Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Metabolomics: Recent Advances and Future Prospects Unveiled

Author(s): Shweta Sharma*, Garima Singh and Mymoona Akhter

Volume 19, Issue 7, 2024

Published on: 01 December, 2023

Page: [601 - 611] Pages: 11

DOI: 10.2174/0115748936270744231115110329

Price: $65

Abstract

In the era of genomics, fueled by advanced technologies and analytical tools, metabolomics has become a vital component in biomedical research. Its significance spans various domains, encompassing biomarker identification, uncovering underlying mechanisms and pathways, as well as the exploration of new drug targets and precision medicine. This article presents a comprehensive overview of the latest developments in metabolomics techniques, emphasizing their wide-ranging applications across diverse research fields and underscoring their immense potential for future advancements.

Next »
[1]
Oliver S, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol 1998; 16(9): 373-8.
[http://dx.doi.org/10.1016/S0167-7799(98)01214-1] [PMID: 9744112]
[2]
Sandlers Y. The future perspective: Metabolomics in laboratory medicine for inborn errors of metabolism. Transl Res 2017; 189: 65-75.
[http://dx.doi.org/10.1016/j.trsl.2017.06.005] [PMID: 28675806]
[3]
Clish CB. Metabolomics: An emerging but powerful tool for precision medicine. Molecular Case Studies 2015; 1(1): a000588.
[http://dx.doi.org/10.1101/mcs.a000588] [PMID: 27148576]
[4]
Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol Syst Biol 2007; 3(1): 124.
[http://dx.doi.org/10.1038/msb4100163 ] [PMID: 17625512]
[5]
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11): 1181-9.
[http://dx.doi.org/10.1080/004982599238047] [PMID: 10598751]
[6]
Shweta S, Dinesh K. Application of Multi-scale Modeling Techniques in System Biology, Systems Biology, Bioinformatics and Livestock Sci 2023; 1: 17.
[http://dx.doi.org/10.2174/9789815165616123010007]
[7]
Frédérich M, Pirotte B, Fillet M, de Tullio P. Metabolomics as a challenging approach for medicinal chemistry and personalized medicine. J Med Chem 2016; 59(19): 8649-66.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01335] [PMID: 27295417]
[8]
Guo L, Milburn MV, Ryals JA, et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci 2015; 112(35): E4901-10.
[http://dx.doi.org/10.1073/pnas.1508425112] [PMID: 26283345]
[9]
Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P. Metabolomics analysis for biomarker discovery: Advances and challenges. Curr Med Chem 2013; 20(2): 257-71.
[http://dx.doi.org/10.2174/092986713804806621] [PMID: 23210853]
[10]
Yang Q, Zhang A, Miao J, et al. Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Advances 2019; 9(64): 37245-57.
[http://dx.doi.org/10.1039/C9RA06697G] [PMID: 35542267]
[11]
Guasch-Ferré M, Bhupathiraju SN, Hu FB. Use of metabolomics in improving assessment of dietary intake. Clin Chem 2018; 64(1): 82-98.
[http://dx.doi.org/10.1373/clinchem.2017.272344] [PMID: 29038146]
[12]
Chen C, Shah YM, Morimura K, et al. Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab 2008; 7(2): 135-47.
[http://dx.doi.org/10.1016/j.cmet.2007.12.003] [PMID: 18249173]
[13]
Locci E, Stocchero M, Noto A, et al. A 1H NMR metabolomic approach for the estimation of the time since death using aqueous humour: An animal model. Metabolomics 2019; 15(5): 76.
[http://dx.doi.org/10.1007/s11306-019-1533-2] [PMID: 31069551]
[14]
Dobrzyn P, Bednarski T, Dobrzyn A. Metabolic reprogramming of the heart through stearoyl-CoA desaturase. Prog Lipid Res 2015; 57: 1-12.
[http://dx.doi.org/10.1016/j.plipres.2014.11.003] [PMID: 25482956]
[15]
Yang W, Bai Y, Xiong Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016; 531(7596): 651-5.
[http://dx.doi.org/10.1038/nature17412] [PMID: 26982734]
[16]
Roider HG, Pavlova N, Kirov I, et al. Drug2Gene: An exhaustive resource to explore effectively the drug-target relation network. BMC Bioinformatics 2014; 15(1): 68.
[http://dx.doi.org/10.1186/1471-2105-15-68] [PMID: 24618344]
[17]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[18]
Freshour SL, Kiwala S, Cotto KC, et al. integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res 2021; 49(D1): D1144-51.
[http://dx.doi.org/10.1093/nar/gkaa1084] [PMID: 33237278]
[19]
Si̇ngh G, Janardhanan A, Sharma S, Vyas B, Ali̇ S, Akhter M. A systematic review and data analysis on the epidemiology of tuberculosis and diabetes mellitus. J Microbiol Infect Dis 2021; 11(04): 191-200.
[http://dx.doi.org/10.5799/jmid.1036742]
[20]
Lamb J. The connectivity map: A new tool for biomedical research. Nat Rev Cancer 2007; 7: 54-60.
[http://dx.doi.org/10.1038/nrc2044]
[21]
Lamichhane S, Sen P, Alex M, et al. An overview of metabolomics data analysis: Current tools and future perspectives. In: Comprehensive Analytical Chemistry. Elsevier 2018.
[22]
Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci 2009; 106(34): 14728-33.
[http://dx.doi.org/10.1073/pnas.0904489106] [PMID: 19667173]
[23]
Andrew Clayton T, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006; 440(7087): 1073-7.
[http://dx.doi.org/10.1038/nature04648] [PMID: 16625200]
[24]
Sharma S, Rehman Ansari MH, Sharma K, et al. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med Chem 2023; 15(1): 9-24.
[http://dx.doi.org/10.4155/fmc-2022-0141] [PMID: 36655571]
[25]
Sharma S, Sharma S, Pathak V, Kaur P, Singh RK. Drug repurposing using similarity-based target prediction, docking studies and scaffold hopping of lefamulin. Lett Drug Des Discov 2021; 18(7): 733-43.
[http://dx.doi.org/10.2174/1570180817999201201113712]
[26]
Sharma S, Srivastav S, Singh G, et al. In silico strategies for probing novel DPP-IV inhibitors as anti-diabetic agents. J Biomol Struct Dyn 2021; 39(6): 2118-32.
[http://dx.doi.org/10.1080/07391102.2020.1751714 ] [PMID: 32248758]
[27]
Sharma S, Srivastava S, Shrivastava A, et al. Mining of potential dipeptidyl peptidase-IV inhibitors as anti-diabetic agents using integrated in silico approaches. J Biomol Struct Dyn 2020; 38(18): 5349-61.
[http://dx.doi.org/10.1080/07391102.2019.1701553 ] [PMID: 31813365]
[28]
Zhang A, Sun H, Yan G, Wang P, Han Y, Wang X. Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett 2014; 345(1): 17-20.
[http://dx.doi.org/10.1016/j.canlet.2013.11.011] [PMID: 24333717]
[29]
Hajduk PJ, Burns DJ. Integration of NMR and high-throughput screening. Comb Chem High Throughput Screen 2002; 5(8): 613-21.
[http://dx.doi.org/10.2174/1386207023329996] [PMID: 12470258]
[30]
Sharma S, Akhter M, Kumar Singh R. Understanding promising anticancer targets for heterocyclic leads: An introduction. In: Key Heterocyclic Cores for Smart Anticancer Drug–Design Part II. Bentham Science Publishers. 2022; 1: pp. 1-34.
[http://dx.doi.org/10.2174/9789815040043122020004]
[31]
Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors. J Mol Diagn 2018; 20(2): 129-59.
[http://dx.doi.org/10.1016/j.jmoldx.2017.11.004] [PMID: 29398453]
[32]
Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[33]
Kühn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med 2016; 14(1): 13.
[http://dx.doi.org/10.1186/s12916-016-0552-3] [PMID: 26817443]
[34]
Bannur Z, Teh LK, Hennesy T, et al. The differential metabolite profiles of acute lymphoblastic leukaemic patients treated with 6-mercaptopurine using untargeted metabolomics approach. Clin Biochem 2014; 47(6): 427-31.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.02.013 ] [PMID: 24582698]
[35]
Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011; 365(14): 1273-83.
[http://dx.doi.org/10.1056/NEJMoa0910383] [PMID: 21991949]
[36]
Liesenfeld DB, Habermann N, Owen RW, Scalbert A, Ulrich CM. Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiol Biomarkers Prev 2013; 22(12): 2182-201.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0584 ] [PMID: 24096148]
[37]
Fiehn O, Putri SP, Saito K, Salek RM, Creek DJ. Metabolomics continues to expand: Highlights from the 2015 metabolomics conference. Metabolomics 2015; 11(5): 1036-40.
[http://dx.doi.org/10.1007/s11306-015-0846-z]
[38]
Thewjitcharoen Y, Jones Elizabeth A, Butadej S, et al. Performance of HbA1c versus oral glucose tolerance test (OGTT) as a screening tool to diagnose dysglycemic status in high-risk Thai patients. BMC Endocr Disord 2019; 19(1): 23.
[http://dx.doi.org/10.1186/s12902-019-0339-6] [PMID: 30770743]
[39]
Florkowski C. HbA1c as a diagnostic test for diabetes mellitus: Reviewing the evidence. Clin Biochem Rev 2013; 34(2): 75-83.
[PMID: 24151343]
[40]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diab Care 2010; 33(Suppl 1)(1): S62-9.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
[41]
Suhre K, Meisinger C, Döring A, et al. Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS One 2010; 5(11): e13953.
[http://dx.doi.org/10.1371/journal.pone.0013953] [PMID: 21085649]
[42]
Kenneth R. Oral and Injectable (Non-Insulin) Pharmacological Agents for the Treatment of Type 2 Diabetes. South Dartmouth (MA): MDTextcom, Inc 2000.
[43]
Koníčková D, Menšíková K, Tučková L, et al. Biomarkers of neurodegenerative diseases: Biology, taxonomy, clinical relevance, and current research status. Biomedicines 2022; 10(7): 1760.
[http://dx.doi.org/10.3390/biomedicines10071760] [PMID: 35885064]
[44]
Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 2008; 8(5): 617-33.
[http://dx.doi.org/10.1586/14737159.8.5.617] [PMID: 18785810]
[45]
Bazanella M, Maier TV, Clavel T, et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr 2017; 106(5): 1274-86.
[http://dx.doi.org/10.3945/ajcn.117.157529] [PMID: 28877893]
[46]
Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer’s risk factors among 1,111 cohort participants. Genet Epidemiol 2019; 43(6): gepi.22211..
[http://dx.doi.org/10.1002/gepi.22211] [PMID: 31104335]
[47]
Lucio M, Willkommen D, Schroeter M, Sigaroudi A, Schmitt-Kopplin P, Michalke B. Integrative metabolomic and metallomic analysis in a case–control cohort with parkinson’s disease. Front Aging Neurosci 2019; 11: 331.
[http://dx.doi.org/10.3389/fnagi.2019.00331] [PMID: 31866853]
[48]
Nho K, Kueider-Paisley A, MahmoudianDehkordi S, et al. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: Relationship to neuroimaging and CSF biomarkers. Alzheimers Dement 2019; 15(2): 232-44.
[http://dx.doi.org/10.1016/j.jalz.2018.08.012] [PMID: 30337152]
[49]
Karlíková R, Mičová K, Najdekr L, et al. Metabolic status of CSF distinguishes rats with tauopathy from controls. Alzheimers Res Ther 2017; 9(1): 78.
[http://dx.doi.org/10.1186/s13195-017-0303-5] [PMID: 28934963]
[50]
Neurotoxin A. In Handbook of Plant and Animal Toxins in Food. CRC Press 2022; pp. 251-74.
[51]
Xu Q, Liu F, Qu R, et al. Transcriptomic profiling of Lathyrus sativus L. metabolism of β-ODAP, a neuroexcitatory amino acid associated with neurodegenerative lower limb paralysis. Plant Mol Biol Report 2018; 36(5-6): 832-43.
[http://dx.doi.org/10.1007/s11105-018-1123-x]
[52]
Gątarek P, Sekulska-Nalewajko J, Bobrowska-Korczaka B, et al. Plasma metabolic disturbances in parkinson’s disease patients. Biomedicines 2022; 10(12): 3005.
[http://dx.doi.org/10.3390/biomedicines10123005] [PMID: 36551761]
[53]
Musgrove RE, Horne J, Wilson R, King AE, Edwards LM, Dickson TC. The metabolomics of alpha-synuclein (SNCA) gene deletion and mutation in mouse brain. Metabolomics 2014; 10(1): 114-22.
[http://dx.doi.org/10.1007/s11306-013-0561-6]
[54]
Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The potential of metabolomics in biomedical applications. Metabolites 2022; 12(2): 194.
[http://dx.doi.org/10.3390/metabo12020194] [PMID: 35208267]
[55]
Beger RD, Schmidt MA, Kaddurah-Daouk R. Current concepts in pharmacometabolomics, biomarker discovery, and precision medicine. Metabolites 2020; 10(4): 129.
[http://dx.doi.org/10.3390/metabo10040129] [PMID: 32230776]
[56]
Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics 2016; 13: 1.
[http://dx.doi.org/10.1186/s12014-015-9102-9]
[57]
den Ouden H, Pellis L, Rutten GEHM, et al. Metabolomic biomarkers for personalised glucose lowering drugs treatment in type 2 diabetes. Metabolomics 2016; 12(2): 27.
[http://dx.doi.org/10.1007/s11306-015-0930-4] [PMID: 26770180]
[58]
Palau-Rodriguez M, Tulipani S, Isabel Queipo-Ortuño M, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C. Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Front Microbiol 2015; 6: 1151.
[http://dx.doi.org/10.3389/fmicb.2015.01151] [PMID: 26579078]
[59]
Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: Milestones and future directions. Human Genet Genom Adv 2022; 3(2): 100100.
[http://dx.doi.org/10.1016/j.xhgg.2022.100100] [PMID: 35373152]
[60]
Everett JR, Loo RL, Pullen FS, Pullen FS. Pharmacometabonomics and personalized medicine. Ann Clin Biochem 2013; 50(6): 523-45.
[http://dx.doi.org/10.1177/0004563213497929] [PMID: 23888060]
[61]
Shen S, Zhan C, Yang C, Fernie AR, Luo J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol Plant 2023; 16(1): 43-63.
[http://dx.doi.org/10.1016/j.molp.2022.09.007] [PMID: 36114669]
[62]
Sharma S, Semwal AD, Murugan MP, Khan MA. Grain Storage and Transportation Management. Cereal Grains 2023; 269-96.
[63]
Arbona V, Manzi M, Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 2013; 14(3): 4885-911.
[http://dx.doi.org/10.3390/ijms14034885] [PMID: 23455464]
[64]
Mead MN. Nutrigenomics: The genome: Food interface. Environ Health Perspect 2007; 115(12): A582-9.
[http://dx.doi.org/10.1289/ehp.115-a582] [PMID: 18087577]
[65]
Noerman S, Landberg R. Blood metabolite profiles linking dietary patterns with health—Toward precision nutrition. J Intern Med 2023; 293(4): 408-32.
[http://dx.doi.org/10.1111/joim.13596] [PMID: 36484466]
[66]
German JB, Zivkovic AM, Dallas DC, Smilowitz JT. Nutrigenomics and personalized diets: What will they mean for food? Annu Rev Food Sci Technol 2011; 2(1): 97-123.
[http://dx.doi.org/10.1146/annurev.food.102308.124147 ] [PMID: 22129377]
[67]
Ryan EP, Heuberger AL, Broeckling CD, Borresen EC, Tillotson C, Prenni JE. Advances in nutritional metabolomics. Curr Metabolomics 2013; 1(2): 109-20.
[http://dx.doi.org/10.2174/2213235X11301020001] [PMID: 29682447]
[68]
Cesare Marincola F, Corbu S, Lussu M, et al. Impact of early postnatal nutrition on the NMR urinary metabolic profile of infant. J Proteome Res 2016; 15(10): 3712-23.
[http://dx.doi.org/10.1021/acs.jproteome.6b00537] [PMID: 27650928]
[69]
Brennan L. Use of metabotyping for optimal nutrition. Curr Opin Biotechnol 2017; 44: 35-8.
[http://dx.doi.org/10.1016/j.copbio.2016.10.008] [PMID: 27835796]
[70]
Hillesheim E, Ryan MF, Gibney E, Roche HM, Brennan L. Optimisation of a metabotype approach to deliver targeted dietary advice. Nutr Metab 2020; 17(1): 82.
[http://dx.doi.org/10.1186/s12986-020-00499-z] [PMID: 33005208]
[71]
Sharma S, Semwal AD, Srihari SP, Govindraj T, Wadikar DD. Impact of physico-chemical variation in different rice cultivars and freezing pretreatment for retaining better rehydration characteristics of instant rice. Int J Trop Agric 2022; 40(1-2): 71-84. [b]
[72]
Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health 2014; 36: e2014009.
[http://dx.doi.org/10.4178/epih/e2014009] [PMID: 25078382]
[73]
Steuer AE, Brockbals L, Kraemer T. Metabolomic strategies in biomarker research–new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Front Chem 2019; 7: 319.
[http://dx.doi.org/10.3389/fchem.2019.00319] [PMID: 31134189]
[74]
Szeremeta M, Pietrowska K, Niemcunowicz-Janica A, Kretowski A, Ciborowski M. Applications of metabolomics in forensic toxicology and forensic medicine. Int J Mol Sci 2021; 22(6): 3010.
[http://dx.doi.org/10.3390/ijms22063010] [PMID: 33809459]
[75]
Guo B, Chen B, Liu A, Zhu W, Yao S. Liquid chromatography-mass spectrometric multiple reaction monitoring-based strategies for expanding targeted profiling towards quantitative metabolomics. Curr Drug Metab 2012; 13(9): 1226-43.
[http://dx.doi.org/10.2174/138920012803341401] [PMID: 22519369]
[76]
Zheng T, Liu L, Aa J, et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend 2013; 127(1-3): 177-86.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.06.031 ] [PMID: 22840430]
[77]
Kaliszan M, Hauser R, Kernbach-Wighton G. Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling. Leg Med 2009; 11(3): 111-7.
[http://dx.doi.org/10.1016/j.legalmed.2008.12.002] [PMID: 19200767]
[78]
Harada H, Maeiwa M, Yoshikawa K, Ohsaka A. Identification and quantitation by 1H-NMR of metabolites in animal organs and tissues. An application of NMR spectroscopy in forensic science. Forensic Sci Int 1984; 24(1): 1-7.
[http://dx.doi.org/10.1016/0379-0738(84)90145-2] [PMID: 6698447]
[79]
Sparks DL, Slevin JT, Hunsaker JC III. 3-Methoxytyramine in the putamen as a gauge of the postmortem interval. J Forensic Sci 1986; 31(3): 11104J.
[http://dx.doi.org/10.1520/JFS11104J] [PMID: 3734746]
[80]
Ith M, Bigler P, Scheurer E, et al. Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ 1H-magnetic resonance spectroscopy. Magn Reson Med 2002; 48(5): 915-20.
[http://dx.doi.org/10.1002/mrm.10294] [PMID: 12418008]
[81]
Banaschak S, Rzanny R, Reichenbach JR, Kaiser WA, Klein A. Estimation of postmortem metabolic changes in porcine brain tissue using 1H-MR spectroscopy?preliminary results. Int J Legal Med 2005; 119(2): 77-9.
[http://dx.doi.org/10.1007/s00414-004-0495-7] [PMID: 15578198]
[82]
Scheurer E, Ith M, Dietrich D, et al. Statistical evaluation of time-dependent metabolite concentrations: Estimation of post-mortem intervals based onin situ1H-MRS of the brain. NMR Biomed 2005; 18(3): 163-72.
[http://dx.doi.org/10.1002/nbm.934] [PMID: 15578674]
[83]
Madea B. The medical inquest Legal basis, practical implementation, problem solving. Berlin, Germany: Springer 2014.
[84]
Madea B. Sudden death, especially in infancy: Improvement of diagnoses by biochemistry, immunohistochemistry and molecular pathology. Leg Med 2009; 11(1): S36-42.
[http://dx.doi.org/10.1016/j.legalmed.2009.01.111] [PMID: 19282226]
[85]
Huang J, Mondul AM, Weinstein SJ, et al. Prospective serum metabolomic profiling of lethal prostate cancer. Int J Cancer 2019; 145(12): 3231-43.
[http://dx.doi.org/10.1002/ijc.32218] [PMID: 30779128]
[86]
Newgard CB. Metabolomics and metabolic diseases: Where do we stand? Cell Metab 2017; 25(1): 43-56.
[http://dx.doi.org/10.1016/j.cmet.2016.09.018] [PMID: 28094011]
[87]
Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and biomarker discovery in traumatic brain injury. J Neurotrauma 2018; 35(16): 1831-48.
[http://dx.doi.org/10.1089/neu.2017.5326] [PMID: 29587568]
[88]
Bohnert S, Reinert C, Trella S, Schmitz W, Ondruschka B, Bohnert M. Metabolomics in postmortem cerebrospinal fluid diagnostics: A state-of-the-art method to interpret central nervous system–related pathological processes. Int J Legal Med 2021; 135(1): 183-91.
[http://dx.doi.org/10.1007/s00414-020-02462-2] [PMID: 33180198]
[89]
Zelentsova EA, Yanshole LV, Snytnikova OA, Yanshole VV, Tsentalovich YP, Sagdeev RZ. Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics 2016; 16(7): 80.
[http://dx.doi.org/10.1007/s11306-020-01700-3] [PMID: 32613532]
[90]
Singh S, Kushwaha SP, Patnaik S. Forensic laboratory management and analysis system. J Basic Appl Eng Res 2016; 3(2): 154-6.
[91]
Fischer K, Kettunen J, Würtz P, et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons. PLoS Med 2014; 11(2): e1001606.
[http://dx.doi.org/10.1371/journal.pmed.1001606 ] [PMID: 24586121]
[92]
Deelen J, Kettunen J, Fischer K, et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun 2019; 10(1): 3346.
[http://dx.doi.org/10.1038/s41467-019-11311-9 ] [PMID: 31431621]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy