Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Systematic Review Article

Anti-inflammatory Effects of Compounds Extracted from Marine Sponge s: A Systematic Review

Author(s): Angela Maria Paiva Magri, Ingrid Regina Avanzi*, Guilherme Trindade Vila, Renata Neves Granito, Débora Estadella, Paula Christine Jimenez, Alessandra Mussi Ribeiro and Ana Claudia Muniz Rennó

Volume 22, Issue 3, 2023

Published on: 30 November, 2023

Page: [164 - 197] Pages: 34

DOI: 10.2174/0118715230272152231106094727

Price: $65

Abstract

Background: Previous studies have experimentally validated and reported that chemical constituents of marine sponges are a source of natural anti-inflammatory substances with the biotechnological potential to develop novel drugs.

Aims: Therefore, the aim of this study was to perform a systematic review to provide an overview of the anti-inflammatory substances isolated from marine sponges with therapeutic potential.

Methods: This systematic review was performed on the Embase, PubMed, Scopus and Web of Science electronic databases. In total, 613 were found, but 340 duplicate studies were excluded, only 100 manuscripts were eligible, and 83 were included.

Results: The results were based on in vivo and in vitro assays, and the anti-inflammatory effects of 251 bioactive compounds extracted from marine sponges were investigated. Their anti-inflammatory activities include inhibition of pro-inflammatory mediators, such as tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), nitrite or nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 1β (IL-1β), prostaglandin E2 (PGE2), phospholipase A2 (PLA2), nuclear transcription factor-kappa B (NF-κB), leukotriene B4 (LTB4), cyclooxygenase- 1 (COX-1), and superoxide radicals.

Conclusion: In conclusion, data suggest (approximately 98% of articles) that substances obtained from marine sponges may be promising for the development of novel anti-inflammatory drugs for the treatment of different pathological conditions.

Graphical Abstract

[1]
Zhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. Marine-derived macrolides 1990–2020: An overview of chemical and biological diversity. Mar. Drugs, 2021, 19(4), 180.
[http://dx.doi.org/10.3390/md19040180]] [PMID: 33806230]
[2]
Blunden, G. Biologically active compounds from marine organisms. Phytother. Res., 2001, 15(2), 89-94.
[http://dx.doi.org/10.1002/ptr.982]] [PMID: 11268103]
[3]
Belarbi, E.; Contreras Gómez, A.; Chisti, Y.; García Camacho, F.; Molina Grima, E. Producing drugs from marine sponges. Biotechnol. Adv., 2003, 21(7), 585-598.
[http://dx.doi.org/10.1016/S0734-9750(03)00100-9] [PMID: 14516872]
[4]
Alencar, D.B.D.; Silva, S.R.D.; Pires-Cavalcante, K.M.S.; Lima, R.L.D.; Pereira Júnior, F.N.; Sousa, M.B.D.; Viana, F.A.; Nagano, C.S.; Nascimento, K.S.D.; Cavada, B.S.; Sampaio, A.H.; Saker-Sampaio, S. Antioxidant potential and cytotoxic activity of two red seaweed species, Amansia multifida and Meristiella echinocarpa, from the coast of Northeastern Brazil. An. Acad. Bras. Cienc., 2014, 86(1), 251-263.
[http://dx.doi.org/10.1590/0001-37652014116312]] [PMID: 24676166]
[5]
Mayer, A.; Rodríguez, A.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2013, 11(7), 2510-2573.
[http://dx.doi.org/10.3390/md11072510]] [PMID: 23880931]
[6]
Jimenez, P.C.; Wilke, D.V.; Branco, P.C.; Bauermeister, A.; Rezende-Teixeira, P.; Gaudêncio, S.P.; Costa-Lotufo, L.V. Enriching cancer pharmacology with drugs of marine origin. Br. J. Pharmacol., 2020, 177(1), 3-27.
[http://dx.doi.org/10.1111/bph.14876]] [PMID: 31621891]
[7]
Hamoda, A.M.; Fayed, B.; Ashmawy, N.S.; El-Shorbagi, A.N.A.; Hamdy, R.; Soliman, S.S.M. Marine sponge is a promising natural source of anti-SARS-CoV-2 scaffold. Front. Pharmacol., 2021, 12, 666664.
[http://dx.doi.org/10.3389/fphar.2021.666664]] [PMID: 34079462]
[8]
Anjum, K.; Abbas, S.Q.; Shah, S.A.A.; Akhter, N.; Batool, S.; Hassan, S.S. Marine sponges as a drug treasure. Biomol. Ther., 2016, 24(4), 347-362.
[http://dx.doi.org/10.4062/biomolther.2016.067]] [PMID: 27350338]
[9]
Pawlik, J.R. The chemical ecology of sponges on caribbean reefs: Natural products shape natural systems. Bioscience, 2011, 61(11), 888-898.
[http://dx.doi.org/10.1525/bio.2011.61.11.8]
[10]
Xiao, S.; Knoll, A.H. Phosphatized animal embryos from the neoproterozoic doushantuo formation at weng’an, Guizhou, South China. J. Paleontol., 2000, 74(5), 767-788.
[http://dx.doi.org/10.1666/0022-3360(2000)074<0767:PAEFTN>2.0.CO;2]
[11]
Cavalier-Smith, T. Origins of Secondary Metabolism. Ciba Foundation Symposium 171 : Secondary Metabolites: Their Function and Evolution, , pp. 64-87.
[12]
Hentschel, U.; Piel, J.; Degnan, S.M.; Taylor, M.W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol., 2012, 10(9), 641-654.
[http://dx.doi.org/10.1038/nrmicro2839]] [PMID: 22842661]
[13]
Flórez, L.V.; Biedermann, P.H.W.; Engl, T.; Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep., 2015, 32(7), 904-936.
[http://dx.doi.org/10.1039/C5NP00010F]] [PMID: 25891201]
[14]
Pita, L.; Rix, L.; Slaby, B.M.; Franke, A.; Hentschel, U. The sponge holobiont in a changing ocean: From microbes to ecosystems. Microbiome, 2018, 6(1), 46.
[http://dx.doi.org/10.1186/s40168-018-0428-1]] [PMID: 29523192]
[15]
Łukowiak, M. Utilizing sponge spicules in taxonomic, ecological and environmental reconstructions: A review. PeerJ, 2020, 8, e10601.
[http://dx.doi.org/10.7717/peerj.10601]] [PMID: 33384908]
[16]
Gabbai-Armelin, P.R.; Kido, H.W.; Cruz, M.A.; Prado, J.P.S.; Avanzi, I.R.; Custódio, M.R.; Renno, A.C.M.; Granito, R.N. Characterization and cytotoxicity evaluation of a marine sponge biosilica. Mar. Biotechnol., 2019, 21(1), 65-75.
[http://dx.doi.org/10.1007/s10126-018-9858-9]] [PMID: 30443837]
[17]
Fernandes, K.R.; Parisi, J.R.; Magri, A.M.P.; Kido, H.W.; Gabbai-Armelin, P.R.; Fortulan, C.A.; Zanotto, E.D.; Peitl, O.; Granito, R.N.; Renno, A.C.M. Influence of the incorporation of marine spongin into a Biosilicate®: An in vitro study. J. Mater. Sci. Mater. Med., 2019, 30(6), 64.
[http://dx.doi.org/10.1007/s10856-019-6266-2]] [PMID: 31127392]
[18]
Parisi, J.R.; Fernandes, K.R.; Avanzi, I.R.; Dorileo, B.P.; Santana, A.F.; Andrade, A.L.; Gabbai-Armelin, P.R.; Fortulan, C.A.; Trichês, E.S.; Granito, R.N.; Renno, A.C.M. Incorporation of collagen from marine sponges (Spongin) into hydroxyapatite samples: Characterization and In vitro biological evaluation. Mar. Biotechnol., 2019, 21(1), 30-37.
[http://dx.doi.org/10.1007/s10126-018-9855-z]] [PMID: 30218326]
[19]
Parisi, J.R.; Fernandes, K.R. Aparecida do Vale, GC Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study. J. Biomater. Appl., 2020, 35(2), 205-214.
[20]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491]] [PMID: 31443597]
[21]
Wali, AF; Majid, S; Rasool, S Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi pharmac. J., 2019, 27(6), 767-777.
[22]
Donoghue, M.; Lemery, S.J.; Yuan, W.; He, K.; Sridhara, R.; Shord, S.; Zhao, H.; Marathe, A.; Kotch, L.; Jee, J.; Wang, Y.; Zhou, L.; Adams, W.M.; Jarral, V.; Pilaro, A.; Lostritto, R.; Gootenberg, J.E.; Keegan, P.; Pazdur, R. Eribulin mesylate for the treatment of patients with refractory metastatic breast cancer: Use of a “physician’s choice” control arm in a randomized approval trial. Clin. Cancer Res., 2012, 18(6), 1496-1505.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2149] [PMID: 22282463]
[23]
Mendiola, J.; Regalado, E.L.; Díaz-García, A.; Thomas, O.P.; Fernández-Calienes, A.; Rodríguez, H.; Laguna, A.; Valdés, O. In vitro antiplasmodial activity, cytotoxicity and chemical profiles of sponge species of Cuban coasts. Nat. Prod. Res., 2014, 28(5), 312-317.
[http://dx.doi.org/10.1080/14786419.2013.861835] [PMID: 24304347]
[24]
Parra, L.L.L.; Bertonha, A.F.; Severo, I.R.M.; Aguiar, A.C.C.; de Souza, G.E.; Oliva, G.; Guido, R.V.C.; Grazzia, N.; Costa, T.R.; Miguel, D.C.; Gadelha, F.R.; Ferreira, A.G.; Hajdu, E.; Romo, D.; Berlinck, R.G.S. Isolation, derivative synthesis, and structure–activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J. Nat. Prod., 2018, 81(1), 188-202.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00876]] [PMID: 29297684]
[25]
Yang, F.; Wang, R.P.; Xu, B.; Yu, H.B.; Ma, G.Y.; Wang, G.F.; Dai, S.W.; Zhang, W.; Jiao, W.H.; Song, S.J.; Lin, H.W. New antimalarial norterpene cyclic peroxides from Xisha Islands sponge Diacarnus megaspinorhabdosa. Bioorg. Med. Chem. Lett., 2016, 26(8), 2084-2087.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.070]] [PMID: 26965857]
[26]
Kapoor, S.; Nailwal, N.; Kumar, M.; Barve, K. Recent patents and discovery of anti-inflammatory agents from marine source. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 105-114.
[http://dx.doi.org/10.2174/1872213X13666190426164717] [PMID: 31814546]
[27]
Kenny, G.N.C. Potential renal, haematological and allergic adverse effects associated with nonsteroidal anti-inflammatory drugs. Drugs, 1992, 44(5), 31-37.
[http://dx.doi.org/10.2165/00003495-199200445-00005] [PMID: 1284559]
[28]
Ingawale, D.K.; Mandlik, S.K. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol. Immunotoxicol., 2020, 42(2), 59-73.
[http://dx.doi.org/10.1080/08923973.2020.1728765] [PMID: 32070175]
[29]
Fürst, R.; Zündorf, I. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/146832]] [PMID: 24987194]
[30]
Hwang, B.S.; Lee, K.; Yang, C.; Jeong, E.J.; Rho, J.R. Characterization and anti-inflammatory effects of iodinated acetylenic acids isolated from the marine sponges Suberites mammilaris and Suberites japonicus. J. Nat. Prod., 2013, 76(12), 2355-2359.
[http://dx.doi.org/10.1021/np400793r]] [PMID: 24256436]
[31]
Costantini, S.; Romano, G.; Rusolo, F.; Capone, F.; Guerriero, E.; Colonna, G.; Ianora, A.; Ciliberto, G.; Costantini, M. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 Cell Line. Mediators Inflamm., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/204975] [PMID: 26491222]
[32]
Keyzers, R.A.; Davies-Coleman, M.T. Anti-inflammatory metabolites from marine sponges. Chem. Soc. Rev., 2005, 34(4), 355-365.
[http://dx.doi.org/10.1039/b408600g]] [PMID: 15778769]
[33]
Perdicaris, S.; Vlachogianni, T.; Valavanidis, A. Bioactive natural substances from marine sponges: New developments and prospects for future pharmaceuticals. Nat. Prod. Chem. Res., 2013, 1(3), 1-8.
[http://dx.doi.org/10.4172/2329-6836.1000114]
[34]
Thakur, N.L.; Müller, W.E.G. Biotechnological potential of marine sponges. Curr. Sci., 2004, 86(11), 1506-1512.
[35]
Tilvi, S.; Rodrigues, C.; Naik, C.G.; Parameswaran, P.S.; Wahidhulla, S. New bromotyrosine alkaloids from the marine sponge Psammaplysilla purpurea. Tetrahedron, 2004, 60(45), 10207-10215.
[http://dx.doi.org/10.1016/j.tet.2004.09.009]
[36]
Mayer, A.M.S.; Avilés, E.; Rodríguez, A.D. Marine sponge Hymeniacidon sp. amphilectane metabolites potently inhibit rat brain microglia thromboxane B2 generation. Bioorg. Med. Chem., 2012, 20(1), 279-282.
[http://dx.doi.org/10.1016/j.bmc.2011.10.086]] [PMID: 22153874]
[37]
Ciaglia, E.; Malfitano, A.; Laezza, C.; Fontana, A.; Nuzzo, G.; Cutignano, A.; Abate, M.; Pelin, M.; Sosa, S.; Bifulco, M.; Gazzerro, P. Immuno-modulatory and anti-inflammatory effects of dihydrogracilin A, a terpene derived from the marine sponge dendrilla membranosa. Int. J. Mol. Sci., 2017, 18(8), 1643.
[http://dx.doi.org/10.3390/ijms18081643]] [PMID: 28788056]
[38]
de Vries, R.B.M.; Hooijmans, C.R.; Langendam, M.W.; van Luijk, J.; Leenaars, M.; Ritskes-Hoitinga, M.; Wever, K.E. A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies. Evid. Based Preclin. Med., 2015, 2(1), e00007.
[http://dx.doi.org/10.1002/ebm2.7]
[39]
Ankisetty, S.; Gochfeld, D.J.; Diaz, M.C.; Khan, S.I.; Slattery, M. Chemical constituents of the deep reef caribbean sponges Plakortis angulospiculatus and Plakortis halichondrioides and their anti-inflammatory activities. J. Nat. Prod., 2010, 73(9), 1494-1498.
[http://dx.doi.org/10.1021/np100233d]] [PMID: 20738102]
[40]
Ferrándiz, M.L.; Sanz, M.J.; Bustos, G.; Payá, M.; Alcaraz, M.J.; De Rosa, S. Avarol and avarone, two new anti-inflammatory agents of marine origin. Eur. J. Pharmacol., 1994, 253(1-2), 75-82.
[http://dx.doi.org/10.1016/0014-2999(94)90759-5]] [PMID: 8013550]
[41]
Li, H.; Zhang, Q.; Jin, X.; Zou, X.; Wang, Y.; Hao, D.; Fu, F.; Jiao, W.; Zhang, C.; Lin, H.; Matsuzaki, K.; Zhao, F. Dysifragilone A inhibits LPS induced RAW264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol. Med. Rep., 2018, 17(1), 674-682.
[PMID: 29115475]
[42]
Gui, Y.H.; Jiao, W.H.; Zhou, M.; Zhang, Y.; Zeng, D.Q.; Zhu, H.R.; Liu, K.C.; Sun, F.; Chen, H.F.; Lin, H.W. Septosones A–C, in vivo anti-inflammatory meroterpenoids with rearranged carbon skeletons from the marine sponge Dysidea septosa. Org. Lett., 2019, 21(3), 767-770.
[http://dx.doi.org/10.1021/acs.orglett.8b04019]] [PMID: 30676034]
[43]
Gui, Y.H.; Liu, L.; Wu, W.; Zhang, Y.; Jia, Z.L.; Shi, Y.P.; Kong, H.T.; Liu, K.C.; Jiao, W.H.; Lin, H.W. Discovery of nitrogenous sesquiterpene quinone derivatives from sponge Dysidea septosa with anti-inflammatory activity in vivo zebrafish model. Bioorg. Chem., 2020, 94, 103435.
[http://dx.doi.org/10.1016/j.bioorg.2019.103435]] [PMID: 31812262]
[44]
Lucas, R.; Giannini, C.; D’auria, M.V.; Payá, M. Modulatory effect of bolinaquinone, a marine sesquiterpenoid, on acute and chronic inflammatory processes. J. Pharmacol. Exp. Ther., 2003, 304(3), 1172-1180.
[http://dx.doi.org/10.1124/jpet.102.045278] [PMID: 12604694]
[45]
Hu, T.Y.; Zhang, H.; Chen, Y.Y.; Jiao, W.H.; Fan, J.T.; Liu, Z.Q.; Lin, H.W.; Cheng, B.H. Dysiarenone from marine sponge Dysidea arenaria Attenuates ROS and Inflammation via Inhibition of 5-LOX/NF-κB/MAPKs and Upregulation of Nrf-2/OH-1 in RAW 264.7 Macrophages. J. Inflamm. Res., 2021, 14, 587-597.
[http://dx.doi.org/10.2147/JIR.S283745] [PMID: 33664584]
[46]
Khaledi, M.; Sharif Makhmal Zadeh, B.; Rezaie, A.; Nazemi, M.; Safdarian, M.; Nabavi, M.B. Chemical profiling and anti-psoriatic activity of marine sponge (Dysidea avara) in induced imiquimod-psoriasis-skin model. PLoS One, 2020, 15(11), e0241582.
[http://dx.doi.org/10.1371/journal.pone.0241582]] [PMID: 33253155]
[47]
Koh, S.I.; Shin, H.S. The anti-rotaviral and anti-inflammatory effects of Hyrtios and Haliclona Species. J. Microbiol. Biotechnol., 2016, 26(11), 2006-2011.
[http://dx.doi.org/10.4014/jmb.1603.03079]] [PMID: 27470279]
[48]
Schumacher, M.; Cerella, C.; Eifes, S.; Chateauvieux, S.; Morceau, F.; Jaspars, M.; Dicato, M.; Diederich, M. Heteronemin, a spongean sesterterpene, inhibits TNFα-induced NF-κB activation through proteasome inhibition and induces apoptotic cell death. Biochem. Pharmacol., 2010, 79(4), 610-622.
[http://dx.doi.org/10.1016/j.bcp.2009.09.027]] [PMID: 19814997]
[49]
De, A.K.; Muthiyan, R.; Mahanta, N.; Nambikkairaj, B.; Immanuel, T. Antioxidant and anti-inflammatory effects of a methanol extract from the marine sponge Hyrtios erectus. Pharmacogn. Mag., 2018, 14(58), 534-540.
[http://dx.doi.org/10.4103/pm.pm_133_17]
[50]
Nabil-Adam, A.; Shreadah, M.A.; Abd El Moneam, N.M.; El-assar, S.A. Pesudomance sp. bacteria associated with marine sponge as a promising and sustainable source of bioactive molecules. Curr. Pharm. Biotechnol., 2019, 20(11), 964-984.
[http://dx.doi.org/10.2174/1389201020666190619092502] [PMID: 31258072]
[51]
Francis, P.; Chakraborty, K. Anti-inflammatory scalarane-type sesterterpenes, erectascalaranes A–B, from the marine sponge Hyrtios erectus attenuate pro-inflammatory cyclooxygenase-2 and 5-lipoxygenase. Med. Chem. Res., 2021, 30(4), 886-896.
[http://dx.doi.org/10.1007/s00044-020-02682-6]
[52]
Chakraborty, K.; Francis, P. Hyrtioscalaranes A and B, two new scalarane-type sesterterpenes from Hyrtios erectus with anti-inflammatory and antioxidant effects. Nat. Prod. Res., 2021, 35(24), 5559-5570.
[http://dx.doi.org/10.1080/14786419.2020.1795854] [PMID: 32713194]
[53]
Nabil-Adam, A.; Shreadah, M.A.; El Moneam, N.M.A.; El-Assar, S.A. Various <i>In vitro</i> bioactivities of secondary metabolites isolated from the sponge <i>Hyrtios aff. Erectus</i> from the Red Sea Coast of Egypt. Turk.J. Pharmac. Sci., 2020, 17(2), 127-135.
[http://dx.doi.org/10.4274/tjps.galenos.2018.72677] [PMID: 32454771]
[54]
Festa, C.; De Marino, S.; Sepe, V.; D’Auria, M.V.; Bifulco, G.; Andrés, R.; Terencio, M.C.; Payá, M.; Debitus, C.; Zampella, A. Perthamides C–F, potent human antipsoriatic cyclopeptides. Tetrahedron, 2011, 67(40), 7780-7786.
[http://dx.doi.org/10.1016/j.tet.2011.07.077]
[55]
Sepe, V.; Ummarino, R.; D’Auria, M.V.; Mencarelli, A.; D’Amore, C.; Renga, B.; Zampella, A.; Fiorucci, S. Total synthesis and pharmacological characterization of solomonsterol A, a potent marine pregnane-X-receptor agonist endowed with anti-inflammatory activity. J. Med. Chem., 2011, 54(13), 4590-4599.
[http://dx.doi.org/10.1021/jm200241s]] [PMID: 21599020]
[56]
Mencarelli, A.; D’Amore, C.; Renga, B.; Cipriani, S.; Carino, A.; Sepe, V.; Perissutti, E.; D’Auria, M.; Zampella, A.; Distrutti, E.; Fiorucci, S. Solomonsterol A, a marine pregnane-X-receptor agonist, attenuates inflammation and immune dysfunction in a mouse model of arthritis. Mar. Drugs, 2013, 12(1), 36-53.
[http://dx.doi.org/10.3390/md12010036]] [PMID: 24368568]
[57]
D’Acquisto, F.; Lanzotti, V.; Carnuccio, R. Cyclolinteinone, a sesterterpene from sponge Cacospongia linteiformis, prevents inducible nitric oxide synthase and inducible cyclo-oxygenase protein expression by blocking nuclear factor-κB activation in J774 macrophages. Biochem. J., 2000, 346(3), 793-798.
[http://dx.doi.org/10.1042/bj3460793]] [PMID: 10698708]
[58]
Marshall, L.A.; Winkler, J.D.; Griswold, D.E.; Bolognese, B.; Roshak, A.; Sung, C.M.; Webb, E.F.; Jacobs, R. Effects of scalaradial, a type II phospholipase A2 inhibitor, on human neutrophil arachidonic acid mobilization and lipid mediator formation. J. Pharmacol. Exp. Ther., 1994, 268(2), 709-717.
[PMID: 8113982]
[59]
Cholbi, R.; Ferrdndiz, M.L.; Terencio, M.C.; Alcaraz, M.J.; Payd, M.; De Rosa, S. Inhibition of phospholipase A2 activities and some inflammatory responses by the marine product ircinin. Naunyn Schmiedebergs Arch. Pharmacol., 1996, 354(5), 677-683.
[http://dx.doi.org/10.1007/BF00170845]] [PMID: 8938669]
[60]
Keyzers, R.A.; Northcote, P.T.; Webb, V. Clathriol, a novel polyoxygenated 14beta steroid isolated from the New Zealand marine sponge Clathria lissosclera. J. Nat. Prod., 2002, 65(4), 598-600.
[http://dx.doi.org/10.1021/np0104424]] [PMID: 11975512]
[61]
Francis, P.; Chakraborty, K. Anti-inflammatory pregnane-type steroid derivatives clathroids A-B from the marine Microcionidae sponge Clathria (Thalysias) vulpina: Prospective duel inhibitors of pro-inflammatory cyclooxygenase-2 and 5-lipoxygenase. Steroids, 2021, 172, 108858.
[http://dx.doi.org/10.1016/j.steroids.2021.108858] [PMID: 33971206]
[62]
Chakraborty, K.; Francis, P. Procerolides A-B from Microcionidae marine sponge Clathria procera: Anti-inflammatory macrocylic lactones with selective cyclooxygenase-2 attenuation properties. Bioorg. Chem., 2021, 109, 104663.
[http://dx.doi.org/10.1016/j.bioorg.2021.104663] [PMID: 33581508]
[63]
Lind, K.; Hansen, E.; Østerud, B.; Eilertsen, K.E.; Bayer, A.; Engqvist, M.; Leszczak, K.; Jørgensen, T.; Andersen, J. Antioxidant and anti-inflammatory activities of barettin. Mar. Drugs, 2013, 11(7), 2655-2666.
[http://dx.doi.org/10.3390/md11072655]] [PMID: 23880935]
[64]
Di, X.; Rouger, C.; Hardardottir, I.; Freysdottir, J.; Molinski, T.; Tasdemir, D.; Omarsdottir, S. 6-Bromoindole Derivatives from the Icelandic Marine Sponge Geodia barretti: Isolation and Anti-Inflammatory Activity. Mar. Drugs, 2018, 16(11), 437.
[http://dx.doi.org/10.3390/md16110437]] [PMID: 30413031]
[65]
Andriani, Y.; Marlina, L.; Mohamad, H.; Amir, H.; Radzi, S.A.M.; Saidin, J. Anti-inflammatory activity of bacteria associated with marine sponge (Haliclona Amboinensis) via reducting no production and inhibiting cyclooxygenase-1, cyclooxygenase-2, and secretory phospholipase A2 activities. Asian J. Pharm. Clin. Res., 2017, 10(11), 95.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i11.20094]
[66]
Kim, Y.; Ji, Y.; Kim, N.H.; Van Tu, N.; Rho, J.R.; Jeong, E. Isoquinolinequinone Derivatives from a Marine Sponge (Haliclona sp.) regulate inflammation in in vitro system of intestine. Mar. Drugs, 2021, 19(2), 90.
[http://dx.doi.org/10.3390/md19020090]] [PMID: 33557170]
[67]
Gil, B.; Sanz, M.J.; Terencio, M.C.; De Giulio, A.; De Rosa, S.; Alcaraz, M.J.; Payá, M. Effects of marine 2-polyprenyl-1,4-hydroquinones on phospholipase A2 activity and some inflammatory responses. Eur. J. Pharmacol., 1995, 285(3), 281-288.
[http://dx.doi.org/10.1016/0014-2999(95)00419-L]] [PMID: 8575515]
[68]
Tziveleka, L.A.; Abatis, D.; Paulus, K.; Bauer, R.; Vagias, C.; Roussis, V. Marine polyprenylated hydroquinones, quinones, and chromenols with inhibitory effects on leukotriene formation. Chem. Biodivers., 2005, 2(7), 901-909.
[http://dx.doi.org/10.1002/cbdv.200590066]] [PMID: 17193180]
[69]
Lee, S.M.; Kim, N.H.; Lee, S.; Kim, Y.N.; Heo, J.D.; Jeong, E.J.; Rho, J.R. Deacetylphylloketal, a new phylloketal derivative from a marine sponge, genus Phyllospongia, with potent anti-inflammatory activity in In vitro co-culture model of intestine. Mar. Drugs, 2019, 17(11), 634.
[http://dx.doi.org/10.3390/md17110634]] [PMID: 31717394]
[70]
Buckle, P.J.; Baldo, B.A.; Taylor, K.M. The anti-inflammatory activity of marine natural products-6-n-tridecylsalicylic acid, flexibilide and dendalone 3-hydroxybutyrate. Agents Actions, 1980, 10(4), 361-367.
[http://dx.doi.org/10.1007/BF01971441]] [PMID: 7470230]
[71]
Al-Khalaf, A.A.; Hassan, H.M.; Alrajhi, A.M.; Mohamed, R.A.E.H.; Hozzein, W.N. Anti-cancer and anti-inflammatory potential of the green synthesized silver nanoparticles of the red sea sponge Phyllospongia lamellosa supported by metabolomics analysis and docking study. Antibiotics, 2021, 10(10), 1155.
[http://dx.doi.org/10.3390/antibiotics10101155] [PMID: 34680736]
[72]
Li, H.; Shinde, P.B.; Lee, H.J.; Yoo, E.S.; Lee, C.O.; Hong, J.; Choi, S.H.; Jung, J.H. Bile acid derivatives from a sponge-associated bacterium Psychrobacter sp. Arch. Pharm. Res., 2009, 32(6), 857-862.
[http://dx.doi.org/10.1007/s12272-009-1607-1]] [PMID: 19557363]
[73]
Zhang, P.; Bao, B.; Dang, H.T.; Hong, J.; Lee, H.J.; Yoo, E.S.; Bae, K.S.; Jung, J.H. Anti-inflammatory sesquiterpenoids from a sponge-derived Fungus Acremonium sp. J. Nat. Prod., 2009, 72(2), 270-275.
[http://dx.doi.org/10.1021/np8006793]] [PMID: 19199645]
[74]
Li, J.L.; Zhang, P.; Lee, Y.M.; Hong, J.; Yoo, E.S.; Bae, K.S.; Jung, J.H. Oxygenated hexylitaconates from a marine sponge-derived fungus Penicillium sp. Chem. Pharm. Bull. , 2011, 59(1), 120-123.
[http://dx.doi.org/10.1248/cpb.59.120]] [PMID: 21212560]
[75]
Fung, S.Y.; Sofiyev, V.; Schneiderman, J.; Hirschfeld, A.F.; Victor, R.E.; Woods, K.; Piotrowski, J.S.; Deshpande, R.; Li, S.C.; de Voogd, N.J.; Myers, C.L.; Boone, C.; Andersen, R.J.; Turvey, S.E. Unbiased screening of marine sponge extracts for anti-inflammatory agents combined with chemical genomics identifies girolline as an inhibitor of protein synthesis. ACS Chem. Biol., 2014, 9(1), 247-257.
[http://dx.doi.org/10.1021/cb400740c]] [PMID: 24117378]
[76]
Lee, S.M.; Kim, N.H.; Lee, S.; Kim, Y.N.; Heo, J.D.; Rho, J.R.; Jeong, E.J. (10Z)-Debromohymenialdisine from Marine Sponge Stylissa sp. regulates intestinal inflammatory responses in co-culture model of epithelial Caco-2 Cells and THP-1 Macrophage Cells. Molecules, 2019, 24(18), 3394.
[http://dx.doi.org/10.3390/molecules24183394]] [PMID: 31540496]
[77]
Zhang, M.; Sunaba, T.; Sun, Y.; Shibata, T.; Sasaki, K.; Isoda, H.; Kigoshi, H.; Kita, M. Acyl-CoA dehydrogenase long chain (ACADL) is a target protein of stylissatin A, an anti-inflammatory cyclic heptapeptide. J. Antibiot., 2020, 73(8), 589-592.
[http://dx.doi.org/10.1038/s41429-020-0322-5]] [PMID: 32439989]
[78]
Sharma, V.; Lansdell, T.A.; Jin, G.; Tepe, J.J. Inhibition of cytokine production by hymenialdisine derivatives. J. Med. Chem., 2004, 47(14), 3700-3703.
[http://dx.doi.org/10.1021/jm040013d]] [PMID: 15214798]
[79]
Lucas, R.; Casapullo, A.; Ciasullo, L.; Gomez-Paloma, L.; Payá, M. Cycloamphilectenes, a new type of potent marine diterpenes: inhibition of nitric oxide production in murine macrophages. Life Sci., 2003, 72(22), 2543-2552.
[http://dx.doi.org/10.1016/S0024-3205(03)00167-X] [PMID: 12650863]
[80]
Youssef, D.T.A.; Ibrahim, A.K.; Khalifa, S.I.; Mesbah, M.K.; Mayer, A.M.S.; van Soest, R.W.M. New anti-inflammatory sterols from the Red Sea sponges Scalarispongia aqabaensis and Callyspongia siphonella., Nat. Prod. Commun., 2010, 5(1), 1934578X1000500.
[http://dx.doi.org/10.1177/1934578X1000500107] [PMID: 20184014]
[81]
Chen, J.H.; Lan, X.P.; Liu, Y.; Jia, A.Q. The effects of diketopiperazines from Callyspongia sp. on release of cytokines and chemokines in cultured J774A.1 macrophages. Bioorg. Med. Chem. Lett., 2012, 22(9), 3177-3180.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.045]] [PMID: 22469701]
[82]
Li, J.; Yang, F.; Wang, Z.; Wu, W.; Liu, L.; Wang, S.P.; Zhao, B.X.; Jiao, W.H.; Xu, S.H.; Lin, H.W. Unusual anti-inflammatory meroterpenoids from the marine sponge Dactylospongia sp. Org. Biomol. Chem., 2018, 16(36), 6773-6782.
[http://dx.doi.org/10.1039/C8OB01580E]] [PMID: 30191932]
[83]
Li, J.; Wu, W.; Yang, F.; Liu, L.; Wang, S.P.; Jiao, W.H.; Xu, S.H.; Lin, H.W.; Popolohuanones, G. I, dimeric sesquiterpene quinones with IL-6 inhibitory activity from the marine sponge Dactylospongia elegans. Chem. Biodivers., 2018, 15(6), e1800078.
[http://dx.doi.org/10.1002/cbdv.201800078]] [PMID: 29635790]
[84]
Posadas, I.; De Rosa, S.; Carmen Terencio, M.; Payá, M.; José Alcaraz, M. Cacospongionolide B suppresses the expression of inflammatory enzymes and tumour necrosis factor- α by inhibiting nuclear factor- κ B activation. Br. J. Pharmacol., 2003, 138(8), 1571-1579.
[http://dx.doi.org/10.1038/sj.bjp.0705189]] [PMID: 12721113]
[85]
Garcia-Pastor, P.; Randazzo, A.; Gomez-Paloma, L.; Alcaraz, M.J.; Paya, M. Effects of petrosaspongiolide M, a novel phospholipase A2 inhibitor, on acute and chronic inflammation. J. Pharmacol. Exp. Ther., 1999, 289(1), 166-172.
[PMID: 10087000]
[86]
Tsubosaka, Y.; Murata, T.; Yamada, K.; Uemura, D.; Hori, M.; Ozaki, H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J. Pharmacol. Sci., 2010, 113(3), 208-213.
[http://dx.doi.org/10.1254/jphs.10065FP]] [PMID: 20562517]
[87]
Di, X.; Oskarsson, J.T.; Omarsdottir, S.; Freysdottir, J.; Hardardottir, I. Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4 + T cells. Pharm. Biol., 2017, 55(1), 2116-2122.
[http://dx.doi.org/10.1080/13880209.2017.1373832] [PMID: 28876152]
[88]
Martins, L.F.; Mesquita, J.T.; Pinto, E.G.; Costa-Silva, T.A.; Borborema, S.E.T.; Galisteo, Junior A.J.; Neves, B.J.; Andrade, C.H.; Shuhaib, Z.A.; Bennett, E.L.; Black, G.P.; Harper, P.M.; Evans, D.M.; Fituri, H.S.; Leyland, J.P.; Martin, C.; Roberts, T.D.; Thornhill, A.J.; Vale, S.A.; Howard-Jones, A.; Thomas, D.A.; Williams, H.L.; Overman, L.E.; Berlinck, R.G.S.; Murphy, P.J.; Tempone, A.G. Analogues of marine guanidine alkaloids are in vitro Effective against Trypanosoma cruzi and Selectively Eliminate Leishmania (L.) infantum intracellular amastigotes. J. Nat. Prod., 2016, 79(9), 2202-2210.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00256]] [PMID: 27586460]
[89]
Wang, W.; Lee, T.G.; Patil, R.S.; Mun, B.; Yang, I.; Kim, H.; Hahn, D.; Won, D.H.; Lee, J.; Lee, Y.; Choi, H.; Nam, S.J.; Kang, H. Monanchosterols A and B, bioactive bicyclo[4.3.1]steroids from a Korean sponge Monanchora sp. J. Nat. Prod., 2015, 78(3), 368-373.
[http://dx.doi.org/10.1021/np500760v]] [PMID: 25455409]
[90]
Yoon, C.S.; Kim, D.C.; Lee, D.S.; Kim, K.S.; Ko, W.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. Int. Immunopharmacol., 2014, 23(2), 568-574.
[http://dx.doi.org/10.1016/j.intimp.2014.10.006]] [PMID: 25448500]
[91]
Qin, C.; Lin, X.; Lu, X.; Wan, J.; Zhou, X.; Liao, S.; Tu, Z.; Xu, S.; Liu, Y. Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungus Stachybotry sp. HH1 ZSDS1F1-2. J. Antibiot., 2015, 68(2), 121-125.
[http://dx.doi.org/10.1038/ja.2014.97]] [PMID: 25118104]
[92]
Choi, H.; Ku, S.K.; Bae, J.S. Inhibitory effect of three diketopiperazines from marine-derived bacteria on secretory group IIA Phospholipase A2. Nat. Prod. Commun., 2016, 11(9), 1934578X1601100.
[http://dx.doi.org/10.1177/1934578X1601100919] [PMID: 30807018]
[93]
Jeong, S.; Ku, S.K.; Min, G.; Choi, H.; Park, D.H.; Bae, J.S. Suppressive effects of three diketopiperazines from marine-derived bacteria on polyphosphate-mediated septic responses. Chem. Biol. Interact., 2016, 257, 61-70.
[http://dx.doi.org/10.1016/j.cbi.2016.07.032]] [PMID: 27481191]
[94]
Lee, W.; Ku, S.K.; Choi, H.; Bae, J.S. Inhibitory effects of three diketopiperazines from marine-derived bacteria on endothelial protein C receptor shedding in human endothelial cells and mice. Fitoterapia, 2016, 110, 181-188.
[http://dx.doi.org/10.1016/j.fitote.2016.03.016]] [PMID: 27012760]
[95]
Yang, J.H.; Suh, S.J.; Lu, Y.; Li, X.; Lee, Y.K.; Chang, Y.C.; Na, M.K.; Choi, J.H.; Kim, C.H.; Son, J.K.; Chang, H.W. Anti-inflammatory activity of ethylacetate fraction of Cliona celata. Immunopharmacol. Immunotoxicol., 2011, 33(2), 373-379.
[http://dx.doi.org/10.3109/08923973.2010.520716]] [PMID: 20929426]
[96]
Kim, M.M.; Mendis, E.; Rajapakse, N.; Lee, S.H.; Kim, S.K. Effect of spongin derived from Hymeniacidon sinapium on bone mineralization. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90B(2), 540-546.
[http://dx.doi.org/10.1002/jbm.b.31315]] [PMID: 19165732]
[97]
Hwang, J.Y.; Park, S.C.; Byun, W.S.; Oh, D.C.; Lee, S.K.; Oh, K.B.; Shin, J. Bioactive bianthraquinones and meroterpenoids from a marine-derived Stemphylium sp. Fungus. Mar. Drugs, 2020, 18(9), 436.
[http://dx.doi.org/10.3390/md18090436] [PMID: 32825785]
[98]
Liu, J.T.; Wu, W.; Cao, M.J.; Yang, F.; Lin, H.W. Trienic α-pyrone and ochratoxin derivatives from a sponge-derived fungus Aspergillus ochraceopetaliformis. Nat. Prod. Res., 2018, 32(15), 1791-1797.
[http://dx.doi.org/10.1080/14786419.2017.1402325] [PMID: 29130337]
[99]
Abou-Hussein, D.R.; Badr, J.M.; Youssef, D.T.A. Dragmacidoside: A new nucleoside from the Red Sea sponge Dragmacidon coccinea. Nat. Prod. Res., 2014, 28(15), 1134-1141.
[http://dx.doi.org/10.1080/14786419.2014.915828] [PMID: 24831420]
[100]
Abdelfattah, M.S.; Elmallah, M.I.Y.; Ebrahim, H.Y.; Almeer, R.S.; Eltanany, R.M.A.; Abdel Moneim, A.E. Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms. PLoS One, 2019, 14(6), e0216737.
[http://dx.doi.org/10.1371/journal.pone.0216737]] [PMID: 31194753]
[101]
Chaudhari, S.; Kumar, M.S. Marine sponges Sarcotragus foetidus, Xestospongia carbonaria and Spongia obscura constituents ameliorate IL-1 β and IL-6 in lipopolysaccharide-induced RAW 264.7 macrophages and carrageenan-induced oedema in rats. Inflammopharmacology, 2020, 28(4), 1091-1119.
[http://dx.doi.org/10.1007/s10787-020-00699-2]] [PMID: 32232632]
[102]
Costantino, V.; Fattorusso, E.; Mangoni, A.; Perinu, C.; Cirino, G.; De Gruttola, L.; Roviezzo, F. Tedanol: A potent anti-inflammatory ent-pimarane diterpene from the Caribbean Sponge Tedania ignis. Bioorg. Med. Chem., 2009, 17(21), 7542-7547.
[http://dx.doi.org/10.1016/j.bmc.2009.09.010]] [PMID: 19800802]
[103]
Shin, A.Y.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Son, A.; Choi, C.; Lee, J. Oxygenated theonellastrols: Interpretation of unusual chemical behaviors using quantum mechanical calculations and stereochemical reassignment of 7α-hydroxytheonellasterol. Mar. Drugs, 2020, 18(12), 607.
[http://dx.doi.org/10.3390/md18120607]] [PMID: 33265994]
[104]
Mandeau, A.; Debitus, C.; Ariès, M.; David, B. Isolation and absolute configuration of new bioactive marine steroids from sp. Steroids, 2005, 70(13), 873-878.
[http://dx.doi.org/10.1016/j.steroids.2005.05.006]] [PMID: 16081116]
[105]
Ji, Y.K.; Lee, S.M.; Kim, N.H.; Tu, N.V.; Kim, Y.N.; Heo, J.D.; Jeong, E.J.; Rho, J.R. Stereochemical determination of fistularins isolated from the marine sponge Ecionemia acervus and their regulatory effect on intestinal inflammation. Mar. Drugs, 2021, 19(3), 170.
[http://dx.doi.org/10.3390/md19030170]] [PMID: 33809895]
[106]
Quang, T.H.; Phong, N.V.; Hanh, T.T.H.; Cuong, N.X.; Ngan, N.T.T.; Oh, H.; Nam, N.H.; Van Minh, C. Cytotoxic and immunomodulatory phenol derivatives from a marine sponge-derived fungus Ascomycota sp. VK12. Nat. Prod. Res., 2021, 35(23), 5153-5159.
[http://dx.doi.org/10.1080/14786419.2020.1786829] [PMID: 32608264]
[107]
de Medeiros, A.I.; Gandolfi, R.C.; Secatto, A.; Falcucci, R.M.; Faccioli, L.H.; Hajdu, E.; Peixinho, S.; Berlinck, R.G.S. 11-Oxoaerothionin isolated from the marine sponge Aplysina fistularis shows anti-inflammatory activity in LPS-stimulated macrophages. Immunopharmacol. Immunotoxicol., 2012, 34(6), 919-924.
[http://dx.doi.org/10.3109/08923973.2012.679984] [PMID: 22537094]
[108]
Constantino, LS TSH fraction from Petromica citrina: A potential marine natural product for the treatment of sepsis by Methicillinresistant Staphylococcus aureus (MRSA). Biomed. pharmac., 2018, 108, 1759-1766.
[109]
De Marino, S.; Festa, C.; D’Auria, M.V.; Bourguet-Kondracki, M-L.; Petek, S.; Debitus, C.; Andrés, R.M.; Terencio, M.C.; Payá, M.; Zampella, A. Coscinolactams A and B: New nitrogen-containing sesterterpenoids from the marine sponge Coscinoderma mathewsi exerting anti-inflammatory properties. Tetrahedron, 2009, 65(15), 2905-2909.
[http://dx.doi.org/10.1016/j.tet.2009.02.016]
[110]
Franco, L.; Macareno, J.; Ocampo Buendia, Y.C.; Pájaro, I.; Gaitán-Ibarra, R. Marine sponges of the genus neopetrosia with anti-inflammatory activity. Lat. Am. J. Pharm., 2012, 31, 976-983.
[111]
Lee, D.S.; Hwang, I.H. Im, N-K.; Jeong, G-S.; Na, M.K. Anti-inflammatory effect of dactyloquinone B and cyclospongiaquinone-1 mixture in RAW264.7 Macrophage and ICR Mice. Nat. Prod. Sci., 2015, 21(4), 268-272.
[http://dx.doi.org/10.20307/nps.2015.21.4.268]
[112]
Moles, J.; Torrent, A.; Alcaraz, M.J.; Ruhí, R.; Avila, C. Anti-inflammatory activity in selected Antarctic benthic organisms. Front. Mar. Sci., 2014, 1(24)
[http://dx.doi.org/10.3389/fmars.2014.00024]
[113]
Pastor, P.G.; De Rosa, S.; De Giulio, A.; Payá, M.; Alcaraz, M.J. Modulation of acute and chronic inflammatory processes by cacospongionolide B, a novel inhibitor of human synovial phospholipase A 2. Br. J. Pharmacol., 1999, 126(1), 301-311.
[http://dx.doi.org/10.1038/sj.bjp.0702302] [PMID: 10051149]
[114]
Park, E.J.; Cheenpracha, S.; Chang, L.C.; Pezzuto, J.M. Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by epimuqubilin A via IKK/IκB/NF-κB pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Phytochem. Lett., 2011, 4(4), 426-431.
[http://dx.doi.org/10.1016/j.phytol.2011.07.009] [PMID: 22180763]
[115]
de Freitas, J.C.; Blankemeier, L.A.; Jacobs, R.S. In vitro inactivation of the neurotoxic action of β-bungarotoxin by the marine natural product, manoalide. Experientia, 1984, 40(8), 864-865.
[http://dx.doi.org/10.1007/BF01951998]] [PMID: 6468604]
[116]
Hong, S.; Kim, S.H.; Rhee, M.H.; Kim, A.R.; Jung, J.H.; Chun, T.; Yoo, E.S.; Cho, J.Y. In vitro anti-inflammatory and pro-aggregative effects of a lipid compound, petrocortyne A, from marine sponges. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(6), 448-456.
[http://dx.doi.org/10.1007/s00210-003-0848-7]] [PMID: 14615882]
[117]
Seo, Y.J.; Lee, K.T.; Rho, J.R.; Choi, J.H.; Phorbaketal, A. Phorbaketal A, isolated from the marine sponge phorbas sp., exerts its anti-inflammatory effects via NF-κB inhibition and heme oxygenase-1 activation in lipopolysaccharide-stimulated macrophages. Mar. Drugs, 2015, 13(11), 7005-7019.
[http://dx.doi.org/10.3390/md13117005]] [PMID: 26610528]
[118]
Gegunde, S.; Alfonso, A.; Alonso, E.; Alvariño, R.; Botana, L.M. Gracilin-derivatives as lead compounds for anti-inflammatory effects. Cell. Mol. Neurobiol., 2020, 40(4), 603-615.
[http://dx.doi.org/10.1007/s10571-019-00758-5]] [PMID: 31729596]
[119]
Simmons, L.; Kaufmann, K.; Garcia, R.; Schwär, G.; Huch, V.; Müller, R. Bendigoles D–F, bioactive sterols from the marine sponge-derived Actinomadura sp. SBMs009. Bioorg. Med. Chem., 2011, 19(22), 6570-6575.
[http://dx.doi.org/10.1016/j.bmc.2011.05.044]] [PMID: 21684166]
[120]
Tornatore, L.; Thotakura, A.K.; Bennett, J.; Moretti, M.; Franzoso, G. The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation. Trends Cell Biol., 2012, 22(11), 557-566.
[http://dx.doi.org/10.1016/j.tcb.2012.08.001]] [PMID: 22995730]
[121]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23]] [PMID: 29158945]
[122]
Hegazy, M.E.F.; Hamed, A.R.; Mohamed, T.A.; Debbab, A.; Nakamura, S.; Matsuda, H.; Paré, P.W. Anti-inflammatory sesquiterpenes from the medicinal herb Tanacetum sinaicum. RSC Advances, 2015, 5(56), 44895-44901.
[http://dx.doi.org/10.1039/C5RA07511D]
[123]
Kuprash, D.V.; Nedospasov, S.A. Molecular and cellular mechanisms of inflammation. Biochemistry, 2016, 81(11), 1237-1239.
[http://dx.doi.org/10.1134/S0006297916110018]] [PMID: 27914449]
[124]
Thomas, T.; Moitinho-Silva, L.; Lurgi, M.; Björk, J.R.; Easson, C.; Astudillo-García, C.; Olson, J.B.; Erwin, P.M.; López-Legentil, S.; Luter, H.; Chaves-Fonnegra, A.; Costa, R.; Schupp, P.J.; Steindler, L.; Erpenbeck, D.; Gilbert, J.; Knight, R.; Ackermann, G.; Victor Lopez, J.; Taylor, M.W.; Thacker, R.W.; Montoya, J.M.; Hentschel, U.; Webster, N.S. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun., 2016, 7(1), 11870.
[http://dx.doi.org/10.1038/ncomms11870]] [PMID: 27306690]
[125]
Boury-Esnault, N. Systematics and evolution of Demospongiae. Can. J. Zool., 2006, 84(2), 205-224.
[http://dx.doi.org/10.1139/z06-003]
[126]
Roe, K. An inflammation classification system using cytokine parameters. Scand. J. Immunol., 2021, 93(2), e12970.
[http://dx.doi.org/10.1111/sji.12970]] [PMID: 32892387]
[127]
Varfolomeev, E.E.; Ashkenazi, A. Tumor necrosis factor: An apoptosis JuNKie? Cell, 2004, 116(4), 491-497.
[http://dx.doi.org/10.1016/S0092-8674(04)00166-7] [PMID: 14980217]
[128]
Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol., 2016, 12(1), 49-62.
[http://dx.doi.org/10.1038/nrrheum.2015.169]] [PMID: 26656660]
[129]
Chu, W.M. Tumor necrosis factor. Cancer Lett., 2013, 328(2), 222-225.
[http://dx.doi.org/10.1016/j.canlet.2012.10.014]] [PMID: 23085193]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy