Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

LINC01836 Promotes Colorectal Cancer Progression and Functions as ceRNA to Target SLC17A9 by Sponging miR-1226-3p

Author(s): Zhihua Xu, Yue Yu, Hao Ni, Wei Sun* and Yuting Kuang*

Volume 31, Issue 1, 2024

Published on: 06 December, 2023

Page: [43 - 60] Pages: 18

DOI: 10.2174/0109298665248028231122064831

Abstract

Background: Increasing evidence proves that long non-coding RNAs (lncRNAs) play a key role in the occurrence and development of colorectal cancer. However, the function and molecular mechanism of LINC01836 in CRC are still unknown.

Methods: The differentially expressed lncRNAs in colorectal cancer were obtained from the RNA sequencing data. The effects of LINC01836 on colorectal cancer cells were tested in in vitro experiments. The mechanism of LINC01836 action was investigated through western blot, RNA immunoprecipitation assay and luciferase reporter assay. Moreover, the xenograft mouse model was conducted to examine the effects of LINC01836 in vivo.

Results: In this study, we showed that LINC01836 was significantly elevated in colorectal cancer tissues and cells. Elevated LINC01836 expression significantly correlated with larger tumor size, positive lymph node metastasis, distant metastasis, advanced tumor-node-metastasis (TNM) stage, and poor prognosis. Furthermore, decreased expression of LINC01836 repressed proliferation, migration, and invasion in vitro and vivo, and high LINC01836 expression displayed the opposite effect. Further analysis revealed that LINC01836 could regulate the expression of SLC17A9 by competing with miR-­‐1226-3p. Furthermore, down-regulation of LINC01836 or increased expression of miR-1226-3p markedly reversed the effects of SLC17A9 overexpression on colorectal cancer cells.

Conclusion: This study showed that LINC01836 regulated the expression of SLC17A9 through sponge miR-1226-3p by acting as a competitive endogenous RNA (ceRNA), promoted the progression of colorectal cancer, and suggested a new prognostic biomarker and potential cancer treatment target for colorectal cancer.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Li, N.; Lu, B.; Luo, C.; Cai, J.; Lu, M.; Zhang, Y.; Chen, H.; Dai, M. Incidence, mortality, survival, risk factor and screening of colorectal cancer: A comparison among China, Europe, and northern America. Cancer Lett., 2021, 522, 255-268.
[http://dx.doi.org/10.1016/j.canlet.2021.09.034] [PMID: 34563640]
[3]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[4]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1(1), 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[5]
Gutschner, T.; Diederichs, S. The hallmarks of cancer. RNA Biol., 2012, 9(6), 703-719.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[6]
Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758.
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[7]
Quan, M.; Chen, J.; Zhang, D. Exploring the secrets of long noncoding RNAs. Int. J. Mol. Sci., 2015, 16(12), 5467-5496.
[http://dx.doi.org/10.3390/ijms16035467] [PMID: 25764159]
[8]
Wang, X.; Lai, Q.; He, J.; Li, Q.; Ding, J.; Lan, Z.; Gu, C.; Yan, Q.; Fang, Y.; Zhao, X.; Liu, S. LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int. J. Med. Sci., 2019, 16(1), 51-59.
[http://dx.doi.org/10.7150/ijms.27359] [PMID: 30662328]
[9]
Kong, X.; Duan, Y.; Sang, Y.; Li, Y.; Zhang, H.; Liang, Y.; Liu, Y.; Zhang, N.; Yang, Q. LncRNA–CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA‐215. J. Cell. Physiol., 2019, 234(6), 9105-9117.
[http://dx.doi.org/10.1002/jcp.27587] [PMID: 30362551]
[10]
He, J.; Zhu, S.; Liang, X.; Zhang, Q.; Luo, X.; Liu, C.; Song, L. LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol. Biol. Rep., 2021, 48(8), 1-15.
[http://dx.doi.org/10.1007/s11033-021-06603-7] [PMID: 34333735]
[11]
Peng, W-X.; Koirala, P.; Mo, Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 2017, 36(41), 5661-5667.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
[12]
Shen, L.; Zong, W.; Feng, W.; Chen, E.; Ma, S.; Yuan, J.; Wang, G.; Gu, X.; Shen, X.; Ju, S. Upregulated Linc01836 in serum promisingly serving as a diagnostic and prognostic biomarker for colorectal cancer. Front. Pharmacol., 2022, 13840391.
[http://dx.doi.org/10.3389/fphar.2022.840391] [PMID: 35370745]
[13]
Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718.
[http://dx.doi.org/10.1136/jmedgenet-2015-103334] [PMID: 26358722]
[14]
Conte, F.; Fiscon, G.; Sibilio, P.; Licursi, V.; Paci, P. An overview of the computational models dealing with the regulatory ceRNA mechanism and ceRNA deregulation in cancer. Methods Mol. Biol., 2021, 2324, 149-164.
[http://dx.doi.org/10.1007/978-1-0716-1503-4_10] [PMID: 34165714]
[15]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[16]
Li, Y.; Song, D.; An, T.; Liu, J.; Yang, Q.; Nan, S. MicroRNA 1226 3p has a tumor promoting role in osteosarcoma. Oncol. Lett., 2021, 21(6), 474.
[http://dx.doi.org/10.3892/ol.2021.12735] [PMID: 33907584]
[17]
Liu, W.; Zhang, G.Q.; Zhu, D.Y.; Wang, L.J.; Li, G.T.; Xu, J.G.; Jin, X.L.; Zhu, Y.M.; Yang, X.Y. Long noncoding RNA ZFPM2-AS1 regulates ITGB1 by miR-1226-3p to promote cell proliferation and invasion in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(14), 7612-7620.
[http://dx.doi.org/10.1002/med.21379] [PMID: 32744687]
[18]
Li, X.; Zhou, L.; Luo, H.; Zhu, Q.; Zuo, L.; Liu, G.; Feng, C.; Zhao, J.; Zhang, Y.; Li, X. The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging, 2019, 11(15), 5646-5665.
[http://dx.doi.org/10.18632/aging.102149] [PMID: 31399552]
[19]
Wang, J.; Li, L.; Jiang, X.; Wang, B.; Hu, X.; Liu, W.; Zhang, Y. Silencing of long non-coding RNA TUC338 inhibits the malignant phenotype of nasopharyngeal cancer cells via modulating the miR-1226-3p/FGF2 axis. Discover Oncology, 2022, 13(1), 102.
[http://dx.doi.org/10.1007/s12672-022-00544-8] [PMID: 36224455]
[20]
Sreedharan, S.; Shaik, J.H.A.; Olszewski, P.K.; Levine, A.S.; Schiöth, H.B.; Fredriksson, R. Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics, 2010, 11(1), 17.
[http://dx.doi.org/10.1186/1471-2164-11-17] [PMID: 20059771]
[21]
Yang, L.; Chen, Z.; Xiong, W.; Ren, H.; Zhai, E.; Xu, K.; Yang, H.; Zhang, Z.; Ding, L.; He, Y.; Song, X.; Liu, J. High expression of SLC17A9 correlates with poor prognosis in colorectal cancer. Hum. Pathol., 2019, 84, 62-70.
[http://dx.doi.org/10.1016/j.humpath.2018.09.002] [PMID: 30236596]
[22]
Wu, J.; Yang, Y.; Song, J. Expression of SLC17A9 in hepatocellular carcinoma and its clinical significance. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12043] [PMID: 32934749]
[23]
Li, J.; Su, T.; Yang, L.; Deng, L.; Zhang, C.; He, Y. High SLC17A9 expression correlates with poor survival in gastric carcinoma. Future Oncol., 2019, 15(36), 4155-4166.
[http://dx.doi.org/10.2217/fon-2019-0283] [PMID: 31799885]
[24]
Mi, Y.; Sun, C.; Zhang, L.; Wang, J.; Shao, H.; Qin, F.; Xia, G.; Zhu, L. Long non-coding RNAs LINC01679 as a competitive endogenous RNAs inhibits the development and progression of prostate cancer via regulating the miR-3150a-3p/SLC17A9 Axis. Front. Cell Dev. Biol., 2021, 9737812.
[http://dx.doi.org/10.3389/fcell.2021.737812] [PMID: 34900992]
[25]
Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem., 2021, 65(4), 625-639.
[http://dx.doi.org/10.1042/EBC20200032] [PMID: 33860799]
[26]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[27]
Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in colorectal cancer: Current research and future prospects. Int. J. Mol. Sci., 2020, 21(15), 5311.
[http://dx.doi.org/10.3390/ijms21155311] [PMID: 32726923]
[28]
Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348.
[http://dx.doi.org/10.1038/35077213] [PMID: 11357141]
[29]
Bury, M.; Le Calvé, B.; Ferbeyre, G.; Blank, V.; Lessard, F. New insights into CDK regulators: Novel opportunities for cancer therapy. Trends Cell Biol., 2021, 31(5), 331-344.
[http://dx.doi.org/10.1016/j.tcb.2021.01.010] [PMID: 33676803]
[30]
Jin, L.; Chen, Y.; Cheng, D.; He, Z.; Shi, X.; Du, B.; Xi, X.; Gao, Y.; Guo, Y. YAP inhibits autophagy and promotes progression of colorectal cancer via upregulating Bcl-2 expression. Cell Death Dis., 2021, 12(5), 457.
[http://dx.doi.org/10.1038/s41419-021-03722-8] [PMID: 33963173]
[31]
Liu, Z.; Ding, Y.; Ye, N.; Wild, C.; Chen, H.; Zhou, J. Direct activation of bax protein for cancer therapy. Med. Res. Rev., 2016, 36(2), 313-341.
[http://dx.doi.org/10.1002/med.21379] [PMID: 26395559]
[32]
Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226.
[http://dx.doi.org/10.1016/j.tcb.2018.12.001] [PMID: 30594349]
[33]
Ramesh, V.; Brabletz, T.; Ceppi, P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer, 2020, 6(11), 942-950.
[http://dx.doi.org/10.1016/j.trecan.2020.06.005] [PMID: 32680650]
[34]
Li, W.J.; Li, G.; Liu, Z.W.; Chen, Z.Y.; Pu, R. LncRNA LINC00355 promotes EMT and metastasis of bladder cancer cells through the miR-424-5p/HMGA2 axis. Neoplasma, 2021, 68(6), 1225-1235.
[http://dx.doi.org/10.4149/neo_2021_210427N574] [PMID: 34641698]
[35]
Ma, Y.; Zheng, W. H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis. J. Ovarian Res., 2021, 14(1), 76.
[http://dx.doi.org/10.1186/s13048-021-00822-z] [PMID: 34108034]
[36]
Xu, M.; Chen, X.; Lin, K.; Zeng, K.; Liu, X.; Pan, B.; Xu, X.; Xu, T.; Hu, X.; Sun, L.; He, B.; Pan, Y.; Sun, H.; Wang, S. The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol. Cancer, 2018, 17(1), 141.
[http://dx.doi.org/10.1186/s12943-018-0894-x] [PMID: 30266084]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy