Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Aberrant Expressions of PSMD14 in Tumor Tissue are the Potential Prognostic Biomarkers for Hepatocellular Carcinoma after Curative Resection

Author(s): Yi-Mei Xiong, Fang Zhou, Jia-Wen Zhou, Fei Liu, Si-Qi Zhou, Bo Li, Zhong-Jian Liu* and Yang Qin*

Volume 24, Issue 6, 2023

Published on: 28 November, 2023

Page: [368 - 384] Pages: 17

DOI: 10.2174/0113892029277262231108105441

Price: $65

Abstract

Introduction: Hepatocellular carcinoma (HCC) has a high mortality rate, with curative resection being the primary treatment. However, HCC patients have a large possibility of recurrence within 5 years after curative resection.

Method: Thus, identifying biomarkers to predict recurrence is crucial. In our study, we analyzed data from CCLE, GEO, and TCGA, identifying eight oncogenes associated with HCC. Subsequently, the expression of 8 genes was tested in 5 cases of tumor tissues and the adjacent non-tumor tissues. Then ATP6AP1, PSMD14 and HSP90AB1 were selected to verify the expression in 63 cases of tumor tissues and the adjacent non-tumor tissues. The results showed that ATP6AP1, PSMD14, HSP90AB1 were generally highly expressed in tumor tissues. A five-year follow-up of the 63 clinical cases, combined with Kaplan-Meier Plotter's relapse-free survival (RFS) analysis, found a significant correlation between PSMD14 expression and recurrence in HCC patients. Subsequently, we analyzed the PSMD14 mutations and found that the PSMD14 gene mutations can lead to a shorter disease-free survival time for HCC patients.

Results: The results of enrichment analysis indicated that the differentially expressed genes related to PSMD14 are mainly enriched in the signal release pathway.

Conclusion: In conclusion, our research showed that PSMD14 might be related to recurrence in HCC patients, and the expression of PSMD14 in tumor tissue might be a potential prognostic biomarker after tumor resection in HCC patients.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[2]
Villanueva, A.; Llovet, J.M. Mutational landscape of HCC—the end of the beginning. Nat. Rev. Clin. Oncol., 2014, 11(2), 73-74.
[http://dx.doi.org/10.1038/nrclinonc.2013.243] [PMID: 24395088]
[3]
Colecchia, A.; Schiumerini, R.; Cucchetti, A.; Cescon, M.; Taddia, M.; Marasco, G.; Festi, D. Prognostic factors for hepatocellular carcinoma recurrence. World J. Gastroenterol., 2014, 20(20), 5935-5950.
[http://dx.doi.org/10.3748/wjg.v20.i20.5935] [PMID: 24876717]
[4]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[5]
Eaton, A.F.; Merkulova, M.; Brown, D. The H + -ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am. J. Physiol. Cell Physiol., 2021, 320(3), C392-C414.
[http://dx.doi.org/10.1152/ajpcell.00442.2020] [PMID: 33326313]
[6]
Guida, M.C.; Hermle, T.; Graham, L.A.; Hauser, V.; Ryan, M.; Stevens, T.H.; Simons, M. ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Mol. Biol. Cell, 2018, 29(18), 2156-2164.
[http://dx.doi.org/10.1091/mbc.E18-04-0234] [PMID: 29995586]
[7]
Abbas, Y.M.; Wu, D.; Bueler, S.A.; Robinson, C.V.; Rubinstein, J.L. Structure of V-ATPase from the mammalian brain. Science, 2020, 367(6483), 1240-1246.
[http://dx.doi.org/10.1126/science.aaz2924] [PMID: 32165585]
[8]
Wang, L.; Wu, D.; Robinson, C.V.; Wu, H.; Fu, T.M. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol. Cell, 2020, 80(3), 501-511.e3.
[http://dx.doi.org/10.1016/j.molcel.2020.09.029] [PMID: 33065002]
[9]
Yang, Y.L.; Cao, L.B.; He, W.R.; Zhong, L.; Guo, Y.; Yang, Q.; Shu, H.B.; Hu, M.M. Endocytosis triggers V-ATPase-SYK–mediated priming of cGAS activation and innate immune response. Proc. Natl. Acad. Sci. USA, 2022, 119(43), e2207280119.
[http://dx.doi.org/10.1073/pnas.2207280119] [PMID: 36252040]
[10]
Ma, T.; Tian, X.; Zhang, B.; Li, M.; Wang, Y.; Yang, C.; Wu, J.; Wei, X.; Qu, Q.; Yu, Y.; Long, S.; Feng, J.W.; Li, C.; Zhang, C.; Xie, C.; Wu, Y.; Xu, Z.; Chen, J.; Yu, Y.; Huang, X.; He, Y.; Yao, L.; Zhang, L.; Zhu, M.; Wang, W.; Wang, Z.C.; Zhang, M.; Bao, Y.; Jia, W.; Lin, S.Y.; Ye, Z.; Piao, H.L.; Deng, X.; Zhang, C.S.; Lin, S.C. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature, 2022, 603(7899), 159-165.
[http://dx.doi.org/10.1038/s41586-022-04431-8] [PMID: 35197629]
[11]
Liu, C.; Zhang, S.; Xue, J.; Zhang, H.; Yin, J. Evaluation of PEN2-ATP6AP1 axis as an antiparasitic target for metformin based on phylogeny analysis and molecular docking. Mol. Biochem. Parasitol., 2023, 255, 111580.
[http://dx.doi.org/10.1016/j.molbiopara.2023.111580] [PMID: 37473813]
[12]
Sugawara, K.; Ogawa, W. New mechanism of metformin action mediated by lysosomal presenilin enhancer 2. J. Diabetes Investig., 2023, 14(1), 12-14.
[http://dx.doi.org/10.1111/jdi.13925] [PMID: 36308027]
[13]
Zhang, J.; Mo, L.; Huang, H.; Xu, J.; Fan, Y.; Li, W.; Wang, H.; Zhou, C.; Fang, H.; He, W.; Chen, Z.; Liu, Y. Loureirin B downregulates osteoclast differentiation of bone marrow macrophages by targeting the MAPK signaling pathway. Sci. Rep., 2022, 12(1), 14382.
[http://dx.doi.org/10.1038/s41598-022-18287-5] [PMID: 35999378]
[14]
Sun, X.; Liu, Y.; Huang, Z.; Xu, W.; Hu, W.; Yi, L.; Liu, Z.; Chan, H.; Zeng, J.; Liu, X.; Chen, H.; Yu, J.; Chan, F.K.L.; Ng, S.C.; Wong, S.H.; Wang, M.H.; Gin, T.; Joynt, G.M.; Hui, D.S.C.; Zou, X.; Shu, Y.; Cheng, C.H.K.; Fang, S.; Luo, H.; Lu, J.; Chan, M.T.V.; Zhang, L.; Wu, W.K.K. SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ., 2022, 29(6), 1240-1254.
[http://dx.doi.org/10.1038/s41418-021-00916-7] [PMID: 34997207]
[15]
Esmail, S.; Kartner, N.; Yao, Y.; Kim, J.W.; Reithmeier, R.A.F.; Manolson, M.F. Molecular mechanisms of cutis laxa– and distal renal tubular acidosis–causing mutations in V-ATPase a subunits, ATP6V0A2 and ATP6V0A4. J. Biol. Chem., 2018, 293(8), 2787-2800.
[http://dx.doi.org/10.1074/jbc.M117.818872] [PMID: 29311258]
[16]
Jansen, E.J.R.; Timal, S.; Ryan, M.; Ashikov, A.; van Scherpenzeel, M.; Graham, L.A.; Mandel, H.; Hoischen, A.; Iancu, T.C.; Raymond, K.; Steenbergen, G.; Gilissen, C.; Huijben, K.; van Bakel, N.H.M.; Maeda, Y.; Rodenburg, R.J.; Adamowicz, M.; Crushell, E.; Koenen, H.; Adams, D.; Vodopiutz, J.; Greber-Platzer, S.; Müller, T.; Dueckers, G.; Morava, E.; Sykut-Cegielska, J.; Martens, G.J.M.; Wevers, R.A.; Niehues, T.; Huynen, M.A.; Veltman, J.A.; Stevens, T.H.; Lefeber, D.J. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat. Commun., 2016, 7(1), 11600.
[http://dx.doi.org/10.1038/ncomms11600] [PMID: 27231034]
[17]
Wang, F.; Yang, Y.; Klionsky, D.J.; Malek, S.N. Mutations in V-ATPase in follicular lymphoma activate autophagic flux creating a targetable dependency. Autophagy, 2023, 19(2), 716-719.
[http://dx.doi.org/10.1080/15548627.2022.2071382] [PMID: 35482846]
[18]
Pareja, F.; Brandes, A.H.; Basili, T.; Selenica, P.; Geyer, F.C.; Fan, D.; Da Cruz Paula, A.; Kumar, R.; Brown, D.N.; Gularte-Mérida, R.; Alemar, B.; Bi, R.; Lim, R.S.; de Bruijn, I.; Fujisawa, S.; Gardner, R.; Feng, E.; Li, A.; da Silva, E.M.; Lozada, J.R.; Blecua, P.; Cohen-Gould, L.; Jungbluth, A.A.; Rakha, E.A.; Ellis, I.O.; Edelweiss, M.I.A.; Palazzo, J.; Norton, L.; Hollmann, T.; Edelweiss, M.; Rubin, B.P.; Weigelt, B.; Reis-Filho, J.S. Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors. Nat. Commun., 2018, 9(1), 3533.
[http://dx.doi.org/10.1038/s41467-018-05886-y] [PMID: 30166553]
[19]
Shin, J.Y.; Muniyappan, S.; Tran, N.N.; Park, H.; Lee, S.B.; Lee, B.H. Deubiquitination reactions on the proteasome for proteasome versatility. Int. J. Mol. Sci., 2020, 21(15), 5312.
[http://dx.doi.org/10.3390/ijms21155312] [PMID: 32726943]
[20]
Spataro, V.; Buetti-Dinh, A. POH1/Rpn11/PSMD14: A journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br. J. Cancer, 2022, 127(5), 788-799.
[http://dx.doi.org/10.1038/s41416-022-01829-z] [PMID: 35501388]
[21]
Byrne, A.; McLaren, R.P.; Mason, P.; Chai, L.; Dufault, M.R.; Huang, Y.; Liang, B.; Gans, J.D.; Zhang, M.; Carter, K.; Gladysheva, T.B.; Teicher, B.A.; Biemann, H.P.N.; Booker, M.; Goldberg, M.A.; Klinger, K.W.; Lillie, J.; Madden, S.L.; Jiang, Y. Knockdown of human deubiquitinase PSMD14 induces cell cycle arrest and senescence. Exp. Cell Res., 2010, 316(2), 258-271.
[http://dx.doi.org/10.1016/j.yexcr.2009.08.018] [PMID: 19732767]
[22]
Buckley, S.M.; Aranda-Orgilles, B.; Strikoudis, A.; Apostolou, E.; Loizou, E.; Moran-Crusio, K.; Farnsworth, C.L.; Koller, A.A.; Dasgupta, R.; Silva, J.C.; Stadtfeld, M.; Hochedlinger, K.; Chen, E.I.; Aifantis, I. Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell, 2012, 11(6), 783-798.
[http://dx.doi.org/10.1016/j.stem.2012.09.011] [PMID: 23103054]
[23]
Zhang, L.; Xu, H.; Ma, C.; Zhang, J.; Zhao, Y.; Yang, X.; Wang, S.; Li, D. Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. J. Cancer, 2020, 11(10), 2962-2971.
[http://dx.doi.org/10.7150/jca.39539] [PMID: 32226511]
[24]
Lv, J.; Zhang, S.; Wu, H.; Lu, J.; Lu, Y.; Wang, F.; Zhao, W.; Zhan, P.; Lu, J.; Fang, Q.; Xie, C.; Yin, Z. Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2. Cancer Lett., 2020, 469, 22-34.
[http://dx.doi.org/10.1016/j.canlet.2019.10.025] [PMID: 31634528]
[25]
Li, J.; Li, Y.; Xu, F.; Sun, B.; Yang, L.; Wang, H. Deubiquitinating enzyme PSMD14 facilitates gastric carcinogenesis through stabilizing PTBP1. Exp. Cell Res., 2022, 415(2), 113148.
[http://dx.doi.org/10.1016/j.yexcr.2022.113148] [PMID: 35405117]
[26]
Seo, D.; Jung, S.M.; Park, J.S.; Lee, J.; Ha, J.; Kim, M.; Park, S.H. The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway. EBioMedicine, 2019, 49, 55-71.
[http://dx.doi.org/10.1016/j.ebiom.2019.10.039] [PMID: 31685442]
[27]
Jing, C.; Li, X.; Zhou, M.; Zhang, S.; Lai, Q.; Liu, D.; Ye, B.; Li, L.; Wu, Y.; Li, H.; Yue, K.; Chen, P.; Yao, X.; Wu, Y.; Duan, Y.; Wang, X. The PSMD14 inhibitor thiolutin as a novel therapeutic approach for esophageal squamous cell carcinoma through facilitating SNAIL degradation. Theranostics, 2021, 11(12), 5847-5862.
[http://dx.doi.org/10.7150/thno.46109] [PMID: 33897885]
[28]
Lee, H.J.; Lee, D.M.; Seo, M.J.; Kang, H.C.; Kwon, S.K.; Choi, K.S. PSMD14 targeting triggers paraptosis in breast cancer cells by inducing proteasome inhibition and Ca2+ imbalance. Int. J. Mol. Sci., 2022, 23(5), 2648.
[http://dx.doi.org/10.3390/ijms23052648] [PMID: 35269789]
[29]
Sun, T.; Liu, Z.; Bi, F.; Yang, Q. Deubiquitinase PSMD14 promotes ovarian cancer progression by decreasing enzymatic activity of PKM2. Mol. Oncol., 2021, 15(12), 3639-3658.
[http://dx.doi.org/10.1002/1878-0261.13076] [PMID: 34382324]
[30]
Yu, W.; Li, J.; Wang, Q.; Wang, B.; Zhang, L.; Liu, Y.; Tang, M.; Xu, G.; Yang, Z.; Wang, X.; Zhang, J.; Liu, Y.; Shi, G. Targeting POH1 inhibits prostate cancer cell growth and enhances the suppressive efficacy of androgen deprivation and docetaxel. Prostate, 2019, 79(11), 1304-1315.
[http://dx.doi.org/10.1002/pros.23838] [PMID: 31212367]
[31]
Li, J.; Yakushi, T.; Parlati, F.; Mackinnon, A.L.; Perez, C.; Ma, Y.; Carter, K.P.; Colayco, S.; Magnuson, G.; Brown, B.; Nguyen, K.; Vasile, S.; Suyama, E.; Smith, L.H.; Sergienko, E.; Pinkerton, A.B.; Chung, T.D.Y.; Palmer, A.E.; Pass, I.; Hess, S.; Cohen, S.M.; Deshaies, R.J. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol., 2017, 13(5), 486-493.
[http://dx.doi.org/10.1038/nchembio.2326] [PMID: 28244987]
[32]
Gong, Y.; Wei, Z.R. Identification of PSMD14 as a potential novel prognosis biomarker and therapeutic target for osteosarcoma. Cancer Rep., 2022, 5(7), e1522.
[http://dx.doi.org/10.1002/cnr2.1522] [PMID: 34383385]
[33]
Jing, C.; Duan, Y.; Zhou, M.; Yue, K.; Zhuo, S.; Li, X.; Liu, D.; Ye, B.; Lai, Q.; Li, L.; Yao, X.; Wei, H.; Zhang, W.; Wu, Y.; Wang, X. Blockade of deubiquitinating enzyme PSMD14 overcomes chemoresistance in head and neck squamous cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness. Theranostics, 2021, 11(6), 2655-2669.
[http://dx.doi.org/10.7150/thno.48375] [PMID: 33456565]
[34]
Yokoyama, S.; Iwakami, Y.; Hang, Z.; Kin, R.; Zhou, Y.; Yasuta, Y.; Takahashi, A.; Hayakawa, Y.; Sakurai, H. Targeting PSMD14 inhibits melanoma growth through SMAD3 stabilization. Sci. Rep., 2020, 10(1), 19214.
[http://dx.doi.org/10.1038/s41598-020-76373-y] [PMID: 33154524]
[35]
Nabhan, J.F.; Ribeiro, P. The 19 S proteasomal subunit POH1 contributes to the regulation of c-Jun ubiquitination, stability, and subcellular localization. J. Biol. Chem., 2006, 281(23), 16099-16107.
[http://dx.doi.org/10.1074/jbc.M512086200] [PMID: 16569633]
[36]
Haase, M.; Fitze, G. HSP90AB1: Helping the good and the bad. Gene, 2016, 575(2), 171-186.
[http://dx.doi.org/10.1016/j.gene.2015.08.063] [PMID: 26358502]
[37]
Klyosova, E.; Azarova, I.; Buikin, S.; Polonikov, A. Differentially expressed genes regulating glutathione metabolism, protein-folding, and unfolded protein response in pancreatic β-cells in type 2 diabetes mellitus. Int. J. Mol. Sci., 2023, 24(15), 12059.
[http://dx.doi.org/10.3390/ijms241512059] [PMID: 37569434]
[38]
Heck, A.L.; Mishra, S.; Prenzel, T.; Feulner, L.; Achhammer, E.; Särchen, V.; Blagg, B.S.J.; Schneider-Brachert, W.; Schütze, S.; Fritsch, J. Selective HSP90β inhibition results in TNF and TRAIL mediated HIF1α degradation. Immunobiology, 2021, 226(2), 152070.
[http://dx.doi.org/10.1016/j.imbio.2021.152070] [PMID: 33639524]
[39]
Zhang, S.; Fan, S.; Wang, Z.; Hou, W.; Liu, T.; Yoshida, S.; Yang, S.; Zheng, H.; Shen, Z. Capecitabine Regulates HSP90AB1 Expression and Induces Apoptosis via Akt/SMARCC1/AP-1/ROS Axis in T Cells, Oxid. Med. Cell. Longev., 2022, 1012509.
[http://dx.doi.org/10.1155/2022/1012509]
[40]
Zhang, W.W.; Jia, P.; Lu, X.B.; Chen, X.Q.; Weng, J.H.; Jia, K.T.; Yi, M.S. Capsid protein from red-spotted grouper nervous necrosis virus induces incomplete autophagy by inactivating the HSP90ab1-AKT-MTOR pathway. Zool. Res., 2022, 43(1), 98-110.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2021.249] [PMID: 34904422]
[41]
Zhao, Y.; Chen, R.; Xiao, D.; Zhang, L.; Song, D.; Wen, Y.; Wu, R.; Zhao, Q.; Du, S.; Wen, X.; Cao, S.; Huang, X. A comparative transcriptomic analysis reveals that HSP90AB1 is involved in the immune and inflammatory responses to porcine deltacoronavirus infection. Int. J. Mol. Sci., 2022, 23(6), 3280.
[http://dx.doi.org/10.3390/ijms23063280] [PMID: 35328701]
[42]
Lai, Y.; Lin, P.; Lin, F.; Chen, M.; Lin, C.; Lin, X.; Wu, L.; Zheng, M.; Chen, J. Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning. Front. Immunol., 2022, 13, 1046410.
[http://dx.doi.org/10.3389/fimmu.2022.1046410] [PMID: 36569892]
[43]
Li, J.; Niu, J.; Min, W.; Ai, J.; Lin, X.; Miao, J.; Zhou, S.; Liang, Y.; Chen, S.; Ren, Q.; Shen, K.; Wu, Q.; Li, X.; Shen, W.; Hou, F.F.; Liu, Y.; Yang, P.; Zhou, L. B7-1 mediates podocyte injury and glomerulosclerosis through communication with Hsp90ab1-LRP5-β-catenin pathway. Cell Death Differ., 2022, 29(12), 2399-2416.
[http://dx.doi.org/10.1038/s41418-022-01026-8] [PMID: 35710882]
[44]
Yi, E.; Lin, B.; Zhang, Y.; Wang, X.; Zhang, J.; Liu, Y.; Jin, J.; Hong, W.; Lin, Z.; Cao, W.; Mei, X.; Bai, G.; Li, B.; Zhou, Y.; Ran, P. Smad3‐mediated lncRNA HSALR1 enhances the non‐classic signalling pathway of TGF‐β1 in human bronchial fibroblasts by binding to HSP90AB1. Clin. Transl. Med., 2023, 13(6), e1292.
[http://dx.doi.org/10.1002/ctm2.1292] [PMID: 37317677]
[45]
Zhang, H.; Yin, X.; Zhang, X.; Zhou, M.; Xu, W.; Wei, Z.; Song, C.; Han, S.; Han, W. HSP90AB1 promotes the proliferation, migration, and glycolysis of head and neck squamous cell carcinoma. Technol. Cancer Res. Treat., 2022, 21
[http://dx.doi.org/10.1177/15330338221118202] [PMID: 35929142]
[46]
Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607.
[http://dx.doi.org/10.1038/nature11003] [PMID: 22460905]
[47]
Barrett, T.; Edgar, R. Mining microarray data at NCBI’s Gene Expression Omnibus (GEO)* Methods Mol. Biol. Clifton NJ. , 2006, 338, 175-190.
[http://dx.doi.org/10.1385/1-59745-097-9:175]
[48]
Clough, E.; Barrett, T. The Gene Expression Omnibus Database Methods Mol. Biol. Clifton NJ, 2016, 1418 , 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5]
[49]
Lee, J.S. Exploring cancer genomic data from the cancer genome atlas project. BMB Rep., 2016, 49(11), 607-611.
[http://dx.doi.org/10.5483/BMBRep.2016.49.11.145] [PMID: 27530686]
[50]
Liao, Y-L.; Sun, Y-M.; Chau, G-Y.; Chau, Y-P.; Lai, T-C.; Wang, J-L.; Horng, J-T.; Hsiao, M.; Tsou, A-P. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene, 2008, 27(42), 5578-5589.
[http://dx.doi.org/10.1038/onc.2008.168] [PMID: 18504433]
[51]
Shimada, S.; Mogushi, K.; Akiyama, Y.; Furuyama, T.; Watanabe, S.; Ogura, T.; Ogawa, K.; Ono, H.; Mitsunori, Y.; Ban, D.; Kudo, A.; Arii, S.; Tanabe, M.; Wands, J.R.; Tanaka, S. Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine, 2019, 40, 457-470.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.058] [PMID: 30598371]
[52]
Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; Hornik, K.; Hothorn, T.; Huber, W.; Iacus, S.; Irizarry, R.; Leisch, F.; Li, C.; Maechler, M.; Rossini, A.J.; Sawitzki, G.; Smith, C.; Smyth, G.; Tierney, L.; Yang, J.Y.H.; Zhang, J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol., 2004, 5(10), R80.
[http://dx.doi.org/10.1186/gb-2004-5-10-r80] [PMID: 15461798]
[53]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[54]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[55]
Ben-David, U.; Siranosian, B.; Ha, G.; Tang, H.; Oren, Y.; Hinohara, K.; Strathdee, C.A.; Dempster, J.; Lyons, N.J.; Burns, R.; Nag, A.; Kugener, G.; Cimini, B.; Tsvetkov, P.; Maruvka, Y.E.; O’Rourke, R.; Garrity, A.; Tubelli, A.A.; Bandopadhayay, P.; Tsherniak, A.; Vazquez, F.; Wong, B.; Birger, C.; Ghandi, M.; Thorner, A.R.; Bittker, J.A.; Meyerson, M.; Getz, G.; Beroukhim, R.; Golub, T.R. Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 2018, 560(7718), 325-330.
[http://dx.doi.org/10.1038/s41586-018-0409-3] [PMID: 30089904]
[56]
Zhu, R.; Liu, Y.; Zhou, H.; Li, L.; Li, Y.; Ding, F.; Cao, X.; Liu, Z. Deubiquitinating enzyme PSMD14 promotes tumor metastasis through stabilizing SNAIL in human esophageal squamous cell carcinoma. Cancer Lett., 2018, 418, 125-134.
[http://dx.doi.org/10.1016/j.canlet.2018.01.025] [PMID: 29331416]
[57]
Zhao, Z.; Xu, H.; Wei, Y.; Sun, L.; Song, Y. Deubiquitylase PSMD14 inhibits autophagy to promote ovarian cancer progression via stabilization of LRPPRC Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869, 166594.
[http://dx.doi.org/10.1016/j.bbadis.2022.166594]
[58]
Sekimizu, M.; Yoshida, A.; Mitani, S.; Asano, N.; Hirata, M.; Kubo, T.; Yamazaki, F.; Sakamoto, H.; Kato, M.; Makise, N.; Mori, T.; Yamazaki, N.; Sekine, S.; Oda, I.; Watanabe, S.; Hiraga, H.; Yonemoto, T.; Kawamoto, T.; Naka, N.; Funauchi, Y.; Nishida, Y.; Honoki, K.; Kawano, H.; Tsuchiya, H.; Kunisada, T.; Matsuda, K.; Inagaki, K.; Kawai, A.; Ichikawa, H. Frequent mutations of genes encoding vacuolar H + ‐ATPase components in granular cell tumors. Genes Chromosomes Cancer, 2019, 58(6), 373-380.
[http://dx.doi.org/10.1002/gcc.22727] [PMID: 30597645]
[59]
Tian, Y.; Gao, M.; Huang, L.; Zhou, H.; Wang, J. ATP6AP1 is a potential prognostic biomarker and is associated with iron metabolism in breast cancer. Front. Genet., 2022, 13, 958290.
[http://dx.doi.org/10.3389/fgene.2022.958290] [PMID: 36147483]
[60]
Wang, J.; Liu, Y.; Zhang, S. Prognostic and immunological value of ATP6AP1 in breast cancer: Implications for SARS-CoV-2. Aging (Albany NY), 2021, 13(13), 16904-16921.
[http://dx.doi.org/10.18632/aging.203229] [PMID: 34228637]
[61]
Wang, M.; Feng, L.; Li, P.; Han, N.; Gao, Y.; Xiao, T. [Hsp90AB1 protein is overexpressed in non-small cell lung cancer tissues and associated with poor prognosis in lung adenocarcinoma patients]. Zhongguo Fei Ai Za Zhi, 2016, 19(2), 64-69.
[http://dx.doi.org/10.3779/j.issn.1009-3419.2016.02.02] [PMID: 26903158]
[62]
Boussadia, Z.; Lamberti, J.; Mattei, F.; Pizzi, E.; Puglisi, R.; Zanetti, C.; Pasquini, L.; Fratini, F.; Fantozzi, L.; Felicetti, F.; Fecchi, K.; Raggi, C.; Sanchez, M.; D’Atri, S.; Carè, A.; Sargiacomo, M.; Parolini, I. Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules. J. Exp. Clin. Cancer Res., 2018, 37(1), 245.
[http://dx.doi.org/10.1186/s13046-018-0915-z] [PMID: 30290833]
[63]
Huang, K.; Li, S.; Mertins, P.; Cao, S.; Gunawardena, H.P.; Ruggles, K.V.; Mani, D.R.; Clauser, K.R.; Tanioka, M.; Usary, J.; Kavuri, S.M.; Xie, L.; Yoon, C.; Qiao, J.W.; Wrobel, J.; Wyczalkowski, M.A.; Erdmann-Gilmore, P.; Snider, J.E.; Hoog, J.; Singh, P.; Niu, B.; Guo, Z.; Sun, S.Q.; Sanati, S.; Kawaler, E.; Wang, X.; Scott, A.; Ye, K.; McLellan, M.D.; Wendl, M.C.; Malovannaya, A.; Held, J.M.; Gillette, M.A.; Fenyö, D.; Kinsinger, C.R.; Mesri, M.; Rodriguez, H.; Davies, S.R.; Perou, C.M.; Ma, C.; Reid Townsend, R.; Chen, X.; Carr, S.A.; Ellis, M.J.; Ding, L. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat. Commun., 2017, 8(1), 14864.
[http://dx.doi.org/10.1038/ncomms14864]
[64]
Wang, H.; Deng, G.; Ai, M.; Xu, Z.; Mou, T.; Yu, J.; Liu, H.; Wang, S.; Li, G. Hsp90ab1 stabilizes LRP5 to promote epithelial–mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene, 2019, 38(9), 1489-1507.
[http://dx.doi.org/10.1038/s41388-018-0532-5] [PMID: 30305727]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy