Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Identifying Pathological Myopia Associated Genes with A Random Walk-Based Method in Protein-Protein Interaction Network

Author(s): Jiyu Zhang, Tao Huang, Qiao Sun* and Jian Zhang*

Volume 19, Issue 4, 2024

Published on: 04 December, 2023

Page: [375 - 384] Pages: 10

DOI: 10.2174/0115748936268218231114070754

Price: $65

Abstract

Background: Pathological myopia, a severe variant of myopia, extends beyond the typical refractive error associated with nearsightedness. While the condition has a strong genetic component, the intricate mechanisms of inheritance remain elusive. Some genes have been associated with the development of pathological myopia, but their exact roles are not fully understood.

Objective: This study aimed to identify novel genes associated with pathological myopia.

Methods: Our study leveraged DisGeNET to identify 184 genes linked with high myopia and 39 genes related to degenerative myopia. To uncover additional pathological myopia-associated genes, we employed the random walk with restart algorithm to investigate the protein-protein interactions network. We used the previously identified 184 high myopia and 39 degenerative myopia genes as seed nodes.

Results: Through subsequent screening tests, we discarded genes with weak associations, yielding 103 new genes for high myopia and 33 for degenerative myopia.

Conclusion: We confirmed the association of certain genes, including six genes that were confirmed to be associated with both high and degenerative myopia. The newly discovered genes are helpful to uncover and understand the pathogenesis of myopia.

[1]
de Jong PTVM. Myopia: Its historical contexts. Br J Ophthalmol 2018; 102(8): 1021-7.
[http://dx.doi.org/10.1136/bjophthalmol-2017-311625 ] [PMID: 29437569]
[2]
Dirani M, Tong L, Gazzard G, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol 2009; 93(8): 997-1000.
[http://dx.doi.org/10.1136/bjo.2008.150979] [PMID: 19211608]
[3]
Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis 2017; 23: 1048-80.
[PMID: 29386878]
[4]
Li J, Gao B, Guan L, et al. Unique variants in OPN1LW cause both syndromic and nonsyndromic X-linked high myopia mapped to MYP1. Invest Ophthalmol Vis Sci 2015; 56(6): 4150-5.
[http://dx.doi.org/10.1167/iovs.14-16356] [PMID: 26114493]
[5]
Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res 2019; 188: 107778.
[http://dx.doi.org/10.1016/j.exer.2019.107778] [PMID: 31472110]
[6]
Tran-Viet KN, Powell C, Barathi VA, et al. Mutations in SCO2 are associated with autosomal-dominant high-grade myopia. Am J Hum Genet 2013; 92(5): 820-6.
[http://dx.doi.org/10.1016/j.ajhg.2013.04.005] [PMID: 23643385]
[7]
Tang SM, Rong SS, Young AL, Tam POS, Pang CP, Chen LJ. PAX6 gene associated with high myopia: A meta-analysis. Optom Vis Sci 2014; 91(4): 419-29.
[http://dx.doi.org/10.1097/OPX.0000000000000224 ] [PMID: 24637479]
[8]
Parmeggiani F, Barbaro V, De Nadai K, et al. Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia. Sci Rep 2016; 6(1): 39179.
[http://dx.doi.org/10.1038/srep39179] [PMID: 27995965]
[9]
Li Y, Foo LL, Wong CW, et al. Pathologic myopia: Advances in imaging and the potential role of artificial intelligence. Br J Ophthalmol 2023; 107(5): 600-6.
[http://dx.doi.org/10.1136/bjophthalmol-2021-320926 ] [PMID: 35288438]
[10]
Zhou L, Xiao X, Li S, et al. Phenotypic characterization of patients with early-onset high myopia due to mutations in COL2A1 or COL11A1: Why not Stickler syndrome? Mol Vis 2018; 24: 560-73.
[PMID: 30181686]
[11]
Mordechai S, Gradstein L, Pasanen A, et al. High myopia caused by a mutation in LEPREL1, encoding prolyl 3-hydroxylase 2. Am J Hum Genet 2011; 89(3): 438-45.
[http://dx.doi.org/10.1016/j.ajhg.2011.08.003] [PMID: 21885030]
[12]
Yu Z, Zhou J, Chen X, Zhou X, Sun X, Chu R. Polymorphisms in the CTNND2 gene and 11q24.1 genomic region are associated with pathological myopia in a Chinese population. Ophthalmologica 2012; 228(2): 123-9.
[http://dx.doi.org/10.1159/000338188] [PMID: 22759899]
[13]
Wojciechowski R. Nature and nurture: The complex genetics of myopia and refractive error. Clin Genet 2011; 79(4): 301-20.
[http://dx.doi.org/10.1111/j.1399-0004.2010.01592.x ] [PMID: 21155761]
[14]
Ho Thanh Lam L, Le NH, Van Tuan L, et al. Machine learning model for identifying antioxidant proteins using features calculated from primary sequences. Biology 2020; 9(10): 325.
[http://dx.doi.org/10.3390/biology9100325] [PMID: 33036150]
[15]
Kha QH, Le VH, Hung TNK, Nguyen NTK, Le NQK. Development and validation of an explainable machine learning-based prediction model for drug–food interactions from chemical structures. Sensors 2023; 23(8): 3962.
[http://dx.doi.org/10.3390/s23083962] [PMID: 37112302]
[16]
Wang H, Chen L. PMPTCE-HNEA: Predicting metabolic pathway types of chemicals and enzymes with a heterogeneous network embedding algorithm. Curr Bioinform 2023; 18(9): 748-59.
[http://dx.doi.org/10.2174/1574893618666230224121633]
[17]
Chen L, Chen K, Zhou B. Inferring drug-disease associations by a deep analysis on drug and disease networks. Math Biosci Eng 2023; 20(8): 14136-57.
[http://dx.doi.org/10.3934/mbe.2023632] [PMID: 37679129]
[18]
Barabási AL, Gulbahce N, Loscalzo J. Network medicine: A network-based approach to human disease. Nat Rev Genet 2011; 12(1): 56-68.
[http://dx.doi.org/10.1038/nrg2918] [PMID: 21164525]
[19]
Sonawane AR, Weiss ST, Glass K, Sharma A. Network medicine in the age of biomedical big data. Front Genet 2019; 10: 294.
[http://dx.doi.org/10.3389/fgene.2019.00294] [PMID: 31031797]
[20]
Kim Y, Park JH, Cho YR. Network-based approaches for disease-gene association prediction using protein-protein interaction networks. Int J Mol Sci 2022; 23(13): 7411.
[http://dx.doi.org/10.3390/ijms23137411] [PMID: 35806415]
[21]
Tong H, Faloutsos C, Pan JY. Random walk with restart: Fast solutions and applications. Knowl Inf Syst 2008; 14(3): 327-46.
[http://dx.doi.org/10.1007/s10115-007-0094-2]
[22]
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLOS Comput Biol 2010; 6(1): e1000641.
[http://dx.doi.org/10.1371/journal.pcbi.1000641] [PMID: 20090828]
[23]
Erten S, Bebek G, Ewing RM, Koyutürk MDADA. Degree-aware algorithms for network-based disease gene prioritization. BioData Min 2011; 4(1): 19.
[http://dx.doi.org/10.1186/1756-0381-4-19] [PMID: 21699738]
[24]
Cornish AJ, David A, Sternberg MJE. PhenoRank: reducing study bias in gene prioritization through simulation. Bioinformatics 2018; 34(12): 2087-95.
[http://dx.doi.org/10.1093/bioinformatics/bty028] [PMID: 29360927]
[25]
Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol 2008; 4(1): 189.
[http://dx.doi.org/10.1038/msb.2008.27] [PMID: 18463613]
[26]
Zhang Y, Liu J, Liu X, et al. Prioritizing disease genes with an improved dual label propagation framework. BMC Bioinformatics 2018; 19(1): 47.
[http://dx.doi.org/10.1186/s12859-018-2040-6] [PMID: 29422030]
[27]
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55.
[PMID: 31680165]
[28]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(D1): D447-52.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[29]
Chen L, Liu T, Zhao X. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms. Biochim Biophys Acta Mol Basis Dis 2018; 1864(6): 2228-40.
[http://dx.doi.org/10.1016/j.bbadis.2017.12.019] [PMID: 29247833]
[30]
Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 2008; 82(4): 949-58.
[http://dx.doi.org/10.1016/j.ajhg.2008.02.013] [PMID: 18371930]
[31]
Macropol K, Can T, Singh AK. RRW: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics 2009; 10(1): 283.
[http://dx.doi.org/10.1186/1471-2105-10-283] [PMID: 19740439]
[32]
Sheng M, Cai H, Yang Q, Li J, Zhang J, Liu L. A random walk-based method to identify candidate genes associated with lymphoma. Front Genet 2021; 12: 792754.
[http://dx.doi.org/10.3389/fgene.2021.792754] [PMID: 34899868]
[33]
Jiang M, Zhou B, Chen L. Identification of drug side effects with a path-based method. Math Biosci Eng 2022; 19(6): 5754-71.
[http://dx.doi.org/10.3934/mbe.2022269] [PMID: 35603377]
[34]
Li L, Wang Y, An L, Kong X, Huang T. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière’s disease. PLoS One 2017; 12(8): e0182592.
[http://dx.doi.org/10.1371/journal.pone.0182592] [PMID: 28787010]
[35]
Li Y, Patra JC. Genome-wide inferring gene–phenotype relationship by walking on the heterogeneous network. Bioinformatics 2010; 26(9): 1219-24.
[http://dx.doi.org/10.1093/bioinformatics/btq108] [PMID: 20215462]
[36]
Cai YD, Zhang Q, Zhang YH, Chen L, Huang T. Identification of genes associated with breast cancer metastasis to bone on a protein-protein interaction network with a shortest path algorithm. J Proteome Res 2017; 16(2): 1027-38.
[http://dx.doi.org/10.1021/acs.jproteome.6b00950] [PMID: 28076954]
[37]
Liang F, Fu X, Ding S, Li L. Use of a network-based method to identify latent genes associated with hearing loss in children. Front Cell Dev Biol 2021; 9: 783500.
[http://dx.doi.org/10.3389/fcell.2021.783500] [PMID: 34912812]
[38]
Chen L, Pan X, Zhang YH, Liu M, Huang T, Cai YD. Classification of widely and rarely expressed genes with recurrent neural network. Comput Struct Biotechnol J 2019; 17: 49-60.
[http://dx.doi.org/10.1016/j.csbj.2018.12.002] [PMID: 30595815]
[39]
Chen L, Zhang YH, Zheng M, Huang T, Cai YD. Identification of compound–protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds. Mol Genet Genomics 2016; 291(6): 2065-79.
[http://dx.doi.org/10.1007/s00438-016-1240-x] [PMID: 27530612]
[40]
Huang F, Fu M, Li J, et al. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores BBA - Proteins Proteom 2023; 1871(3): 140889.
[41]
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[42]
Seko Y, Azuma N, Takahashi Y, et al. Human sclera maintains common characteristics with cartilage throughout evolution. PLoS One 2008; 3(11): e3709.
[http://dx.doi.org/10.1371/journal.pone.0003709] [PMID: 19002264]
[43]
Kusakari T, Sato T, Tokoro T. Regional scleral changes in form-deprivation myopia in chicks. Exp Eye Res 1997; 64(3): 465-76.
[http://dx.doi.org/10.1006/exer.1996.0242] [PMID: 9196399]
[44]
Lai W, Wu X, Liang H. Identification of the potential key genes and pathways involved in lens changes of high myopia. Int J Gen Med 2022; 15: 2867-75.
[http://dx.doi.org/10.2147/IJGM.S354935] [PMID: 35300133]
[45]
Crincoli E, Leoni C, Viscogliosi G, et al. Systematic ophthalmologic evaluation in cardio-facio-cutaneous syndrome: A genotype–endophenotype correlation. Am J Med Genet A 2023; 191(11): 2783-92.
[http://dx.doi.org/10.1002/ajmg.a.63395] [PMID: 37697822]
[46]
Peng M, Wei Y, Zhang Z, et al. Increased levels of DKK1 in vitreous fluid of patients with pathological myopia and the correlation between DKK1 levels and axial length. Curr Eye Res 2020; 45(1): 104-10.
[http://dx.doi.org/10.1080/02713683.2019.1646772] [PMID: 31335221]
[47]
Saitoh T, Hirai M, Katoh M. Molecular cloning and characterization of WNT3A and WNT14 clustered in human chromosome 1q42 region. Biochem Biophys Res Commun 2001; 284(5): 1168-75.
[http://dx.doi.org/10.1006/bbrc.2001.5105] [PMID: 11414706]
[48]
Aikio M, Elamaa H, Vicente D, et al. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition. Proc Natl Acad 2014; 111(30): 3043-52.
[http://dx.doi.org/10.1073/pnas.1405879111]
[49]
Carullo G, Federico S, Relitti N, Gemma S, Butini S, Campiani G. Retinitis pigmentosa and retinal degenerations: Deciphering pathways and targets for drug discovery and development. ACS Chem Neurosci 2020; 11(15): 2173-91.
[http://dx.doi.org/10.1021/acschemneuro.0c00358] [PMID: 32589402]
[50]
Wang G, Chen S, Xie Z, et al. TGFβ attenuates cartilage extracellular matrix degradation via enhancing FBXO6-mediated MMP14 ubiquitination. Ann Rheum Dis 2020; 79(8): 1111-20.
[http://dx.doi.org/10.1136/annrheumdis-2019-216911] [PMID: 32409323]
[51]
Wu J, Zhao Y, Fu Y, Li S, Zhang X. Effects of lumican expression on the apoptosis of scleral fibroblasts: in vivo and in vitro experiments. Exp Ther Med 2021; 21(5): 495.
[http://dx.doi.org/10.3892/etm.2021.9926] [PMID: 33791004]
[52]
Liu L, He J, Lu X, et al. Association of myopia and genetic variants of TGFB2-AS1 and TGFBR1 in the TGF-β Signaling Pathway: A longitudinal study in chinese school-aged children. Front Cell Dev Biol 2021; 9: 628182.
[http://dx.doi.org/10.3389/fcell.2021.628182] [PMID: 33996791]
[53]
Alahmadi AS, Badawi AH, Magliyah MS, Albakri A, Schatz P. Poretti-Boltshauser syndrome: A rare differential diagnosis to consider in pediatric high myopia with retinal degeneration. Ophthalmic Genet 2021; 42(1): 96-8.
[http://dx.doi.org/10.1080/13816810.2020.1849316 ] [PMID: 33251915]
[54]
Luwor RB, Baradaran B, Taylor LE, et al. Targeting Stat3 and Smad7 to restore TGF-β cytostatic regulation of tumor cells in vitro and in vivo. Oncogene 2013; 32(19): 2433-41.
[http://dx.doi.org/10.1038/onc.2012.260] [PMID: 22751114]
[55]
Dai Y, Sun F, Zhu H, et al. Effects and mechanism of action of neonatal versus adult astrocytes on neural stem cell proliferation after traumatic brain injury. Stem Cells 2019; 37(10): 1344-56.
[http://dx.doi.org/10.1002/stem.3060] [PMID: 31287930]
[56]
Angunawela RI, Riau AK, Chaurasia SS, Tan DT, Mehta JS. Refractive lenticule re-implantation after myopic ReLEx: A feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci 2012; 53(8): 4975-85.
[http://dx.doi.org/10.1167/iovs.12-10170] [PMID: 22743323]
[57]
Porter LF, Gallego-Pinazo R, Keeling CL, et al. Bruch’s membrane abnormalities in PRDM5-related brittle cornea syndrome. Orphanet J Rare Dis 2015; 10(1): 145.
[http://dx.doi.org/10.1186/s13023-015-0360-4] [PMID: 26560304]
[58]
Nicol M, Bir A, Cardillo-Piccolino F, et al. Expression of extradomain-B–containing fibronectin in subretinal choroidal neovascular membranes. Am J Ophthalmol 2003; 135(1): 7-13.
[http://dx.doi.org/10.1016/S0002-9394(02)01839-1] [PMID: 12504690]
[59]
Fiolka R, Zubor P, Janusicova V, et al. Promoter hypermethylation of the tumor-suppressor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol Rep 2013; 30(6): 2878-86.
[http://dx.doi.org/10.3892/or.2013.2752] [PMID: 24068440]
[60]
Shi M, Whorton AE, Sekulovski N, et al. Inactivation of TRP53, PTEN, RB1, and/or CDH1 in the ovarian surface epithelium induces ovarian cancer transformation and metastasis. Biol Reprod 2020; 102(5): 1055-64.
[http://dx.doi.org/10.1093/biolre/ioaa008] [PMID: 31930396]
[61]
Qiu LX, Li RT, Zhang JB, et al. The E-cadherin (CDH1) −160 C/A polymorphism and prostate cancer risk: A meta-analysis. Eur J Hum Genet 2009; 17(2): 244-9.
[http://dx.doi.org/10.1038/ejhg.2008.157] [PMID: 18781193]
[62]
Shi Y, Qu J, Zhang D, et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am J Hum Genet 2011; 88(6): 805-13.
[http://dx.doi.org/10.1016/j.ajhg.2011.04.022] [PMID: 21640322]
[63]
Haenold R, Weih F, Herrmann KH, et al. NF-κB controls axonal regeneration and degeneration through cell-specific balance of RelA and p50 in the adult CNS. J Cell Sci 2014; 127(19): 4329.
[http://dx.doi.org/10.1242/jcs.162404] [PMID: 24860143]
[64]
Zhang Y. Role of Retinal Pigment Epithelium in Myopia Development and Control. Berkeley: University of California 2013.
[65]
Ma M, Zhang Z, Du E, et al. Wnt signaling in form deprivation myopia of the mice retina. PLoS One 2014; 9(4): e91086.
[http://dx.doi.org/10.1371/journal.pone.0091086] [PMID: 24755605]
[66]
Koch I, Schwarz H, Beuchle D, Goellner B, Langegger M, Aberle H. Drosophila ankyrin 2 is required for synaptic stability. Neuron 2008; 58(2): 210-22.
[http://dx.doi.org/10.1016/j.neuron.2008.03.019] [PMID: 18439406]
[67]
Schwartz S, Wilson SJ, Hale TK, Fitzsimons HL. Ankyrin2 is essential for neuronal morphogenesis and long-term courtship memory in Drosophila. Mol Brain 2023; 16(1): 42.
[http://dx.doi.org/10.1186/s13041-023-01026-w] [PMID: 37194019]
[68]
Aryal S, Anand D, Huang H, et al. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. Hum Genet 2023; 142(7): 927-47.
[http://dx.doi.org/10.1007/s00439-023-02570-0] [PMID: 37191732]
[69]
Tuo J, Wang Y, Cheng R, et al. Wnt signaling in age-related macular degeneration: Human macular tissue and mouse model. J Transl Med 2015; 13(1): 330.
[http://dx.doi.org/10.1186/s12967-015-0683-x] [PMID: 26476672]
[70]
Piña AL, Baumert U, Loyer M, Koenekoop RK. A three base pair deletion encoding the amino acid (lysine-270) in the alpha-cone transducin gene. Mol Vis 2004; 10: 265-71.
[PMID: 15094710]
[71]
Thiadens AA, Slingerland NW, Roosing S, et al. Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Ophthalmology 2009; 116(10): 1984-9.
[http://dx.doi.org/10.1016/j.ophtha.2009.03.053]
[72]
Chakraborty R, Yang V, Park H, et al. Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice. Exp Eye Res 2019; 180: 226-30.
[http://dx.doi.org/10.1016/j.exer.2018.12.021 ] [PMID: 30605665]
[73]
Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 2001; 61(3): 1207-13.
[PMID: 11221852]
[74]
Blánquez-Martínez D, Díaz-Villamarín X, García-Rodríguez S, et al. Genetic polymorphisms in VEGFR coding genes (FLT1/KDR) on ranibizumab response in high myopia and choroidal neovascularization patients. Pharmaceutics 2022; 14(8): 1555.
[http://dx.doi.org/10.3390/pharmaceutics14081555] [PMID: 35893809]
[75]
Benavente-Perez A. Evidence of vascular involvement in myopia: a review. Front Med (Lausanne) 2023; 10: 1112996.
[http://dx.doi.org/10.3389/fmed.2023.1112996] [PMID: 37275358]
[76]
Bartels CF, Bükülmez H, Padayatti P, et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 2004; 75(1): 27-34.
[http://dx.doi.org/10.1086/422013] [PMID: 15146390]
[77]
Plachy L, Dusatkova P, Maratova K, et al. Familial short stature—a novel phenotype of growth plate collagenopathies. J Clin Endocrinol Metab 2021; 106(6): 1742-9.
[http://dx.doi.org/10.1210/clinem/dgab084] [PMID: 33570564]
[78]
Chen M, Miao H, Liang H, et al. Clinical characteristics of short-stature patients with collagen gene mutation and the therapeutic response to rhGH. Front Endocrinol 2022; 13: 820001.
[http://dx.doi.org/10.3389/fendo.2022.820001] [PMID: 35250876]
[79]
Gentle A, Liu Y, Martin JE, Conti GL, McBrien NA. Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia. J Biol Chem 2003; 278(19): 16587-94.
[http://dx.doi.org/10.1074/jbc.M300970200] [PMID: 12606541]
[80]
Barbacid M, Lamballe F, Pulido D, Klein R. The trk family of tyrosine protein kinase receptors. Biochim Biophys Acta 1991; 1072(2-3): 115-27.
[PMID: 1751544]
[81]
Qiu L, Wang F, Liu S, Chen XL. Current understanding of tyrosine kinase BMX in inflammation and its inhibitors. Burns Trauma 2014; 2(3): 2321-3868.
[82]
Flitcroft I, Ainsworth J, Chia A, et al. IMI—Management and investigation of high myopia in infants and young children. Invest Ophthalmol Vis Sci 2023; 64(6): 3.
[http://dx.doi.org/10.1167/iovs.64.6.3] [PMID: 37126360]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy