[1]
Maurer MS, Hanna M, Grogan M, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (transthyretin amyloid outcome survey). J Am Coll Cardiol 2016; 68(2): 161-72.
[http://dx.doi.org/10.1016/j.jacc.2016.03.596] [PMID: 27386769]
[http://dx.doi.org/10.1016/j.jacc.2016.03.596] [PMID: 27386769]
[2]
Obi CA, Mostertz WC, Griffin JM, Judge DP. ATTR epidemiology, genetics, and prognostic factors. Methodist DeBakey Cardiovasc J 2022; 18(2): 17-26.
[http://dx.doi.org/10.14797/mdcvj.1066] [PMID: 35414855]
[http://dx.doi.org/10.14797/mdcvj.1066] [PMID: 35414855]
[3]
Sanguinetti C, Minniti M, Susini V, et al. The journey of human transthyretin: Synthesis, structure stability, and catabolism. Biomedicines 2022; 10(8): 1906.
[http://dx.doi.org/10.3390/biomedicines10081906] [PMID: 36009453]
[http://dx.doi.org/10.3390/biomedicines10081906] [PMID: 36009453]
[4]
Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 2019; 73(22): 2872-91.
[http://dx.doi.org/10.1016/j.jacc.2019.04.003] [PMID: 31171094]
[http://dx.doi.org/10.1016/j.jacc.2019.04.003] [PMID: 31171094]
[5]
Liepnieks JJ, Zhang LQ, Benson MD. Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology 2010; 75(4): 324-7.
[http://dx.doi.org/10.1212/WNL.0b013e3181ea15d4] [PMID: 20660862]
[http://dx.doi.org/10.1212/WNL.0b013e3181ea15d4] [PMID: 20660862]
[6]
Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018; 379(11): 1007-16.
[http://dx.doi.org/10.1056/NEJMoa1805689] [PMID: 30145929]
[http://dx.doi.org/10.1056/NEJMoa1805689] [PMID: 30145929]
[7]
Castaño A, Helmke S, Alvarez J, Delisle S, Maurer MS. Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail 2012; 18(6): 315-9.
[http://dx.doi.org/10.1111/j.1751-7133.2012.00303.x] [PMID: 22747647]
[http://dx.doi.org/10.1111/j.1751-7133.2012.00303.x] [PMID: 22747647]
[8]
Aimo A, Castiglione V, Rapezzi C, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol 2022; 19(10): 655-67.
[http://dx.doi.org/10.1038/s41569-022-00683-z] [PMID: 35322226]
[http://dx.doi.org/10.1038/s41569-022-00683-z] [PMID: 35322226]
[9]
Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[10]
Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 22-31.
[http://dx.doi.org/10.1056/NEJMoa1716793] [PMID: 29972757]
[http://dx.doi.org/10.1056/NEJMoa1716793] [PMID: 29972757]
[11]
Urits I, Swanson D, Swett MC, et al. A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol Ther 2020; 9(2): 301-15.
[http://dx.doi.org/10.1007/s40120-020-00208-1] [PMID: 32785879]
[http://dx.doi.org/10.1007/s40120-020-00208-1] [PMID: 32785879]
[12]
Emdin M, Morfino P, Crosta L, Aimo A, Vergaro G, Castiglione V. Monoclonal antibodies and amyloid removal as a therapeutic strategy for cardiac amyloidosis. Eur Heart J Suppl 2023; 25 (Suppl. B): B79-84.
[http://dx.doi.org/10.1093/eurheartjsupp/suad079] [PMID: 37091656]
[http://dx.doi.org/10.1093/eurheartjsupp/suad079] [PMID: 37091656]
[13]
Uddin F, Rudin CM, Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front Oncol 2020; 10: 1387.
[http://dx.doi.org/10.3389/fonc.2020.01387] [PMID: 32850447]
[http://dx.doi.org/10.3389/fonc.2020.01387] [PMID: 32850447]
[14]
Liu W, Li L, Jiang J, Wu M, Lin P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis Clin Med 2021; 4(3): 179-91.
[http://dx.doi.org/10.1093/pcmedi/pbab014] [PMID: 34541453]
[http://dx.doi.org/10.1093/pcmedi/pbab014] [PMID: 34541453]
[15]
Xu L, Wang J, Liu Y, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 2019; 381(13): 1240-7.
[http://dx.doi.org/10.1056/NEJMoa1817426] [PMID: 31509667]
[http://dx.doi.org/10.1056/NEJMoa1817426] [PMID: 31509667]
[16]
Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021; 384(3): 252-60.
[http://dx.doi.org/10.1056/NEJMoa2031054] [PMID: 33283989]
[http://dx.doi.org/10.1056/NEJMoa2031054] [PMID: 33283989]
[17]
Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020; 367(6481): eaba7365.
[http://dx.doi.org/10.1126/science.aba7365] [PMID: 32029687]
[http://dx.doi.org/10.1126/science.aba7365] [PMID: 32029687]
[18]
Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med 2020; 26(5): 732-40.
[http://dx.doi.org/10.1038/s41591-020-0840-5] [PMID: 32341578]
[http://dx.doi.org/10.1038/s41591-020-0840-5] [PMID: 32341578]
[19]
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021; 385(6): 493-502.
[http://dx.doi.org/10.1056/NEJMoa2107454] [PMID: 34215024]
[http://dx.doi.org/10.1056/NEJMoa2107454] [PMID: 34215024]
[20]
Therapeutics I. Interim data from the cardiomyopathy arm of ongoing phase 1 study of ntla-2001, an investigational crispr therapy for the treatment of transthyretin (attr) amyloidosis at the american heart association scientific sessions 2022.
[21]
Cui T, Li B, Li W. NTLA-2001: Opening a new era for gene therapy. Life Med 2022; 1(2): 49-51.
[http://dx.doi.org/10.1093/lifemedi/lnac036]
[http://dx.doi.org/10.1093/lifemedi/lnac036]
[22]
Carvalho T. CRISPR–Cas9 hits its target in amyloidosis. Nat Med 2022; 28(12): 2438.
[http://dx.doi.org/10.1038/d41591-022-00101-4] [PMID: 36224265]
[http://dx.doi.org/10.1038/d41591-022-00101-4] [PMID: 36224265]