Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Porphyrinuria in Autism Spectrum Disorder: A Review

In Press, (this is not the final "Version of Record"). Available online 29 November, 2023
Author(s): Geir Bjørklund*, Yuliya Semenova, Afaf El-Ansary and Laila Youssef Al-Ayadhi
Published on: 29 November, 2023

DOI: 10.2174/0109298673259183231117073347

Price: $95

Abstract

Numerous studies demonstrated that the number of children with autism spectrum disorder (ASD) has increased remarkably in the past decade. A portion of ASD etiology, however, is attributed to environmental issues and genetic disorders. We highlighted a scoping review to principally evaluate the current information on mercury exposure in ASD children and to reveal knowledge gaps. Elevated porphyrins concentration in the urinary system related to mercury exposure, such as precoproporphyrin (prcP), coproporphyrin (cP), and pentacarboxyporphyrin (5cxP), was shown in comparison with controls. Moreover, high levels of urinary porphyrins have been elevated in response to heavy metal exposure. The related pattern (increased prcP, cP, and 5cxP) with Hg exposure may be used as biomarkers in the characteristics of ASD symptoms. However, this review highlighted the data gaps because the control groups were not genderand age-matched for ASD children.

[1]
Willsey, H.R.; Willsey, A.J.; Wang, B.; State, M.W. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat. Rev. Neurosci., 2022, 23(6), 323-341.
[http://dx.doi.org/10.1038/s41583-022-00576-7] [PMID: 35440779]
[2]
Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson, C.; Rosenberg; White, T.; Durkin, M.S.; Imm, P.; Nikolaou, L.; Yeargin-Allsopp, M.; Lee, L-C.; Harrington, R.; Lopez, M.; Fitzgerald, R.T.; Hewitt, A.; Pettygrove, S.; Constantino, J.N.; Vehorn, A.; Shenouda, J.; Hall-Lande, J.; Van, K.; Naarden; Braun; Dowling, N.F. Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, united states, 2014. MMWR Surveill. Summ., 2018, 67(6), 1-23.
[http://dx.doi.org/10.15585/mmwr.ss6706a1] [PMID: 29701730]
[3]
Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res., 2022, 15(5), 778-790.
[http://dx.doi.org/10.1002/aur.2696] [PMID: 35238171]
[4]
Indika, N.L.R.; Deutz, N.E.P.; Engelen, M.P.K.J.; Peiris, H.; Wijetunge, S.; Perera, R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis. Biochimie, 2021, 184, 143-157.
[http://dx.doi.org/10.1016/j.biochi.2021.02.018] [PMID: 33675854]
[5]
Bowers, M.A.; Aicher, L.D.; Davis, H.A.; Woods, J.S. Quantitative determination of porphyrins in rat and human urine and evaluation of urinary porphyrin profiles during mercury and lead exposures. J. Lab. Clin. Med., 1992, 120(2), 272-281.
[PMID: 1500825]
[6]
Marks, G.S. Exposure to toxic agents: The heme biosynthetic pathway and hemoproteins as indicator. CRC Crit. Rev. Toxicol., 1985, 15(2), 151-180.
[http://dx.doi.org/10.3109/10408448509029323] [PMID: 3899520]
[7]
Woods, J.S. Altered porphyrin metabolism as a biomarker of mercury exposure and toxicity. Can. J. Physiol. Pharmacol., 1996, 74(2), 210-215.
[http://dx.doi.org/10.1139/y96-010] [PMID: 8723034]
[8]
Bjørklund, G.; Pivina, L.; Dadar, M.; Semenova, Y.; Chirumbolo, S.; Aaseth, J. Mercury exposure, epigenetic alterations and brain tumorigenesis: A possible relationship? Curr. Med. Chem., 2020, 27(39), 6596-6610.
[http://dx.doi.org/10.2174/0929867326666190930150159] [PMID: 31566127]
[9]
Bjørklund, G.; Antonyak, H.; Polishchuk, A.; Semenova, Y.; Lesiv, M.; Lysiuk, R.; Peana, M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch. Toxicol., 2022, 96(12), 3175-3199.
[http://dx.doi.org/10.1007/s00204-022-03366-3] [PMID: 36063174]
[10]
Wang, L.; Angley, M.T.; Gerber, J.P.; Sorich, M.J. A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers, 2011, 16(7), 537-552.
[http://dx.doi.org/10.3109/1354750X.2011.598564] [PMID: 22022826]
[11]
Kern, J.K.; Geier, D.A.; Adams, J.B.; Mehta, J.A.; Grannemann, B.D.; Geier, M.R. Toxicity biomarkers in autism spectrum disorder: A blinded study of urinary porphyrins. Pediatr. Int., 2011, 53(2), 147-153.
[http://dx.doi.org/10.1111/j.1442-200X.2010.03196.x] [PMID: 20626635]
[12]
Hessel, L. Mercury in vaccines. Bull. Acad Natl. Med., 2003, 187(8), 1501-1510.
[http://dx.doi.org/10.1016/S0001-4079(19)33886-5] [PMID: 15146581]
[13]
Kern, J.K.; Hooker, B.S.; King, P.G.; Sykes, L.K.; Geier, M.R.; Geier, D. Thimerosal-containing hepatitis b vaccination and the risk for diagnosed specific delays in development in the united states: A case-control study in the vaccine safety datalink. N. Am. J. Med. Sci., 2014, 6(10), 519-531.
[http://dx.doi.org/10.4103/1947-2714.143284] [PMID: 25489565]
[14]
Encyclopedia of the Nations France. Energy and Power., Available from: http://www.nationsencyclopedia. com/Europe/ France-ENERGY-AND-POWER.html (Accessed on 1 April 2023).
[15]
Park, Y.; Lee, A.; Choi, K.; Kim, H.J.; Lee, J.J.; Choi, G.; Kim, S.; Kim, S.Y.; Cho, G.J.; Suh, E.; Kim, S.K.; Eun, S.H.; Eom, S.; Kim, S.; Kim, G.H.; Moon, H.B.; Kim, S.; Choi, S.; Kim, Y.D.; Kim, J.; Park, J. Exposure to lead and mercury through breastfeeding during the first month of life: A CHECK cohort study. Sci. Total Environ., 2018, 612, 876-883.
[http://dx.doi.org/10.1016/j.scitotenv.2017.08.079] [PMID: 28886539]
[16]
Kusanagi, E.; Takamura, H.; Chen, S.J.; Adachi, M.; Hoshi, N. Children’s hair mercury concentrations and seafood consumption in five regions of japan. Arch. Environ. Contam. Toxicol., 2018, 74(2), 259-272.
[http://dx.doi.org/10.1007/s00244-017-0502-x] [PMID: 29313075]
[17]
Woods, J.S.; Kardish, R.M. Developmental aspects of hepatic heme biosynthetic capability and hematotoxicity—II. Studies on uroporphyrinogen decarboxylase. Biochem. Pharmacol., 1983, 32(1), 73-78.
[http://dx.doi.org/10.1016/0006-2952(83)90655-X] [PMID: 6219675]
[18]
Božek, P.; Hutta, M.; Hrivnáková, B. Rapid analysis of porphyrins at low ng/l and μg/l levels in human urine by a gradient liquid chromatography method using octadecylsilica monolithic columns. J. Chromatogr. A, 2005, 1084(1-2), 24-32.
[http://dx.doi.org/10.1016/j.chroma.2005.06.007] [PMID: 16114232]
[19]
Brewster, M.A. Biomarkers of xenobiotic exposures. Ann. Clin. Lab. Sci., 1988, 18(4), 306-317.
[PMID: 3044268]
[20]
Khaled, E.M.; Meguid, N.A.; Bjørklund, G.; Gouda, A.; Bahary, M.H.; Hashish, A.; Sallam, N.M.; Chirumbolo, S.; El-Bana, M.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab. Brain Dis., 2016, 31(6), 1419-1426.
[http://dx.doi.org/10.1007/s11011-016-9870-6] [PMID: 27406246]
[21]
Chernova, T.; Nicotera, P.; Smith, A.G. Heme deficiency is associated with senescence and causes suppression of N-methyl-D-aspartate receptor subunits expression in primary cortical neurons. Mol. Pharmacol., 2006, 69(3), 697-705.
[http://dx.doi.org/10.1124/mol.105.016675] [PMID: 16306232]
[22]
Sengupta, A.; Hon, T.; Zhang, L. Heme deficiency suppresses the expression of key neuronal genes and causes neuronal cell death. Brain Res. Mol. Brain Res., 2005, 137(1-2), 23-30.
[http://dx.doi.org/10.1016/j.molbrainres.2005.02.007] [PMID: 15950757]
[23]
Litman, D.A.; Correia, M.A. L-tryptophan: A common denominator of biochemical and neurological events of acute hepatic porphyria? Science, 1983, 222(4627), 1031-1033.
[http://dx.doi.org/10.1126/science.6648517] [PMID: 6648517]
[24]
Litman, D.A.; Correia, M.A. Elevated brain tryptophan and enhanced 5-hydroxytryptamine turnover in acute hepatic heme deficiency: clinical implications. J. Pharmacol. Exp. Ther., 1985, 232(2), 337-345.
[PMID: 3968635]
[25]
Anderson, B.M.; Schnetz-Boutaud, N.C.; Bartlett, J.; Wotawa, A.M.; Wright, H.H.; Abramson, R.K.; Cuccaro, M.L.; Gilbert, J.R.; Pericak-Vance, M.A.; Haines, J.L. Examination of association of genes in the serotonin system to autism. Neurogenetics, 2009, 10(3), 209-216.
[http://dx.doi.org/10.1007/s10048-009-0171-7] [PMID: 19184136]
[26]
Bill, B.R.; Geschwind, D.H. Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr. Opin. Genet. Dev., 2009, 19(3), 271-278.
[http://dx.doi.org/10.1016/j.gde.2009.04.004] [PMID: 19477629]
[27]
Chernova, T.; Steinert, J.R.; Guerin, C.J.; Nicotera, P.; Forsythe, I.D.; Smith, A.G. Neurite degeneration induced by heme deficiency mediated via inhibition of NMDA receptor-dependent extracellular signal-regulated kinase 1/2 activation. J. Neurosci., 2007, 27(32), 8475-8485.
[http://dx.doi.org/10.1523/JNEUROSCI.0792-07.2007] [PMID: 17687025]
[28]
Chernova, T.; Steinert, J.R.; Richards, P.; Mistry, R.; Challiss, R.A.J.; Jukes-Jones, R.; Cain, K.; Smith, A.G.; Forsythe, I.D. Early failure of N-methyl-D-aspartate receptors and deficient spine formation induced by reduction of regulatory heme in neurons. Mol. Pharmacol., 2011, 79(5), 844-854.
[http://dx.doi.org/10.1124/mol.110.069831] [PMID: 21325018]
[29]
Wall, D.P.; Esteban, F.J.; DeLuca, T.F.; Huyck, M.; Monaghan, T.; Velez de Mendizabal, N.; Goñí, J.; Kohane, I.S. Comparative analysis of neurological disorders focuses genome-wide search for autism genes. Genomics, 2009, 93(2), 120-129.
[http://dx.doi.org/10.1016/j.ygeno.2008.09.015] [PMID: 18950700]
[30]
Chung, C.; Ha, S.; Kang, H.; Lee, J.; Um, S.M.; Yan, H.; Yoo, Y.E.; Yoo, T.; Jung, H.; Lee, D.; Lee, E.; Lee, S.; Kim, J.; Kim, R.; Kwon, Y.; Kim, W.; Kim, H.; Duffney, L.; Kim, D.; Mah, W.; Won, H.; Mo, S.; Kim, J.Y.; Lim, C.S.; Kaang, B.K.; Boeckers, T.M.; Chung, Y.; Kim, H.; Jiang, Y.; Kim, E. Early correction of N-Methyl-D-Aspartate receptor function improves autistic-like social behaviors in adult shank2−/− Mice. Biol. Psychiatry, 2019, 85(7), 534-543.
[http://dx.doi.org/10.1016/j.biopsych.2018.09.025] [PMID: 30466882]
[31]
Ball, H.J.; Fedelis, F.F.; Bakmiwewa, S.M.; Hunt, N.H.; Yuasa, H.J. Tryptophan-catabolizing enzymes - party of three. Front. Immunol., 2014, 5, 485.
[http://dx.doi.org/10.3389/fimmu.2014.00485] [PMID: 25346733]
[32]
Chugani, D.C.; Muzik, O.; Behen, M.; Rothermel, R.; Janisse, J.J.; Lee, J.; Chugani, H.T. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol., 1999, 45(3), 287-295.
[http://dx.doi.org/10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9] [PMID: 10072042]
[33]
Cook, E.H., Jr; Leventhal, B.L. The serotonin system in autism. Curr. Opin. Pediatr., 1996, 8(4), 348-354.
[http://dx.doi.org/10.1097/00008480-199608000-00008] [PMID: 9053096]
[34]
Leboyer, M.; Philippe, A.; Bouvard, M.; Guilloud-Bataille, M.; Bondoux, D.; Tabuteau, F.; Feingold, J.; Mouren-Simeoni, M.C.; Launay, J.M. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol. Psychiatry, 1999, 45(2), 158-163.
[http://dx.doi.org/10.1016/S0006-3223(97)00532-5] [PMID: 9951562]
[35]
Owley, T.; Leventhal, B.L.; Cook, E.H. Childhood disorders: The autism spectrum disorders. In: Psychiatry, 2nd ed; Tasman, A.; Kay, J.; Lieberman, J.A., Eds.; Wiley, USA: Chichester, 2003; pp. 757-770.
[36]
Geier, D.A.; Geier, M.R. A prospective assessment of porphyrins in autistic disorders: A potential marker for heavy metal exposure. Neurotox. Res., 2006, 10(1), 57-63.
[http://dx.doi.org/10.1007/BF03033334] [PMID: 17000470]
[37]
Kern, J.K.; Geier, D.A.; Sykes, L.; Geier, M. Urinary porphyrins in autism spectrum disorders. In: In Comprehensive Guide to Autism; Springer New York, USA, 2014; pp. 1333-1348.
[http://dx.doi.org/10.1007/978-1-4614-4788-7_72]
[38]
Adams, J.B.; Baral, M.; Geis, E.; Mitchell, J.; Ingram, J.; Hensley, A.; Zappia, I.; Newmark, S.; Gehn, E.; Rubin, R.A.; Mitchell, K.; Bradstreet, J.; El-Dahr, J.M. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J. Toxicol., 2009, 2009, 1-7.
[http://dx.doi.org/10.1155/2009/532640] [PMID: 20107587]
[39]
Woods, J.S. Porphyrin metabolism as indicator of metal exposure and toxicity. In: Toxicology of Metals: Biochemical Aspects; Goyer, R.A.; Cherian, M.G., Eds.; Handbook of Experimental PharmacologySpringer-Verlag: Berlin, Germany, 1995; pp. 15-92.
[http://dx.doi.org/10.1007/978-3-642-79162-8_2]
[40]
Macedoni-Lukšič, M.; Gosar, D.; Bjørklund, G.; Oražem, J.; Kodrič, J.; Lešnik-Musek, P.; Zupančič, M.; France-Štiglic, A.; Sešek-Briški, A.; Neubauer, D.; Osredkar, J. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol. Trace Elem. Res., 2015, 163(1-2), 2-10.
[http://dx.doi.org/10.1007/s12011-014-0121-6] [PMID: 25234471]
[41]
Pingree, S.D.; Simmonds, P.L.; Woods, J.S. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on tissue and urine mercury levels following prolonged methylmercury exposure in rats. Toxicol. Sci., 2001, 61(2), 224-233. a
[http://dx.doi.org/10.1093/toxsci/61.2.224] [PMID: 11353131]
[42]
Pingree, S.D.; Simmonds, P.L.; Rummel, K.T.; Woods, J.S. Quantitative evaluation of urinary porphyrins as a measure of kidney mercury content and mercury body burden during prolonged methylmercury exposure in rats. Toxicol. Sci., 2001, 61(2), 234-240. b
[http://dx.doi.org/10.1093/toxsci/61.2.234] [PMID: 11353132]
[43]
Liu, X.; Liu, X.; Tao, M.; Zhang, W. A highly selective and sensitive recyclable colorimetric Hg 2+ sensor based on the porphyrin-functionalized polyacrylonitrile fiber. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(25), 13254-13262.
[http://dx.doi.org/10.1039/C5TA02491A]
[44]
Zhang, L.; Wang, Z.W.; Xiao, S.J.; Peng, D.; Chen, J.Q.; Liang, R.P.; Jiang, J.; Qiu, J.D. Fluorescent molybdenum oxide quantum dots and Hg II synergistically accelerate cobalt porphyrin formation: A new strategy for trace Hg II analysis. ACS Appl. Nano Mater., 2018, 1(4), 1484-1491.
[http://dx.doi.org/10.1021/acsanm.7b00351]
[45]
Nataf, R.; Skorupka, C.; Amet, L.; Lam, A.; Springbett, A.; Lathe, R. Porphyrinuria in childhood autistic disorder: Implications for environmental toxicity. Toxicol. Appl. Pharmacol., 2006, 214(2), 99-108.
[http://dx.doi.org/10.1016/j.taap.2006.04.008] [PMID: 16782144]
[46]
Geier, D.A.; Geier, M.R. A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. J. Toxicol. Environ. Health A, 2007, 70(20), 1723-1730.
[http://dx.doi.org/10.1080/15287390701457712] [PMID: 17885929]
[47]
Geier, D.A.; Kern, J.K.; Garver, C.R.; Adams, J.B.; Audhya, T.; Nataf, R.; Geier, M.R. Biomarkers of environmental toxicity and susceptibility in autism. J. Neurol. Sci., 2009, 280(1-2), 101-108. a
[http://dx.doi.org/10.1016/j.jns.2008.08.021] [PMID: 18817931]
[48]
Austin, D.W.; Shandley, K. An investigation of porphyrinuria in Australian children with autism. J. Toxicol. Environ. Health A, 2008, 71(20), 1349-1351.
[http://dx.doi.org/10.1080/15287390802271723] [PMID: 18704827]
[49]
Skogheim, T.S.; Weyde, K.V.F.; Engel, S.M.; Aase, H.; Surén, P.; Øie, M.G.; Biele, G.; Reichborn-Kjennerud, T.; Caspersen, I.H.; Hornig, M.; Haug, L.S.; Villanger, G.D. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ. Int., 2021, 152, 106468.
[http://dx.doi.org/10.1016/j.envint.2021.106468] [PMID: 33765546]
[50]
Baj, J.; Flieger, W.; Flieger, M.; Forma, A.; Sitarz, E.; Skórzyńska-Dziduszko, K.; Grochowski, C.; Maciejewski, R.; Karakuła-Juchnowicz, H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci. Biobehav. Rev., 2021, 129, 117-132.
[http://dx.doi.org/10.1016/j.neubiorev.2021.07.029] [PMID: 34339708]
[51]
Zhang, J.; Li, X.; Shen, L.; Khan, N.U.; Zhang, X.; Chen, L.; Zhao, H.; Luo, P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J. Trace Elem. Med. Biol., 2021, 67, 126782.
[http://dx.doi.org/10.1016/j.jtemb.2021.126782] [PMID: 34049201]
[52]
Geier, D.A.; Kern, J.K.; Geier, M.R. A prospective blinded evaluation of urinary porphyrins verses the clinical severity of autism spectrum disorders. J. Toxicol. Environ. Health A, 2009, 72(24), 1585-1591. b
[http://dx.doi.org/10.1080/15287390903232475] [PMID: 20077233]
[53]
Shandley, K.; Austin, D.W.; Bhowmik, J.L. Are urinary porphyrins a valid diagnostic biomarker of autism spectrum disorder? Autism Res., 2014, 7(5), 535-542.
[http://dx.doi.org/10.1002/aur.1385] [PMID: 24756868]
[54]
Harutyunyan, A.A.; Harutyunyan, H.A.; Yenkoyan, K.B. Novel probable glance at inflammatory scenario development in autistic pathology. Front. Psychiatry, 2021, 12, 788779.
[http://dx.doi.org/10.3389/fpsyt.2021.788779] [PMID: 35002805]
[55]
Adams, J.; Howsmon, D.P.; Kruger, U.; Geis, E.; Gehn, E.; Fimbres, V.; Pollard, E.; Mitchell, J.; Ingram, J.; Hellmers, R.; Quig, D.; Hahn, J. Significant association of urinary toxic metals and autism-related symptoms—A nonlinear statistical analysis with cross validation. PLoS One, 2017, 12(1), e0169526.
[http://dx.doi.org/10.1371/journal.pone.0169526] [PMID: 28068407]
[56]
Youn, S.I.; Jin, S.H.; Kim, S.H.; Lim, S. Porphyrinuria in Korean children with autism: Correlation with oxidative stress. J. Toxicol. Environ. Health A, 2010, 73(10), 701-710.
[http://dx.doi.org/10.1080/15287391003614000] [PMID: 20391113]
[57]
Fujiwara, T.; Morisaki, N.; Honda, Y.; Sampei, M.; Tani, Y. Chemicals, nutrition, and autism spectrum disorder: A mini-review. Front. Neurosci., 2016, 20, 174.
[http://dx.doi.org/10.3389/fnins.2016.00174]
[58]
Heyer, N.J.; Echeverria, D.; Woods, J.S. Disordered porphyrin metabolism: A potential biological marker for autism risk assessment. Autism Res., 2012, 5(2), 84-92.
[http://dx.doi.org/10.1002/aur.236] [PMID: 22298513]
[59]
Adrien, J.L.; Barthélémy, C.; Lelord, G.; Muh, J.P. Use of bioclinical markers for the assessment and treatment of children with pervasive developmental disorders. Neuropsychobiology, 1989, 22(3), 117-124.
[http://dx.doi.org/10.1159/000118604] [PMID: 2485858]
[60]
Bailey, W.J.; Ulrich, R. Molecular profiling approaches for identifying novel biomarkers. Expert Opin. Drug Saf., 2004, 3(2), 137-151.
[http://dx.doi.org/10.1517/14740338.3.2.137] [PMID: 15006720]
[61]
Pardo, C.A.; Eberhart, C.G. The neurobiology of autism. Brain Pathol., 2007, 17(4), 434-447.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00102.x] [PMID: 17919129]
[62]
Žigman, T.; Petković Ramadža, D.; Šimić, G.; Barić, I. Inborn errors of metabolism associated with autism spectrum disorders: Approaches to intervention. Front. Neurosci., 2021, 15, 673600.
[http://dx.doi.org/10.3389/fnins.2021.673600] [PMID: 34121999]
[63]
Moravej, H.; Inaloo, S.; Nahid, S.; Mazloumi, S.; Nemati, H.; Moosavian, T.; Nasiri, J.; Ghasemi, F.; Alaei, M.R.; Dalili, S.; Aminzadeh, M.; Katibeh, P.; Amirhakimi, A.; Yazdani, N.; Ilkhanipoor, H.; Afshar, Z.; Hadipour, F.; Hadipour, Z. Inborn errors of metabolism associated with autism among children: A multicenter study from iran. Indian Pediatr., 2023, 60(3), 193-196.
[http://dx.doi.org/10.1007/s13312-023-2833-1] [PMID: 36604934]
[64]
Ahmadabadi, F.; Nemati, H.; Abdolmohammadzadeh, A.; Ahadi, A. Autistic feature as a presentation of inborn errors of metabolism. Iran. J. Child. Neurol., 2020, 14(4), 17-28.
[PMID: 33193781]
[65]
Woods, J.S.; Armel, S.E.; Fulton, D.I.; Allen, J.; Wessels, K.; Simmonds, P.L.; Granpeesheh, D.; Mumper, E.; Bradstreet, J.J.; Echeverria, D.; Heyer, N.J.; Rooney, J.P.K. Urinary porphyrin excretion in neurotypical and autistic children. Environ. Health Perspect., 2010, 118(10), 1450-1457.
[http://dx.doi.org/10.1289/ehp.0901713] [PMID: 20576582]
[66]
Ogun, A.S.; Joy, N.V.; Valentine, M. Biochemistry, heme synthesis. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023. https://www.ncbi.nlm.nih.gov/books/NBK537329/ Internet
[67]
Shiani, A.; Sharafi, K.; Omer, A.K.; Kiani, A.; Karamimatin, B.; Massahi, T.; Ebrahimzadeh, G. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder. Sci. Total Environ., 2023, 857(Pt 2), 159246.
[http://dx.doi.org/10.1016/j.scitotenv.2022.159246] [PMID: 36220469]
[68]
Rossignol, D. The use of urinary porphyrins analysis in autism. Medical Veritas, 2007, 4, 1-6.
[http://dx.doi.org/10.1588/medver.2007.04.00140]
[69]
Dutt, S.; Hamza, I.; Bartnikas, T.B. Molecular mechanisms of iron and heme metabolism. Annu. Rev. Nutr., 2022, 42(1), 311-335.
[http://dx.doi.org/10.1146/annurev-nutr-062320-112625] [PMID: 35508203]
[70]
Geier, D.; Kern, J.; King, P.; Sykes, L.; Geier, M. Hair toxic metal concentrations and autism spectrum disorder severity in young children. Int. J. Environ. Res. Public Health, 2012, 9(12), 4486-4497.
[http://dx.doi.org/10.3390/ijerph9124486] [PMID: 23222182]
[71]
Roy, S.; Gupta, S.K.; Prakash, J.; Habib, G.; Kumar, P. A global perspective of the current state of heavy metal contamination in road dust. Environ. Sci. Pollut. Res. Int., 2022, 29(22), 33230-33251.
[http://dx.doi.org/10.1007/s11356-022-18583-7] [PMID: 35022986]
[72]
Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol., 2014, 13(3), 330-338.
[http://dx.doi.org/10.1016/S1474-4422(13)70278-3] [PMID: 24556010]
[73]
Farías, P.; Hernández-Bonilla, D.; Moreno-Macías, H.; Montes-López, S.; Schnaas, L.; Texcalac-Sangrador, J.L.; Ríos, C.; Riojas-Rodríguez, H. Prenatal co-exposure to manganese, mercury, and lead, and neurodevelopment in children during the first year of life. Int. J. Environ. Res. Public Health, 2022, 19(20), 13020.
[http://dx.doi.org/10.3390/ijerph192013020] [PMID: 36293596]
[74]
Jangid, A.P.; John, P.J.; Yadav, D.; Mishra, S.; Sharma, P. Impact of chronic lead exposure on selected biological markers. Indian J. Clin. Biochem., 2012, 27(1), 83-89.
[http://dx.doi.org/10.1007/s12291-011-0163-x] [PMID: 23277717]
[75]
Sun, J.; Wang, J.; Liu, J. Effects of lead exposure on porphyrin metabolism indicators in smelter workers. Biomed. Environ. Sci., 1992, 5(1), 76-85.
[PMID: 1586470]
[76]
Lefever, S.; Peersman, N.; Meersseman, W.; Cassiman, D.; Vermeersch, P. Development and validation of diagnostic algorithms for the laboratory diagnosis of porphyrias. J. Inherit. Metab. Dis., 2022, 45(6), 1151-1162.
[http://dx.doi.org/10.1002/jimd.12545] [PMID: 36053909]
[77]
James, M.F.M.; Hift, R.J. Porphyrias. Br. J. Anaesth., 2000, 85(1), 143-153.
[http://dx.doi.org/10.1093/bja/85.1.143] [PMID: 10928003]
[78]
Ruha, A.M. Recommendations for provoked challenge urine testing. J. Med. Toxicol., 2013, 9(4), 318-325.
[http://dx.doi.org/10.1007/s13181-013-0350-7] [PMID: 24113861]
[79]
Poli, A.; Schmitt, C.; Moulouel, B.; Mirmiran, A.; Puy, H.; Lefèbvre, T.; Gouya, L. Iron, heme synthesis and erythropoietic porphyrias: A complex interplay. Metabolites, 2021, 11(12), 798.
[http://dx.doi.org/10.3390/metabo11120798] [PMID: 34940556]
[80]
Di Pierro, E.; De Canio, M.; Mercadante, R.; Savino, M.; Granata, F.; Tavazzi, D.; Nicolli, A.M.; Trevisan, A.; Marchini, S.; Fustinoni, S. Laboratory diagnosis of porphyria. Diagnostics, 2021, 11(8), 1343.
[http://dx.doi.org/10.3390/diagnostics11081343] [PMID: 34441276]
[81]
Baraskewich, J.; von Ranson, K.M.; McCrimmon, A.; McMorris, C.A. Feeding and eating problems in children and adolescents with autism: A scoping review. Autism, 2021, 25(6), 1505-1519.
[http://dx.doi.org/10.1177/1362361321995631] [PMID: 33653157]
[82]
Di Pierro, E.; Granata, F. Nutrients and porphyria: An intriguing crosstalk. Int. J. Mol. Sci., 2020, 21(10), 3462.
[http://dx.doi.org/10.3390/ijms21103462] [PMID: 32422947]
[83]
Hirota, T.; King, B.H. Autism spectrum disorder. JAMA, 2023, 329(2), 157-168.
[http://dx.doi.org/10.1001/jama.2022.23661] [PMID: 36625807]
[84]
Plaza-Diaz, J.; Flores-Rojas, K.; Torre-Aguilar, M.J.; Gomez-Fernández, A.R.; Martín-Borreguero, P.; Perez-Navero, J.L.; Gil, A.; Gil-Campos, M. Dietary patterns, eating behavior, and nutrient intakes of spanish preschool children with autism spectrum disorders. Nutrients, 2021, 13(10), 3551.
[http://dx.doi.org/10.3390/nu13103551] [PMID: 34684552]
[85]
Mizejewski, G.J.; Lindau-Shepard, B.; Pass, K.A. Newborn screening for autism: in search of candidate biomarkers. Biomarkers Med., 2013, 7(2), 247-260.
[http://dx.doi.org/10.2217/bmm.12.108] [PMID: 23547820]
[86]
Melman, S.T.; Nimeh, J.W.; Anbar, R.D. Prevalence of elevated blood lead levels in an inner-city pediatric clinic population. Environ. Health Perspect., 1998, 106(10), 655-657.
[http://dx.doi.org/10.1289/ehp.106-1533171] [PMID: 9755141]
[87]
Bełdowska, M.; Falkowska, L. Mercury in marine fish, mammals, seabirds, and human hair in the coastal zone of the Southern Baltic. Water Air Soil Pollut., 2016, 227(2), 52.
[http://dx.doi.org/10.1007/s11270-015-2735-5] [PMID: 26806985]
[88]
Grade, T.; Campbell, P.; Cooley, T.; Kneeland, M.; Leslie, E.; MacDonald, B.; Melotti, J.; Okoniewski, J.; Parmley, E.J.; Perry, C.; Vogel, H.; Pokras, M. Lead poisoning from ingestion of fishing gear: A review. Ambio, 2019, 48(9), 1023-1038.
[http://dx.doi.org/10.1007/s13280-019-01179-w] [PMID: 31020613]
[89]
van Rossum, H.H. Technical quality assurance and quality control for medical laboratories: a review and proposal of a new concept to obtain integrated and validated QA/QC plans. Crit. Rev. Clin. Lab. Sci., 2022, 59(8), 586-600.
[http://dx.doi.org/10.1080/10408363.2022.2088685] [PMID: 35758201]
[90]
Bölte, S.; Girdler, S.; Marschik, P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci., 2019, 76(7), 1275-1297.
[http://dx.doi.org/10.1007/s00018-018-2988-4] [PMID: 30570672]
[91]
James, S.; Stevenson, S.W.; Silove, N.; Williams, K. Chelation for autism spectrum disorder (ASD). Cochrane Libr., 2015, 2016(10), CD010766.
[http://dx.doi.org/10.1002/14651858.CD010766.pub2] [PMID: 26114777]
[92]
Flora, S.J.S.; Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health, 2010, 7(7), 2745-2788.
[http://dx.doi.org/10.3390/ijerph7072745] [PMID: 20717537]
[93]
Blaucok-Busch, E.; Amin, O.R.; Dessoki, H.H.; Rabah, T. Efficacy of DMSA therapy in a sample of arab children with autistic spectrum disorder. Maedica , 2012, 7(3), 214-221.
[PMID: 23400264]
[94]
Geier, D.A.; Geier, M.R. A clinical trial of combined anti-androgen and anti-heavy metal therapy in autistic disorders. Neuroendocrinol. Lett., 2006, 27(6), 833-838.
[PMID: 17187010]
[95]
FDA Warns Seller of Pills Used to Treat Autism. Available from: https://www.consumerlab.com/recalls/10204/fda-warns-seller-of-pills-used-to-treat-autism/ (Accessed on 30 August 2023).
[96]
Beauchamp, R.A.; Willis, T.M.; Betz, T.G.; Villanacci, J.; Leiker, R.D.; Rozin, L. Deaths associated with hypocalcemia from chelation therapy – Texas, Pennsylvania, and Oregon, 2003–2005. JAMA, 2006, 295(18), 2131-2133.
[http://dx.doi.org/10.1001/jama.295.18.2131]
[97]
Mitka, M. Chelation therapy trials halted. JAMA, 2008, 300(19), 2236.
[http://dx.doi.org/10.1001/jama.2008.607] [PMID: 19017902]
[98]
Davis, T.N.; O’Reilly, M.; Kang, S.; Lang, R.; Rispoli, M.; Sigafoos, J.; Lancioni, G.; Copeland, D.; Attai, S.; Mulloy, A. Chelation treatment for autism spectrum disorders: A systematic review. Res. Autism Spectr. Disord., 2013, 7(1), 49-55.
[http://dx.doi.org/10.1016/j.rasd.2012.06.005]
[99]
Adams, J.B.; Baral, M.; Geis, E.; Mitchell, J.; Ingram, J.; Hensley, A.; Zappia, I.; Newmark, S.; Gehn, E.; Rubin, R.A.; Mitchell, K.; Bradstreet, J.; El-Dahr, J. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part A - Medical results. BMC Clin. Pharmacol., 2009, 9(1), 16.
[http://dx.doi.org/10.1186/1472-6904-9-16]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy