: 18085482]
[42]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M.H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[43]
Boumaza, A.; Favaro, L.; Lédion, J.; Sattonnay, G.; Brubach, J.B.; Berthet, P.; Huntz, A.M.; Roy, P.; Tétot, R. Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. J. Solid State Chem., 2009, 182(5), 1171-1176.
[http://dx.doi.org/10.1016/j.jssc.2009.02.006]
[44]
Bhargavi, R.J.; Maheshwari, U.; Gupta, S. Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn(II) and CBG dye from wastewater. Int. J. Indus. Chem., 2015, 6(1), 31-41.
[http://dx.doi.org/10.1007/s40090-014-0029-1]
[45]
Sharma, Y.C.; Srivastava, V.; Mukherjee, A.K. Synthesis and application of nano-Al2O3 powder for the reclamation of hexavalent chromium from aqueous solutions. J. Chem. Eng. Data, 2010, 55(7), 2390-2398.
[http://dx.doi.org/10.1021/je900822j]
[46]
Srivastava, V.; Weng, C.H.; Singh, V.K.; Sharma, Y.C. Adsorption of nickel ions from aqueous solutions by nano alumina: Kinetic, mass transfer, and equilibrium studies. J. Chem. Eng. Data, 2011, 56(4), 1414-1422.
[http://dx.doi.org/10.1021/je101152b]
[47]
Cai, W.; Hu, Y.; Yu, J.; Wang, W.; Zhou, J.; Jaroniec, M. Template-free synthesis of hierarchical γ-Al2O3 nanostructures and their adsorption affinity toward phenol and CO2. RSC Advan, 2014, 5, 10.
[48]
Yalamaç, E.; Trapani, A.; Akkurt, S. Sintering and microstructural investigation of gamma-alpha alumina powders. Eng. Sci. Technol. Int. J., 2014, 17(1), 2-7.
[49]
Shek, C.H.; Lai, J.K.L.; Gu, T.S.; Lin, G.M. Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders. Nanostruct. Mater., 1997, 8(5), 605-610.
[http://dx.doi.org/10.1016/S0965-9773(97)00201-8]
[50]
Banerjee, S.; Dubey, S.; Gautam, R.K.; Chattopadhyaya, M.C.; Sharma, Y.C. Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab. J. Chem., 2019, 12(8), 5339-5354.
[http://dx.doi.org/10.1016/j.arabjc.2016.12.016]
[51]
Nduni, M.N.; Osano, A.M.; Chaka, B. Synthesis and characterization of aluminium oxide nanoparticles from waste aluminium foil and potential application in aluminium-ion cell. Cleaner Eng. Technol., 2021, 3, 100108.
[http://dx.doi.org/10.1016/j.clet.2021.100108]
[52]
Djebaili, K.; Mekhalif, Z.; Boumaza, A.; Djelloul, A. XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy. J. Spectrosc., 2015, 2015(2)
[53]
Hasan, L.I.; Jabbar, H.S. Silver nanoparticles application as a colorimetric probe for the spectrophotometric determination of hyoscine butylbromide in pharmaceutical formulations. J. AOAC Int., 2023, 106(2), 285-295.
[http://dx.doi.org/10.1093/jaoacint/qsac133] [PMID: 36303319]
[54]
Prashanth, P.A.; Raveendra, R.S.; Hari Krishna, R.; Ananda, S.; Bhagya, N.P.; Nagabhushana, B.M.; Lingaraju, K.; Raja Naika, H. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J. Asian Ceramic Socie., 2015, 3(3), 345-351.
[http://dx.doi.org/10.1016/j.jascer.2015.07.001]
[55]
Abdulsatar Esmail, L.; Sanaan Jabbar, H. Violuric acid carbon dots as a highly fluorescence probe for ultrasensitive determination of Zn (II) in tomato paste. Food Chem., 2023, 413, 135638.
[http://dx.doi.org/10.1016/j.foodchem.2023.135638] [PMID: 36773356]
[56]
Dhawale, V.P.; Khobragade, V.; Kulkarni, S.D. Synthesis and characterization of aluminium oxide (Al2O3) nanoparticles and its application in azodye decolourisation. Chemistry, 2018, 27, 31.
[57]
Hoffman, M.; Martin, S.; Choi, W.; Bahnemann, D. Photocatalysis over semiconductors. Chem. Rev., 1995, 95(1), 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[58]
Ibhadon, A.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 2013, 3(1), 189-218.
[http://dx.doi.org/10.3390/catal3010189]
[59]
Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today, 1999, 53(1), 51-59.
[http://dx.doi.org/10.1016/S0920-5861(99)00102-9]
[60]
Boroujeni, D.R. Catalytic water cleaning: Materials and transport aspects. PhD Thesis - Research UT, graduation UT, University of Twente., 2016.
[61]
Samsudin, E.M.; Goh, S.N.; Wu, T.Y.; Ling, T.T.; Hamid, S.B.A.; Juan, J.C. Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malays., 2015, 44(7), 1011-1019.
[http://dx.doi.org/10.17576/jsm-2015-4407-13]
[62]
Munjur, M. Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. J. Mol. Liq., 2020, 319, 114356.
[http://dx.doi.org/10.1016/j.molliq.2020.114356]
[63]
Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq., 2021, 328, 115468.
[http://dx.doi.org/10.1016/j.molliq.2021.115468]
[64]
Hasan, M.M.; Shenashen, M.A.; Hasan, M.N.; Znad, H.; Salman, M.S.; Awual, M.R. Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. J. Mol. Liq., 2021, 323, 114587.
[http://dx.doi.org/10.1016/j.molliq.2020.114587]
[65]
Rajendran, S.; Hoang, T.K.A.; Trudeau, M.L.; Jalil, A.A.; Naushad, M.; Awual, M.R. Generation of novel n-p-n (CeO2-PPy-ZnO) heterojunction for photocatalytic degradation of micro-organic pollutants. Environ. Pollut., 2022, 292(Pt B), 118375.
[http://dx.doi.org/10.1016/j.envpol.2021.118375] [PMID: 34656681]
[66]
Rahman, T.U.; Roy, H.; Shoronika, A.Z.; Fariha, A.; Hasan, M.; Islam, M.S.; Marwani, H.M.; Islam, A.; Hasan, M.M.; Alsukaibi, A.K.D.; Rahman, M.M.; Awual, M.R. Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. J. Mol. Liq., 2023, 388, 122764.
[http://dx.doi.org/10.1016/j.molliq.2023.122764]
[67]
Roy, H.; Rahman, T.U.; Khan, M.A.J.R.; Al-Mamun, M.R.; Islam, S.Z.; Khaleque, M.A.; Hossain, M.I.; Khan, M.Z.H.; Islam, M.S.; Marwani, H.M.; Islam, A.; Hasan, M.M.; Awual, M.R. Toxic dye removal, remediation, and mechanism with doped SnO2-based nanocomposite photocatalysts: A critical review. J. Water Process Eng., 2023, 54, 104069.
[http://dx.doi.org/10.1016/j.jwpe.2023.104069]
[68]
Almajidi, Y.Q.; Al-dolaimy, F.; Alsaab, H.O.; Althomali, R.H.; Jabbar, H.S.; Abdullaev, S.S.; Hassan, Z.F.; Ridha, B.M.; Alsalamy, A.H.; Akram, S.V. Build-in internal electric field in vacancy engineered CdS@ZnIn2S4 type-II heterostructure for boosting photocatalytic tetracycline degradation and in situ H2O2 generation. Mater. Res. Bull., 2024, 170, 112570.
[http://dx.doi.org/10.1016/j.materresbull.2023.112570]
[69]
Rehan, A.I.; Rasee, A.I.; Awual, M.E.; Waliullah, R.M.; Hossain, M.S.; Kubra, K.T.; Salman, M.S.; Hasan, M.M.; Hasan, M.N.; Sheikh, M.C.; Marwani, H.M.; Khaleque, M.A.; Islam, A.; Awual, M.R. Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids Surf. A Physicochem. Eng. Asp., 2023, 673, 131859.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131859]
[70]
Waliullah, R.M.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Sheikh, M.C.; Salman, M.S.; Hossain, M.S.; Hasan, M.M.; Kubra, K.T.; Hasan, M.N.; Marwani, H.M.; Islam, A.; Rahman, M.M.; Khaleque, M.A.; Awual, M.R. Optimization of toxic dye removal from contaminated water using chitosan-grafted novel nanocomposite adsorbent. J. Mol. Liq., 2023, 388, 122763.
[http://dx.doi.org/10.1016/j.molliq.2023.122763]
[71]
Salman, M.S.; Sheikh, M.C.; Hasan, M.M.; Hasan, M.N.; Kubra, K.T.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Waliullah, R.M.; Hossain, M.S.; Khaleque, M.A.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Appl. Surf. Sci., 2023, 622, 157008.
[http://dx.doi.org/10.1016/j.apsusc.2023.157008]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy