Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Kenaf Seed Cysteine Protease (KSCP) Inhibits the Intrinsic Pathway of the Blood Coagulation Cascade and Platelet Aggregation

Author(s): Sujatha M. Hanumegowda, Chandramma Srinivasa, Ashwini Shivaiah, Manjula M. Venkatappa, Rohith L. Shankar, Ramesh K. Lakshmaiah, Sathisha J. Gonchigar and Devaraja Sannaningaiah*

Volume 25, Issue 5, 2024

Published on: 29 November, 2023

Page: [394 - 408] Pages: 15

DOI: 10.2174/0113892037265109231114065204

Price: $65

Abstract

Background: Thrombosis is the key event that obstructs the flow of blood throughout the circulatory system, leading to stroke, myocardial infarction and severe cardiovascular complications. Currently, available antithrombotic drugs trigger several life-threatening side effects.

Introduction: Antithrombotic agents from natural sources devoid of adverse effects are grabbing high attention. In our previous study, we reported the antioxidant, anticoagulant and antiplatelet properties of kenaf seed protein extract. Therefore, in the current study, purification and characterization of cysteine protease from kenaf seed protein extract responsible for potential antithrombotic activity was undertaken.

Methods : Purification of KSCP (Kenaf Seed Cysteine Protease) was carried out using gel permeation and ion exchange column chromatography. The purity of the enzyme was evaluated by SDS PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis). RP-HPLC (Reverse Phase High-Performance Liquid Chromatography), MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-Of-Flight) and CD (Circular Dichroism techniques) were employed for its characterization. Proteolytic, fibrinolytic and kinetic study was done using spectroscopy. Plasma recalcification time, Prothrombin Time (PT), Thrombin clotting time (TCT), Activated Partial Thromboplastin Time (APTT), bleeding time and platelet aggregation studies were carried out for antithrombotic activity of KSCP.

Result : A single sharp band of KSCP was observed under both reduced and non-reduced conditions, having a molecular mass of 24.1667kDa. KSCP was found to contain 30.3% helix turns and 69.7% random coils without a beta-pleated sheet. KSCP digested casein and fibrin, and its activity was inhibited by iodoacetic acid (IAA). KSCP was optimally active at pH 6.0 at the temperature of 40°C. KSCP exhibited anticoagulant properties by interfering in the intrinsic pathway of the blood coagulation cascade. Furthermore, KSCP dissolved both whole blood and plasma clots and platelet aggregation.

Conclusion : KSCP purified from kenaf seed extract showed antithrombotic potential. Hence, it could be a better candidate for the management of thrombotic complications.

Graphical Abstract

[1]
Segarra, M.; Aburto, M.R.; Acker-Palmer, A. Blood–brain barrier dynamics to maintain brain homeostasis. Trends Neurosci., 2021, 44(5), 393-405.
[http://dx.doi.org/10.1016/j.tins.2020.12.002] [PMID: 33423792]
[2]
Fathima, S. N. Acute Myocardial Infarction; StatPearls Publishing: Treasure Island (FL), 2021.
[3]
Periayah, M.H.; Halim, A.S.; Mat Saad, A.Z. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int. J. Hematol. Oncol. Stem Cell Res., 2017, 11(4), 319-327.
[PMID: 29340130]
[4]
Induruwa, I.; Moroi, M.; Bonna, A.; Malcor, J.D.; Howes, J.M.; Warburton, E.A.; Farndale, R.W.; Jung, S.M. Platelet collagen receptor Glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation. J. Thromb. Haemost., 2018, 16(2), 389-404.
[http://dx.doi.org/10.1111/jth.13919] [PMID: 29210180]
[5]
Neubauer, K.; Zieger, B. Endothelial cells and coagulation. Cell Tissue Res., 2022, 387(3), 391-398.
[http://dx.doi.org/10.1007/s00441-021-03471-2] [PMID: 34014399]
[6]
Ashwini, S.A. Evidences for the presence of proteolytic enzyme in finger millet. AJST, 2018, 2018, 9122-9130.
[7]
Maas, C.; Renné, T. Coagulation factor XII in thrombosis and inflammation. Blood, 2018, 131(17), 1903-1909.
[http://dx.doi.org/10.1182/blood-2017-04-569111] [PMID: 29483100]
[8]
Naudin, C.; Burillo, E.; Blankenberg, S.; Butler, L.; Renné, T. Factor XII contact activation. Semin. Thromb. Hemost., 2017, 43(8), 814-826.
[http://dx.doi.org/10.1055/s-0036-1598003] [PMID: 28346966]
[9]
Kamikubo, Y.; Mendolicchio, G.L.; Zampolli, A.; Marchese, P.; Rothmeier, A.S.; Orje, J.N.; Gale, A.J.; Krishnaswamy, S.; Gruber, A.; Østergaard, H.; Petersen, L.C.; Ruf, W.; Ruggeri, Z.M. Selective factor VIII activation by the tissue factor–factor VIIa–factor Xa complex. Blood, 2017, 130(14), 1661-1670.
[http://dx.doi.org/10.1182/blood-2017-02-767079] [PMID: 28729433]
[10]
Hillegass, E. Essentials of Cardiopulmonary Physical Therapy, 5th ed; Elsevier, Inc: Philadelphia, 2021.
[11]
Malik, A.; Rehman, F.U.; Shah, K.U.; Naz, S.S.; Qaisar, S. Hemostatic strategies for uncontrolled bleeding: A comprehensive update. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(10), 1465-1477.
[http://dx.doi.org/10.1002/jbm.b.34806] [PMID: 33511753]
[12]
Kohli, S.; Shahzad, K.; Jouppila, A.; Holthöfer, H.; Isermann, B.; Lassila, R. Thrombosis and inflammation—a dynamic interplay and the role of glycosaminoglycans and activated protein C. Front. Cardiovasc. Med., 2022, 9, 866751.
[http://dx.doi.org/10.3389/fcvm.2022.866751] [PMID: 35433860]
[13]
Manjappa, B.; Gangaraju, S.; Girish, K.S.; Kemparaju, K.; Gonchigar, S.J.; Shankar, R.L.; Shinde, M.; Sannaningaiah, D. Momordica charantia seed extract exhibits strong anticoagulant effect by specifically interfering in intrinsic pathway of blood coagulation and dissolves fibrin clot. Blood Coagul. Fibrinolysis, 2015, 26(2), 191-199.
[http://dx.doi.org/10.1097/MBC.0000000000000191] [PMID: 25192240]
[14]
Mehta, L.; Sharma, G.; Douglas, P.; Rzeszut, A. Discrimination and harrassment in cardiology: Insights from the 2019 American College of cardiology global professional life survey. J. Am. Coll. Cardiol., 2020, 75(11), 3631.
[http://dx.doi.org/10.1016/S0735-1097(20)34258-3]
[15]
Tafur, A.; Douketis, J. Perioperative management of anticoagulant and antiplatelet therapy. Heart, 2018, 104(17), 1461-1467.
[http://dx.doi.org/10.1136/heartjnl-2016-310581] [PMID: 29217632]
[16]
Hassanpour, S.; Kim, H.J.; Saadati, A.; Tebon, P.; Xue, C.; van den Dolder, F.W.; Thakor, J.; Baradaran, B.; Mosafer, J.; Baghbanzadeh, A.; de Barros, N.R.; Hashemzaei, M.; Lee, K.J.; Lee, J.; Zhang, S.; Sun, W.; Cho, H.J.; Ahadian, S.; Ashammakhi, N.; Dokmeci, M.R.; Mokhtarzadeh, A.; Khademhosseini, A. Thrombolytic agents: Nanocarriers in controlled release. Small, 2020, 16(40), 2001647.
[http://dx.doi.org/10.1002/smll.202001647] [PMID: 32790000]
[17]
MacDougall, C.; Canonica, T.; Keh, C.; P Phan, B.A.; Louie, J. Systematic review of drug-drug interactions between rifamycins and anticoagulant and antiplatelet agents and considerations for management. Pharmacotherapy, 2022, 42(4), 343-361.
[http://dx.doi.org/10.1002/phar.2672] [PMID: 35152432]
[18]
Łubek-Nguyen, A.; Ziemichód, W.; Olech, M. Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. Appl. Sci., 2022, 12(7), 3232.
[http://dx.doi.org/10.3390/app12073232]
[19]
Norhisham, D.A.; Saad, N.M.; Ahmad Usuldin, S.R.; Vayabari, D.A.G.; Ilham, Z.; Ibrahim, M.F.; Wan-Mohtar, W.A.A.Q.I. Bioactivities of kenaf biomass extracts: A review. Processes, 2023, 11(4), 1178.
[http://dx.doi.org/10.3390/pr11041178]
[20]
Ayadi, R.; Hanana, M.; Mzid, R.; Hamrouni, L.; Khouja, M.; Salhi Hanachi, A. Hibiscus cannabinus L. – Kenaf : A review paper. J. Nat. Fibers, 2016, 14(4), 466-484.
[http://dx.doi.org/10.1080/15440478.2016.1240639]
[21]
Gonchigar, S.J.; Sannaningaiah, D.; Hanumegowda, S.M.; Srinivasa, C.; Shivaiah, A.; Venkatappa, M.M.; Hanumanthappa, R.; Rangappa, R.; Laxmaiah, R.K. Protein extract of kenaf seed exhibits anticoagulant, antiplatelet and antioxidant activities. Asian Pac. J. Trop. Biomed., 2022, 12(2), 47.
[http://dx.doi.org/10.4103/2221-1691.335693]
[22]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[23]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[24]
Leach, B.S.; Collawn, J.F., Jr; Fish, W.W. Behavior of glycopolypeptides with empirical molecular weight estimation methods. 1. In sodium dodecyl sulfate. Biochemistry, 1980, 19(25), 5734-5741.
[http://dx.doi.org/10.1021/bi00566a011] [PMID: 7459341]
[25]
Saran, S.; Isar, J.; Saxena, R.K. A modified method for the detection of microbial proteases on agar plates using tannic acid. J. Biochem. Biophys. Methods, 2007, 70(4), 697-699.
[http://dx.doi.org/10.1016/j.jbbm.2007.03.005] [PMID: 17434593]
[26]
Satake, M.; Murata, Y.; Suzuki, T. Studies on snake venom. XIII. Chromatographic separation and properties of three proteinases from Agkistrodon halys blomhoffii venom. J. Biochem., 1963, 53(6), 438-447.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a127720] [PMID: 13986686]
[27]
Quick, A.J.; Stanley-Brown, M.; Bancroft, F.W. A study of the coagulation defect in hemophilia and in jaundice. Am. J. Med. Sci., 1935, 190(4), 501-510.
[http://dx.doi.org/10.1097/00000441-193510000-00009]
[28]
Denis, C.; Methia, N.; Frenette, P.S.; Rayburn, H.; Ullman-Culleré, M.; Hynes, R.O.; Wagner, D.D. A mouse model of severe von Willebrand disease: Defects in hemostasis and thrombosis. Proc. Natl. Acad. Sci., 1998, 95(16), 9524-9529.
[http://dx.doi.org/10.1073/pnas.95.16.9524] [PMID: 9689113]
[29]
Neofotistos, D.; Oropeza, M.; Ts’ao, C.H. Stability of plasma for add-on PT and APTT tests. Am. J. Clin. Pathol., 1998, 109(6), 758-763.
[http://dx.doi.org/10.1093/ajcp/109.6.758] [PMID: 9620036]
[30]
Evans, H.J. Cleavage of the Aα-chain of fibrinogen and the α-polymer of fibrin by the venom of spitting cobra (Naja nigricollis). Biochimica et Biophysica Acta (BBA) - Enzymology, 1981, 660(2), 219-226.
[http://dx.doi.org/10.1016/0005-2744(81)90163-7] [PMID: 6793073]
[31]
Prasad, S.; Kashyap, R.S.; Deopujari, J.Y.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb. J., 2006, 4(1), 14.
[http://dx.doi.org/10.1186/1477-9560-4-14] [PMID: 16968529]
[32]
Matsubara, K.; Hori, K.; Matsuura, Y.; Miyazawa, K. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2000, 125(1), 137-143.
[http://dx.doi.org/10.1016/S0305-0491(99)00161-3] [PMID: 10840649]
[33]
Rajesh, R.; Raghavendra Gowda, C.D.; Nataraju, A.; Dhananjaya, B.L.; Kemparaju, K.; Vishwanath, B.S. Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon, 2005, 46(1), 84-92.
[http://dx.doi.org/10.1016/j.toxicon.2005.03.012] [PMID: 15922393]
[34]
Ardlie, N.G.; Han, P. Enzymatic basis for platelet aggregation and release: the significance of the ‘platelet atmosphere’ and the relationship between platelet function and blood coagulation. Br. J. Haematol., 1974, 26(3), 331-356.
[http://dx.doi.org/10.1111/j.1365-2141.1974.tb00477.x] [PMID: 4851871]
[35]
Born, G.V.R.; Cross, M.J. Effects of inorganic ions and of plasma proteins on the aggregation of blood platelets by adenosine diphosphate. J. Physiol., 1964, 170(2), 397-414.
[http://dx.doi.org/10.1113/jphysiol.1964.sp007340] [PMID: 14165175]
[36]
Stoykova, S.; Goranova, Y.; Pantcheva, I.; Atanasov, V.; Danchev, D.; Petrova, S. Hemolytic activity and platelet aggregation inhibitory effect of vipoxin’s basic sPLA2 subunit. Interdiscip. Toxicol., 2013, 6(3), 136-140.
[http://dx.doi.org/10.2478/intox-2013-0021] [PMID: 24678250]
[37]
Kondo, H.; Kondo, S.; Ikezawa, H.; Murata, R.; Ohsaka, A. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jpn. J. Med. Sci. Biol., 1960, 13(1-2), 43-51.
[http://dx.doi.org/10.7883/yoken1952.13.43] [PMID: 13853435]
[38]
Sannanaik Vishwanath, B.; Manjunatha Kini, R.; Veerabasappa Gowda, T. Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon, 1987, 25(5), 501-515.
[http://dx.doi.org/10.1016/0041-0101(87)90286-8] [PMID: 3617087]
[39]
Marathe, K.R.; Patil, R.H.; Vishwakarma, K.S.; Chaudhari, A.B.; Maheshwari, V.L. Protease inhibitors and their applications: An overview. In: Studies in Natural Products Chemistry; Elsevier, 2019; 62, pp. 211-242.
[40]
Silva-López, R.E.; Gonçalves, R.N. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. J. Appl. Biol. Biotechnol. Bioeng., 2019, 6(2), 101-109.
[http://dx.doi.org/10.15406/jabb.2019.06.00180]
[41]
Mnif, I.H.; Siala, R.; Nasri, R.; Mhamdi, S.; Nasri, M.; Kamoun, A.S. A cysteine protease isolated from the latex of Ficus microcarpa: purification and biochemical characterization. Appl. Biochem. Biotechnol., 2015, 175(3), 1732-1744.
[http://dx.doi.org/10.1007/s12010-014-1376-2] [PMID: 25424283]
[42]
Joshi, B.N.; Sainani, M.N.; Bastawade, K.B.; Gupta, V.S.; Ranjekar, P.K. Cysteine protease inhibitor from pearl millet: A new class of antifungal protein. Biochem. Biophys. Res. Commun., 1998, 246(2), 382-387.
[http://dx.doi.org/10.1006/bbrc.1998.8625] [PMID: 9610368]
[43]
Nandish, S.K.M.; Kengaiah, J.; Ramachandraiah, C.; Chandramma; Shivaiah, A.; Santhosh, S.M.; Thirunavukkarasu; Sannaningaiah, D. Flaxseed cysteine protease exhibits strong anticoagulant, antiplatelet, and clot-dissolving properties. Biochemistry, 2020, 85(9), 1113-1126.
[http://dx.doi.org/10.1134/S0006297920090102] [PMID: 33050855]
[44]
Sundd, M.; Kundu, S.; Pal, G.P.; Medicherla, J.V. Purification and characterization of a highly stable cysteine protease from the latex of Ervatamia coronaria. Biosci. Biotechnol. Biochem., 1998, 62(10), 1947-1955.
[http://dx.doi.org/10.1271/bbb.62.1947] [PMID: 9836431]
[45]
Liggieri, C.; Arribére, M.C.; Trejo, S.A.; Canals, F.; Avilés, F.X.; Priolo, N.S.; Avilés, F.X.; Priolo, N.S. Purification and biochemical characterization of asclepain c I from the latex of Asclepias curassavica L. Protein J., 2004, 23(6), 403-411.
[http://dx.doi.org/10.1023/B:JOPC.0000039554.18157.69] [PMID: 15517987]
[46]
Barco, S.; Mahmoudpour, S.H.; Valerio, L.; Klok, F.A.; Münzel, T.; Middeldorp, S.; Ageno, W.; Cohen, A.T.; Hunt, B.J.; Konstantinides, S.V. Trends in mortality related to pulmonary embolism in the European Region, 2000–15: Analysis of vital registration data from the WHO Mortality Database. Lancet Respir. Med., 2020, 8(3), 277-287.
[http://dx.doi.org/10.1016/S2213-2600(19)30354-6] [PMID: 31615719]
[47]
Nimjee, S.M.; Povsic, T.J.; Sullenger, B.A.; Becker, R.C. Translation and clinical development of antithrombotic aptamers. Nucleic Acid Ther., 2016, 26(3), 147-155.
[http://dx.doi.org/10.1089/nat.2015.0581] [PMID: 26882082]
[48]
Salekeen, R.; Haider, A.N.; Akhter, F.; Billah, M.M.; Islam, M.E.; Islam, D.K.M. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. IJCCRP, 2022, 14, 200143.
[http://dx.doi.org/10.1016/j.ijcrp.2022.200143] [PMID: 36060286]
[49]
Castellucci, L.A.; Cameron, C.; Le Gal, G.; Rodger, M.A.; Coyle, D.; Wells, P.S.; Clifford, T.; Gandara, E.; Wells, G.; Carrier, M. Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: Systematic review and network meta-analysis. BMJ, 2013, 347(1), f5133-f5133.
[http://dx.doi.org/10.1136/bmj.f5133] [PMID: 23996149]
[50]
Angiolillo, D.J.; Guzman, L.A.; Bass, T.A. Current antiplatelet therapies: Benefits and limitations. Am. Heart J., 2008, 156(S2), 3S-9S.
[http://dx.doi.org/10.1016/j.ahj.2008.06.003] [PMID: 18657680]
[51]
Santangeli, R.; Montozzi, G.; Gamba, L.; Salvucci, S.; Manfredi, L.; Moroncini, G. Ab1514 unusual association between thrombotic thrombocytopenic purpura and primary antiphospholipid syndrome. Ann. Rheum. Dis., 2022, 81(S1), 1859.2-1860.
[http://dx.doi.org/10.1136/annrheumdis-2022-eular.1830]
[52]
Shivaprasad, H.V.; Riyaz, M.; Venkatesh Kumar, R.; Dharmappa, K.K.; Tarannum, S.; Siddesha, J.M.; Rajesh, R.; Vishwanath, B.S. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities. J. Thromb. Thrombolysis, 2009, 28(3), 304-308.
[http://dx.doi.org/10.1007/s11239-008-0290-2] [PMID: 18979066]
[53]
Sannaningaiah, D.; Shivaiah, A.; Kengaiah, J.; Srinivasa, C.; Nandish, S.K.M.; Ramachandraiah, C.; Hanumegowda, S.; Manjappa, B.; Martin, S.S.; Laxmaiah, R.K.; Shinde, M. Sorghum protein extract protects RBC from sodium nitrite-induced oxidative stress and exhibits anticoagulant and antiplatelet activity. Folia Med, 2021, 63(6), 884-894.
[54]
Nandish, S.K.M.; Kengaiah, J.; Ramachandraiah, C.; Chandramma; Shivaiah, A.; Thirunavukkarasu; Shankar, R.L.; Sannaningaiah, D. Purification and characterization of non-enzymatic glycoprotein (NEGp) from flax seed buffer extract that exhibits anticoagulant and antiplatelet activity. Int. J. Biol. Macromol., 2020, 163, 317-326.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.270] [PMID: 32629053]
[55]
Altaf, F.; Wu, S.; Kasim, V. Role of fibrinolytic enzymes in anti-thrombosis therapy. Front. Mol. Biosci., 2021, 8, 680397.
[http://dx.doi.org/10.3389/fmolb.2021.680397] [PMID: 34124160]
[56]
Barzkar, N.; Jahromi, S.T.; Vianello, F. Marine microbial fibrinolytic enzymes: An overview of source, production, biochemical properties and thrombolytic activity. Mar. Drugs, 2022, 20(1), 46.
[http://dx.doi.org/10.3390/md20010046] [PMID: 35049901]
[57]
Shivaprasad, H.V.; Rajaiah, R.; Frey, B.M.; Frey, F.J.; Vishwanath, B.S. ‘Pergularain e I’ – a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb. Res., 2010, 125(3), e100-e105.
[http://dx.doi.org/10.1016/j.thromres.2009.10.002] [PMID: 19853890]
[58]
Ramachandraiah, C.; Nandish, S.K.M.; Kengaiah, J.; Srinivas, C.; Shivaiah, A.; Martin, S.S.; Shinde, M.; Sannaningaiah, D. Macrotyloma uniflorum seed aqueous extract exhibits anticoagulant, antiplatelet and clot dissolving properties. Asian J. Pharm. Pharmacol., 2019, 5(3), 589-603.
[http://dx.doi.org/10.31024/ajpp.2019.5.3.23]
[59]
Lordan, R.; Tsoupras, A.; Zabetakis, I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev., 2021, 45, 100694.
[http://dx.doi.org/10.1016/j.blre.2020.100694] [PMID: 32340775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy