Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Mini-Review Article

Synthesis of Biginelli Compounds using Microwave-Assisted Methods

Author(s): Pedro Henrique Costa dos Santos, Virgínia Luíza Guimarães Souza, Augusto César Carvalho Santos, Henrique Esteves, Luzia Valentina Modolo and Ângelo de Fátima*

Volume 10, Issue 2, 2023

Published on: 27 November, 2023

Page: [70 - 87] Pages: 18

DOI: 10.2174/0122133356274136231116122126

Price: $65

Abstract

Biginelli adducts, also known as dihydropyrimidin-2(1H)-ones/-thiones (DHMPs), exhibit versatile biological activities. Among them, monastrol has gained significant popularity as an inhibitor of kinesin-5 (Eg5), a motor protein crucial for spindle bipolarity. The inhibitory effect of monastrol on Eg5 accounts for its promising anticancer properties, along with its well-established role as an anti-inflammatory agent and calcium channel inhibitor. Since its first report in 1893, the Biginelli reaction has been extensively studied from various angles, including the scope of reagents used, the incorporation or omission of catalysts and solvents, and the application of innovative techniques like mechanochemical and ultrasonic reactors. Among these methods, microwave irradiation (MWI) has shown remarkable promise, aligning with the principles of green chemistry by offering solvent-free conditions, eco-friendly catalysts, and accelerated reaction times, ultimately leading to higher yields with a reduced environmental impact. In this mini-review, we shed light on the literature surrounding the synthesis of Biginelli adducts using MWI and highlight how this heating method can significantly enhance the preparation of this important class of bioactive compounds. By exploring the benefits of MWI, we aim to contribute to the advancement of greener and more efficient synthetic routes for bioactive substances.

Graphical Abstract

[1]
Biginelli, C.P. Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz. Chim. Ital., 1893, 23(1), 360-413.
[2]
de Fátima, Â.; Braga, T.C.; Neto, L.S.; Terra, B.S.; Oliveira, B.G.F.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373.
[http://dx.doi.org/10.1016/j.jare.2014.10.006] [PMID: 26257934]
[3]
de Fátima, Â.; Terra, B.S.; da Silva Neto, L.; Braga, T.C. Organocatalyzed Biginelli reactions: A greener chemical approach for the synthesis of biologically active 3,4-dihydropyrimidin-2(1H)-ones/-thiones. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, 2015, pp. 317-337.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00012-8]
[4]
Russowsky, D.; Canto, R.F.S.; Sanches, S.A.A.; D’Oca, M.G.M.; de Fátima, Â.; Pilli, R.A.; Kohn, L.K.; Antônio, M.A.; de Carvalho, J.E. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol, oxo-monastrol and oxygenated analogues. Bioorg. Chem., 2006, 34(4), 173-182.
[http://dx.doi.org/10.1016/j.bioorg.2006.04.003] [PMID: 16765411]
[5]
(a) Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155];
(b) Wei, D.; Shi, X.; Qu, R.; Junge, K.; Junge, H.; Beller, M. Toward a hydrogen economy: Development of heterogeneous catalysts for chemical hydrogen storage and release reactions. ACS Energy Lett., 2022, 7(10), 3734-3752.
[http://dx.doi.org/10.1021/acsenergylett.2c01850];
(c) Quilty, C.D.; Wu, D.; Li, W.; Bock, D.C.; Wang, L.; Housel, L.M.; Abraham, A.; Takeuchi, K.J.; Marschilok, A.C.; Takeuchi, E.S. Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem. Rev., 2023, 123(4), 1327-1363.
[http://dx.doi.org/10.1021/acs.chemrev.2c00214] [PMID: 36757020];
(d) Wang, Y.; Zhu, L.; Liu, Y.; Vovk, E.I.; Lang, J.; Zhou, Z.; Gao, P.; Li, S.; Yang, Y. Understanding surface structures of In2O3 catalysts during CO2 hydrogenation reaction using time-resolved IR, XPS with in situ treatment, and DFT calculations. Appl. Surf. Sci., 2023, 631, 157534.
[http://dx.doi.org/10.1016/j.apsusc.2023.157534];
(e) Nie, L.; Wang, H.; Lai, Q.; Chu, X.; Chen, H.; Hu, C.; Wei, S.; Lin, Y.; Li, Y.; Ma, M.; Zheng, J. Electrolyte modulation in synergy with a bi-based anode for efficient k-storage properties. ACS Sustain. Chem.& Eng., 2023, 11(24), 9020-9029.
[http://dx.doi.org/10.1021/acssuschemeng.3c01538];
(f) Zheng, J.; Hu, C.; Nie, L.; Zang, S.; Chen, H.; Chen, N.; Ma, M.; Lai, Q. Electrolyte manipulation enhanced pseudo-capacitive K-storage for TiO2 anode. Appl. Surf. Sci., 2023, 611, 155617.
[http://dx.doi.org/10.1016/j.apsusc.2022.155617]
[6]
Al-Zaydi, K.M.; Al-Boqami, M.; Elnagdi, N.M.H. Green synthesis of dihydropyrimidines and pyridines utilizing biginelli reaction. Polycycl. Aromat. Compd., 2022, 42(10), 7298-7309.
[http://dx.doi.org/10.1080/10406638.2021.1998151]
[7]
Zeng, M.; Xue, Y.; Qin, Y.; Peng, F.; Li, Q.; Zeng, M.H. CuBr-promoted domino Biginelli reaction for the diastereoselective synthesis of bridged polyheterocycles: Mechanism studies and in vitro anti-tumor activities. Chin. Chem. Lett., 2022, 33(11), 4891-4895.
[http://dx.doi.org/10.1016/j.cclet.2022.02.075]
[8]
Faizan, S.; Roohi, T.F.; Raju, R.M.; Sivamani, Y.; Br, P.K. A century-old one-pot multicomponent Biginelli reaction products still finds a niche in drug discoveries: Synthesis, mechanistic studies and diverse biological activities of dihydropyrimidines. J. Mol. Struct., 2023, 1291, 136020.
[http://dx.doi.org/10.1016/j.molstruc.2023.136020]
[9]
Folkers, K.; Johnson, T.B. Researches on pyrimidines. CXXXVI. the mechanism of formation of tetrahydropyrimidines by the biginelli reaction. J. Am. Chem. Soc., 1933, 55(9), 3784-3791.
[http://dx.doi.org/10.1021/ja01336a054]
[10]
Mabry, J.; Ganem, B. Studies on the Biginelli reaction: A mild and selective route to 3,4-dihydropyrimidin-2(1H)-ones via enamine intermediates. Tetrahedron Lett., 2006, 47(1), 55-56.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.124]
[11]
Borodina, O.; Ovchinnikova, I.; Fedorova, O.; Makarov, G.; Bartashevich, E. Effect of 4-Hydroxy- -proline-containing podands on the stereoselectivity of Biginelli reaction according to molecular dynamics. Comput. Theor. Chem., 2022, 1217, 113885.
[http://dx.doi.org/10.1016/j.comptc.2022.113885]
[12]
Sweet, F.; Fissekis, J.D. Synthesis of 3,4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli reaction. J. Am. Chem. Soc., 1973, 95(26), 8741-8749.
[http://dx.doi.org/10.1021/ja00807a040]
[13]
Tejero, T.N.; Kümmerle, A.E.; Bauerfeldt, G.F. Reviewing the theory behind the biginelli reaction. Rev. Virtual de Quimica, 2019, 11(4), 1203-1224.
[14]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[15]
De Souza, R.O.M.A.; da Penha, E.T.; Milagre, H.M.S.; Garden, S.J.; Esteves, P.M.; Eberlin, M.N.; Antunes, O.A.C. The three-component biginelli reaction: A combined experimental and theoretical mechanistic investigation. Chemistry, 2009, 15(38), 9799-9804.
[http://dx.doi.org/10.1002/chem.200900470] [PMID: 19670193]
[16]
Alvim, H.G.O.; da Silva Júnior, E.N.; Neto, B.A.D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances, 2014, 4(97), 54282-54299.
[http://dx.doi.org/10.1039/C4RA10651B]
[17]
Kappe, C.O. A reexamination of the mechanism of the biginelli dihydropyrimidine synthesis. Support for an N-Acyliminium ion intermediate. J. Org. Chem., 1997, 62(21), 7201-7204.
[http://dx.doi.org/10.1021/jo971010u] [PMID: 11671828]
[18]
Ramos, L.M.; Ponce de Leon y Tobio, A.Y.; dos Santos, M.R.; de Oliveira, H.C.B.; Gomes, A.F.; Gozzo, F.C.; de Oliveira, A.L.; Neto, B.A.D. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J. Org. Chem., 2012, 77(22), 10184-10193.
[http://dx.doi.org/10.1021/jo301806n] [PMID: 23101501]
[19]
Clark, J.H.; Macquarrie, D.J.; Sherwood, J. The combined role of catalysis and solvent effects on the Biginelli reaction: improving efficiency and sustainability. Chemistry, 2013, 19(16), 5174-5182.
[http://dx.doi.org/10.1002/chem.201204396] [PMID: 23436300]
[20]
Kolosov, M.A.; Orlov, V.D.; Beloborodov, D.A.; Dotsenko, V.V. A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 2009, 13(1), 5-25.
[http://dx.doi.org/10.1007/s11030-008-9094-8] [PMID: 19082754]
[21]
Adole, V.A. Synthetic approaches for the synthesis of dihydropyrimidinones/thiones (biginelli adducts): A concise review. World J. Pharm. Res., 2020, 9(6), 1067-1091.
[http://dx.doi.org/10.20959/wjpr20206-17660]
[22]
Sabitha, G.; Reddy, G.S.K.K.; Reddy, K.B.; Yadav, J.S. Vanadium(III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-(2H)-ones. Tetrahedron Lett., 2003, 44(34), 6497-6499.
[http://dx.doi.org/10.1016/S0040-4039(03)01564-8]
[23]
Nagaiah, K.; Narsaiah, A.V.; Basak, A.K. Cadmium chloride: An efficient catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis, 2004, 2004(8), 1253-1256.
[http://dx.doi.org/10.1055/s-2004-822383]
[24]
Lu, J.; Ma, H. Iron (III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction. Synlett, 2000, 2000(1), 63-64.
[http://dx.doi.org/10.1055/s-2000-6469]
[25]
chari, M.A.; Shobha, D.; Kumar, T.K.; Dubey, P.K. Bismuth (III) nitrate catalyzed one-pot synthesis of 3,4-dihydro-pyrimidin-2-(1H)-ones: An improved protocol for the Biginelli reaction. ARKIVOC, 2005, 2005(15), 74-80.
[http://dx.doi.org/10.3998/ark.5550190.0006.f11]
[26]
Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T.N.B. Bismuth (III)- catalyzed synthesis of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. Synlett., 2001, 2001(06), 0863-0865.
[http://dx.doi.org/10.1055/s-2001-14587]
[27]
Lu, J.; Bai, Y.J.; Guo, Y.H.; Wang, Z.J.; Ma, H.R. CoCl2· 6H2O or LaCl3· 7H2O catalyzed biginelli reaction. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Chin. J. Chem., 2002, 20(7), 681-687.
[http://dx.doi.org/10.1002/cjoc.20020200711]
[28]
Ghosh, R.; Maiti, S.; Chakraborty, A. In(OTf)3-catalysed one-pot synthesis of 3,4-dihydropyrimidin-2(lH)-ones. J. Mol. Catal. Chem., 2004, 217(1-2), 47-50.
[http://dx.doi.org/10.1016/j.molcata.2004.02.025]
[29]
Nasr-Esfahani, M.; Khosropour, A.R. An efficient and clean one-pot synthesis of 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by SrCl 2.6H2O-HCl in solvent or solvent-free conditions. Bull. Korean Chem. Soc., 2005, 26(9), 1331-1332.
[http://dx.doi.org/10.5012/bkcs.2005.26.9.1331]
[30]
Yadav, J.S.; Reddy, B.V.S.; Naidu, J.J.; Sadashiv, K. NbCl5-catalyzed rapid and efficient synthesis of 3,4-dihydropyrimidinones under ambient conditions. Chem. Lett., 2004, 33(7), 926-927.
[http://dx.doi.org/10.1246/cl.2004.926]
[31]
Lu, J.; Bai, Y. Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis., 2002, 2002(04), 0466-0470.
[http://dx.doi.org/10.1055/s-2002-20956]
[32]
Ahmed, N.; van Lier, J.E. TaBr5-catalyzed Biginelli reaction: One-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Tetrahedron Lett., 2007, 48(31), 5407-5409.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.005]
[33]
Gupta, R.; Gupta, M.; Paul, S.; Gupta, R. Silica-supported ZnCl 2 — A highly active and reusable heterogeneous catalyst for the one-pot synthesis of dihydropyrimidinones–thiones. Can. J. Chem., 2007, 85(3), 197-201.
[http://dx.doi.org/10.1139/v07-018]
[34]
Jin, T.; Zhang, S.; Li, T. p -Toluenesulfonic acid-catalyzed efficient synthesis of dihydropyrimidineS: Improved high yielding protocol for the biginelli reaction. Synth. Commun., 2002, 32(12), 1847-1851.
[http://dx.doi.org/10.1081/SCC-120004068]
[35]
Wang, Y.; Tang, G.; Wu, Y. A set of phenyl sulfonate metal coordination complexes triggered Biginelli reaction for the high efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Appl. Organomet. Chem., 2020, 34(5), e5542.
[http://dx.doi.org/10.1002/aoc.5542]
[36]
Shu-Jiang, T.; Xiao-Tong, Z.; Fang, F.; Xiao-Jing, Z.; Song-Lei, Z.; Tuan-Jie, L.; Da-Qing, S.; Xiang-Shan, W.; Shun-Jun, J. One-pot synthesis of bis (dihydropyrimidinone-4-yl) benzene using boric acid as a catalyst. Chin. J. Chem., 2005, 23(5), 596-598.
[http://dx.doi.org/10.1002/cjoc.200590596]
[37]
Kuraitheerthakumaran, A.; Pazhamalai, S.; Gopalakrishnan, M. Microwaveassisted multicomponent reaction for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)-thiones using lanthanum oxide as a catalyst under solvent-free conditions. Arab. J. Chem., 2016, 9, S461-S465.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.005]
[38]
Yadav, L.; Rai, A.; Rai, V.; Awasthi, C. Biorenewable resources in the biginelli reaction: Cerium (III)-catalyzed synthesis of novel iminosugar-annulated perhydropyrimidines. Synlett, 2007, 2007(12), 1905-1908.
[http://dx.doi.org/10.1055/s-2007-984527]
[39]
Fan, X.; Zhang, X.; Zhang, Y. Samarium chloride catalysed Biginelli reaction: One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J. Chem. Res., 2002, 2002(9), 436-438.
[http://dx.doi.org/10.3184/030823402103172563]
[40]
Polshettiwar, V.; Varma, R.S. Biginelli reaction in aqueous medium: A greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2007, 48(41), 7343-7346.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.031]
[41]
Suzuki, I.; Iwata, Y.; Takeda, K. Biginelli reactions catalyzed by hydrazine type organocatalyst. Tetrahedron Lett., 2008, 49(20), 3238-3241.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.080]
[42]
Moussa, S.; Mehri, A.; Badraoui, B. Magnesium modified calcium hydroxyapatite: An efficient and recyclable catalyst for the one-pot Biginelli condensation. J. Mol. Struct., 2020, 1200, 127111.
[http://dx.doi.org/10.1016/j.molstruc.2019.127111]
[43]
Rani, V.R.; Srinivas, N.; Kishan, M.R.; Kulkarni, S.J.; Raghavan, K.V. Zeolite-catalyzed cyclocondensation reaction for the selective synthesis of 3,4-dihydropyrimidin-2(1H)-onesIICT Communication No. 4737. Green Chem., 2001, 3(6), 305-306.
[http://dx.doi.org/10.1039/b107612b]
[44]
Jain, S.L.; Singhal, S.; Sain, B. PEG-assisted solvent and catalyst free synthesis of 3,4-dihydropyrimidinones under mild reaction conditions. Green Chem., 2007, 9(7), 740-741.
[http://dx.doi.org/10.1039/b702311a]
[45]
Mitra, A.K.; Banerjee, K. Clay catalysed synthesis of dihydropyrimidinones under solvent-free conditions. Synlett, 2003, 2003(10), 1509-1511.
[http://dx.doi.org/10.1055/s-2003-40828]
[46]
Angeles-Beltrán, D.; Lomas-Romero, L.; Lara-Corona, V.; González-Zamora, E.; Negrón-Silva, G. Sulfated zirconia-catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) under solventless conditions: Competitive multicomponent Biginelli vs. Hantzsch reactions. Molecules, 2006, 11(10), 731-738.
[http://dx.doi.org/10.3390/11100731] [PMID: 17971749]
[47]
Lee, K.Y.; Ko, K.Y. Envirocat EPZ-10: A recyclable solid acid catalyst for the synthesis of Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones. Bull. Korean Chem. Soc., 2004, 25(12), 1929-1931.
[http://dx.doi.org/10.5012/bkcs.2004.25.12.1929]
[48]
Kumar, A.; Maurya, R.A. An efficient bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett., 2007, 48(26), 4569-4571.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.130]
[49]
Guo, Y.; Zou, C.; Gao, Z.; Meng, X.; Huang, G.; Zhong, H.; Yu, H.; Ding, X.; Tang, H. Highly enantioselective biginelli reaction of aliphatic aldehydes catalyzed by chiral phosphoric acids. Synlett, 2017, 28(15), 2041-2045.
[http://dx.doi.org/10.1055/s-0036-1588853]
[50]
Huang, Y.; Yang, F.; Zhu, C. Highly enantioselective Biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydropyrimidines. J. Am. Chem. Soc., 2005, 127(47), 16386-16387.
[http://dx.doi.org/10.1021/ja056092f] [PMID: 16305212]
[51]
Legeay, J.C.; Eynde, J.J.V.; Toupet, L.; Bazureau, J.P. A three-component condensation protocol based on ionic liquid phase bound acetoacetate for the synthesis of Biginelli 3,4-dihydropyrimidine-2(1H)-ones. ARKIVOC, 2007, 3, 13-28.
[52]
Freemantle, M. An introduction to ionic liquids; Royal Society of chemistry,, 2010.
[53]
Albuquerque, H.M.T.; Pinto, D.C.G.A.; Silva, A.M.S. Microwave irradiation: Alternative heating process for the synthesis of biologically applicable chromones, quinolones, and their precursors. Molecules, 2021, 26(20), 6293.
[http://dx.doi.org/10.3390/molecules26206293] [PMID: 34684877]
[54]
Tamaddon, F.; Ghazi, S. Urease: A highly biocompatible catalyst for switchable Biginelli reaction and synthesis of 1,4-dihydropyridines from the in situ formed ammonia. Catal. Commun., 2015, 72, 63-67.
[http://dx.doi.org/10.1016/j.catcom.2015.09.006]
[55]
Yu, Y.; Zhang, W.; Gong, Q.T.; Liu, Y.H.; Yang, Z.J.; He, W.X.; Wang, N.; Yu, X.Q. Enzyme-catalysed one-pot synthesis of 4H-pyrimido[2,1-b] benzothiazoles and their application in subcellular imaging. J. Biotechnol., 2020, 324, 91-98.
[http://dx.doi.org/10.1016/j.jbiotec.2020.09.014] [PMID: 33010308]
[56]
Harsh, S.; Kumar, S.; Sharma, R.; Kumar, Y.; Kumar, R. Chlorophyll triggered one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via photo induced electron transfer reaction. Arab. J. Chem., 2020, 13(3), 4720-4730.
[http://dx.doi.org/10.1016/j.arabjc.2019.11.002]
[57]
Xie, Z.B.; Fu, L.H.; Meng, J.; Lan, J.; Hu, Z.Y.; Le, Z.G. Efficient biocatalytic strategy for one-pot Biginelli reaction via enhanced specific effects of microwave in a circulating reactor. Bioorg. Chem., 2020, 101, 103949.
[http://dx.doi.org/10.1016/j.bioorg.2020.103949] [PMID: 32531507]
[58]
Zacchi, C.H.C.; Vieira, S.S.; Ardisson, J.D.; Araujo, M.H.; de Fátima, Â. Synthesis of environmentally friendly, magnetic acid-type calix[4]arene catalyst for obtaining Biginelli adducts. J. Saudi Chem. Soc., 2019, 23(8), 1060-1069.
[http://dx.doi.org/10.1016/j.jscs.2019.05.005]
[59]
Houshiar, S.; Rafiee, Z.; Grami, M. Polymer/ZIF-67 composite as an effective and recyclable nanocatalyst for Biginelli reaction. Appl. Organomet. Chem., 2022, 36(9), e6800.
[http://dx.doi.org/10.1002/aoc.6800]
[60]
Patil, R.V.; Chavan, J.U.; Dalal, D.S.; Shinde, V.S.; Beldar, A.G. Biginelli Reaction: Polymer supported catalytic approaches. ACS Comb. Sci., 2019, 21(3), 105-148.
[http://dx.doi.org/10.1021/acscombsci.8b00120] [PMID: 30645098]
[61]
Popovics-Tóth, N.; Tajti, Á.; Hümpfner, E.; Bálint, E. Synthesis of 3,4-dihydropyrimidin-2(1H)-one-phosphonates by the microwave-assisted biginelli reaction. Catalysts, 2020, 11(1), 45.
[http://dx.doi.org/10.3390/catal11010045]
[62]
Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Regini, G. Efficient Biginelli synthesis of 2-aminodihydropyrimidines under microwave irradiation. Synlett, 2018, 29(8), 1047-1054.
[http://dx.doi.org/10.1055/s-0036-1591900]
[63]
Huseynzada, A.; Jelsch, C.; Akhundzada, H.V.; Soudani, S.; Nasr, C.B.; Sayin, K.; Demiralp, M.; Hasanova, U.; Eyvazova, G.; Gakhramanova, Z.; Abbasov, V. Crystal structure, Hirshfeld surface analysis, computational and antifungal studies of dihydropyrimidines on the basis of salicylaldehyde derivatives. J. Indian Chem. Soc., 2023, 20(1), 109-123.
[http://dx.doi.org/10.1007/s13738-022-02659-9]
[64]
Patil, R.; Chavan, J.; Patel, S.; Shinde, V.; Beldar, A. Mild acidic charcoal catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-one/-thione derivatives. General, industrial and ecological chemistry. Organic Chem., 2022, 17(2), 101-108.
[http://dx.doi.org/10.19261/cjm.2022.999]
[65]
Waghmare, A.S.; Kadam, K.R.; Murade, V.D.; Pandit, S.S. Microwave assisted one-pot three-component synthesis of 3,4dihydropyrimidin-2(1H)-ones using SFHS as an efficient and reusable catalyst. Rasayan J. Chem., 2022, 15(1), 668-675.
[http://dx.doi.org/10.31788/RJC.2022.1516634]
[66]
Surendra, B.S.; Prasad, K.S.; Shekhar, T.R.S.; Jahagirdar, A.A.; Prashantha, S.C.; Raghavendra, N.; Gurushantha, K.; Basavaraju, N.; Rudresha, K. Microwave assisted Biginelli cyclocon densation for the synthesis of dihydropyrimidinones catalysed by H2SO4Clay NPs and their applications. J. Photochem. Photobiol., 2021, 8, 100063.
[http://dx.doi.org/10.1016/j.jpap.2021.100063]
[67]
Bouzina, A.; Berredjem, M.; Belhani, B.; Bouacida, S.; Marminon, C.; Le Borgne, M.; Bouaziz, Z.; Aissaoui, M. Microwave-accelerated multicomponent synthesis and X-ray characterization of novel benzothiadiazinone dioxide derivatives, analogues of Monastrol. Res. Chem. Intermed., 2021, 47(4), 1359-1376.
[http://dx.doi.org/10.1007/s11164-020-04378-3]
[68]
Kanevskaya, I.V.; Bondartsova, A.S.; Fedotova, O.V. Biginelli synthesis of regioisomeric 5,6-Dihydro-4H-benzo[4,5]imidazo[1,2-a]pyranopyrimidin-4-ones. Russ. J. Org. Chem., 2020, 56(10), 1753-1757.
[http://dx.doi.org/10.1134/S1070428020100139]
[69]
Hua, K.M.; Tran, P.H.; Le, T.N. An efficient and recyclable L-proline triflate ionic liquid catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the multi-component Biginelli reaction. ARKIVOC, 2020, 2019(6), 406-415.
[http://dx.doi.org/10.24820/ark.5550190.p011.096]
[70]
Hegde, H.; Ahn, C.J.; Gaonkar, S.L.; Shetty, N.S. A facile solvent and catalyst free synthesis of new dihydro pyrimidinones as antimicrobial agents. J. Korean Chem. Soc., 2019, 63(6), 435-439.
[http://dx.doi.org/10.5012/jkcs.2019.63.6.435]
[71]
Roy, D.K.; Tamuli, K.J.; Bordoloi, M. Exploiting silver trifluoromethanesulfonate as efficient and reusable catalyst for the synthesis of dihydropyrimidine derivatives under different reaction environments. J. Heterocycl. Chem., 2019, 56(12), 3313-3323.
[http://dx.doi.org/10.1002/jhet.3728]
[72]
Azzalloua, R.; Talebb, M.A.; Lazar, R.M.S.; Benlhachemi, A.; Bakiz, B.; Villain, S. Animal bone meal as a new efficient heterogeneous catalyst for the synthesis of 3, 4-dihydropyrimidin-2-ones/thiones. Moroc. J. Chem., 2019.
[http://dx.doi.org/10.48317/IMIST.PRSM/morjchem-v7i2.15441]
[73]
Kumari, M.; Jain, Y.; Yadav, P.; Laddha, H.; Gupta, R. Synthesis of Fe3O4-DOPA-Cu magnetically separable nanocatalyst: a versatile and robust catalyst for an array of sustainable multicomponent reactions under microwave irradiation. Catal. Lett., 2019, 149(8), 2180-2194.
[http://dx.doi.org/10.1007/s10562-019-02794-8]
[74]
Moradi, L.; Tadayon, M. Green synthesis of 3,4-dihydropyrimidinones using nano Fe 3 O 4 @meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation. J. Saudi Chem. Soc., 2018, 22(1), 66-75.
[http://dx.doi.org/10.1016/j.jscs.2017.07.004]
[75]
Achary, L.S.K.; Kumar, A.; Rout, L.; Kunapuli, S.V.S.; Dhaka, R.S.; Dash, P. Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under microwave condition. Chem. Eng. J., 2018, 331, 300-310.
[http://dx.doi.org/10.1016/j.cej.2017.08.109]
[76]
Paul, D.; Reddy, R.G.; Rajendran, S.P. Facile ecofriendly one pot synthesis of heterocyclic priviledged medicinal scaffolds via biginelli reaction using retrievable nickel nanoparticles as catalyst. J. Chil. Chem. Soc., 2018, 63(2), 3974-3982.
[http://dx.doi.org/10.4067/s0717-97072018000203974]
[77]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[78]
Chopda, L.V.; Dave, P.N. Fe(III)/Bentonite as a heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. ChemistrySelect, 2020, 5(44), 14161-14167.
[http://dx.doi.org/10.1002/slct.202003890]
[79]
Pramanik, T.A.N.A.Y.; Padan, S.K. Microwave irradiated “green biginelli reaction” employing apple, pomegranate and grape juice as eco-friendly reaction medium. Pharmacology., 2016, 1, 4.
[http://dx.doi.org/10.1063/1.4990358]
[80]
Fu, R.; Yang, Y.; Ma, X.; Sun, Y.; Li, J.; Gao, H.; Hu, H.; Zeng, X.; Yi, J. An efficient, eco-friendly and sustainable one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones directly from alcohols catalyzed by heteropolyanion-based ionic liquids. Molecules, 2017, 22(9), 1531.
[http://dx.doi.org/10.3390/molecules22091531] [PMID: 28891992]
[81]
Malik, A.A.; Dangroo, N.A.; Ara, T. Microwave-assisted tandem kornblum oxidation and biginelli reaction for the synthesis of dihydropyrimidones. ChemistrySelect, 2020, 5(42), 12965-12970.
[http://dx.doi.org/10.1002/slct.202002864]
[82]
Lal, K.; Paliwal, J. A green protocol for one-pot biginelli condensation catalyzed by para toulene sulfonic acid under microwave irradiation. Lett. Org. Chem., 2016, 13(4), 255-262.
[http://dx.doi.org/10.2174/1570178613666160224005811]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy