Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

A Comprehensive Review on Nanoparticles as a Targeted Delivery System for the Treatment of Lung Cancer

Author(s): Twinkle Gupta, Avinash Varanwal, Priyanshu Nema, Sakshi Soni, Arun Kumar Iyer, Ratnesh Das, Vandana Soni and Sushil Kumar Kashaw*

Volume 24, Issue 3, 2024

Published on: 27 November, 2023

Page: [157 - 168] Pages: 12

DOI: 10.2174/0118715206257442231109202235

Price: $65

Abstract

The second most common type of cancer is lung cancer, impacting the human population. Lung cancer is treated with a number of surgical and non-surgical therapies, including radiation, chemotherapy, and photodynamic treatment. However, the bulk of these procedures are costly, difficult, and hostile to patients. Chemotherapy is distinguished by inadequate tumour targeting, low drug solubility, and insufficient drug transport to the tumour site. In order to deal with the issues related to chemotherapy, extensive efforts are underway to develop and investigate various types of nanoparticles, both organic and inorganic, for the treatment of lung cancer. The subject of this review is the advancements in research pertaining to active targeted lung cancer nano-drug delivery systems treatment, with a specific emphasis on receptors or targets. The findings of this study are expected to assist biomedical researchers in utilizing nanoparticles (NPs) as innovative tools for lung cancer treatment, offering new methods for delivering drugs and reliable solid ligands.

Next »
Graphical Abstract

[4]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/10.1038/nature08956] [PMID: 20305636]
[5]
Krug, L.M.; Pietanza, M.C.; Kris, M.G. Small cell and other neuroendocrine tumors of the lung. DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. In: DeVita, Hellman and Rosenberg’s Cancer, Principle and Practice of Oncology; 9th edn.; Wolters Kluwer: Lippincott Williams & Wilkins: Philadelphia, 2011; p. 848-870.
[7]
Lemjabbar-Alaouia, H.; Hassan, O. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta, 2015, 1856(2), 189-210.
[http://dx.doi.org/10.1016/j.bbcan.2015.08.002]
[8]
Shapiro, J.A.; Jacobs, E.J.; Thun, M.J. Cigar smoking in men and risk of death from tobacco-related cancers. J. Natl. Cancer Inst., 2000, 92(4), 333-337.
[http://dx.doi.org/10.1093/jnci/92.4.333] [PMID: 10675383]
[9]
Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med., 2011, 32(4), 605-644.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001] [PMID: 22054876]
[10]
Blanco, R. A gene-alteration profile of human lung cancer cell lines. Hum. Mutat., 2009, 30(8), 1199-1206.
[http://dx.doi.org/10.1002/humu.21028]
[11]
Kwun, M. Molecular pathogenesis of lung cancer. J. Thorac. Cardiovasc. Surg., 1999, 118(6), 1136-1152.
[http://dx.doi.org/10.1016/S0022-5223(99)70121-2]
[12]
Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H.M. Bevacizumab. Oncologist, 2010, 15(8), 819-825.
[http://dx.doi.org/10.1634/theoncologist.2009-0317] [PMID: 20688807]
[13]
Grothey, A.; Galanis, E. Targeting angiogenesis: Progress with anti-VEGF treatment with large molecules. Nat. Rev. Clin. Oncol., 2009, 6(9), 507-518.
[http://dx.doi.org/10.1038/nrclinonc.2009.110] [PMID: 19636328]
[14]
AMG 510 First to Inhibit “Undruggable” KRAS. Cancer Discov., 2019, 9(8), 988-989.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2019-073]
[15]
Li, Z.; Xu, M.; Xing, S.; Ho, W.T.; Ishii, T.; Li, Q.; Fu, X.; Zhao, Z.J. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J. Biol. Chem., 2007, 282(6), 3428-3432.
[http://dx.doi.org/10.1074/jbc.C600277200] [PMID: 17178722]
[16]
Giotrif 30 mg film-coated tablets. Available from: https://www.medicines.org.uk/emc/product/7701/smpc
[19]
Neijssen, J.; Cardoso, R.M.F.; Chevalier, K.M.; Wiegman, L.; Valerius, T.; Anderson, G.M.; Moores, S.L.; Schuurman, J.; Parren, P.W.H.I.; Strohl, W.R.; Chiu, M.L. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem., 2021, 296, 100641.
[http://dx.doi.org/10.1016/j.jbc.2021.100641] [PMID: 33839159]
[20]
Grugan, K.D.; Dorn, K.; Jarantow, S.W.; Bushey, B.S.; Pardinas, J.R.; Laquerre, S.; Moores, S.L.; Chiu, M.L. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs, 2017, 9(1), 114-126.
[http://dx.doi.org/10.1080/19420862.2016.1249079] [PMID: 27786612]
[21]
Necitumumab is a monoclonal antibody used to treat metastatic squamous non-small cell lung cancer. Available from: https://go.drugbank.com/drugs/DB09559
[22]
Heigener, D.F.; Reck, M. Crizotinib. Recent Results Cancer Res., 2018, 211, 57-65.
[http://dx.doi.org/10.1007/978-3-319-91442-8_4] [PMID: 30069759]
[23]
Ceritinib. Available from: https://go.drugbank.com/drugs/DB09063
[24]
Alectinib. Available from: https://go.drugbank.com/drugs/DB11363
[25]
Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T.A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S.D.; Ning, Y.; Xu, Q.; Moran, L.E.; Mohemmad, Q.K.; Jang, H.G.; Clackson, T.; Narasimhan, N.I.; Rivera, V.M.; Zhu, X.; Dalgarno, D.; Shakespeare, W.C. Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2016, 59(10), 4948-4964.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00306] [PMID: 27144831]
[26]
Lorlatinib. Available from: https://go.drugbank.com/drugs/DB12130
[27]
Rolfo, C.; Ruiz, R.; Giovannetti, E.; Gil-Bazo, I.; Russo, A.; Passiglia, F.; Giallombardo, M.; Peeters, M.; Raez, L. Entrectinib: A potent new TRK, ROS1, and ALK inhibitor. Expert Opin. Investig. Drugs, 2015, 24(11), 1493-1500.
[http://dx.doi.org/10.1517/13543784.2015.1096344] [PMID: 26457764]
[28]
Dabrafenib.. Available from: https://go.drugbank.com/drugs/DB08912
[34]
Drilon, A.; Nagasubramanian, R.; Blake, J.F.; Ku, N.; Tuch, B.B.; Ebata, K.; Smith, S.; Lauriault, V.; Kolakowski, G.R.; Brandhuber, B.J.; Larsen, P.D.; Bouhana, K.S.; Winski, S.L.; Hamor, R.; Wu, W.I.; Parker, A.; Morales, T.H.; Sullivan, F.X.; DeWolf, W.E.; Wollenberg, L.A.; Gordon, P.R.; Douglas-Lindsay, D.N.; Scaltriti, M.; Benayed, R.; Raj, S.; Hanusch, B.; Schram, A.M.; Jonsson, P.; Berger, M.F.; Hechtman, J.F.; Taylor, B.S.; Andrews, S.; Rothenberg, S.M.; Hyman, D.M. A Next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion–positive solid tumors. Cancer Discov., 2017, 7(9), 963-972.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0507] [PMID: 28578312]
[35]
Vallières, E.; Shepherd, F.A.; Crowley, J.; Van Houtte, P.; Postmus, P.E.; Carney, D.; Chansky, K.; Shaikh, Z.; Goldstraw, P. The IASLC lung cancer staging project: Proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J. Thorac. Oncol., 2009, 4(9), 1049-1059.
[http://dx.doi.org/10.1097/JTO.0b013e3181b27799] [PMID: 19652623]
[36]
Yang, L.; Wang, S. Evaluation of the 7th and 8th editions of the AJCC/UICC TNM staging systems for lung cancer in a large North American cohort In: Oncotarget; , 2017.
[37]
Sharma, P.; Mehtaa, M.; Daljeet, S.S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720.
[http://dx.doi.org/10.1016/j.cbi.2019.06.033]
[38]
Vanza, D. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J. Drug Deliv. Sci. Technol., 2020, 60, 10207.
[http://dx.doi.org/10.1016/j.jddst.2020.102070]
[39]
Vengurlekar, S.; Chaturvedi, C.S. Nano Drug Delivery Strategies for the Treatment of Cancers book; Academic press, 2021, pp. 1-3.
[http://dx.doi.org/10.1016/B978-0-12-819793-6.00005-9]
[40]
Kumar, K.; Chawla, R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J. Drug Deliv. Sci. Technol., 2021, 65, 102677.
[http://dx.doi.org/10.1016/j.jddst.2021.102677]
[41]
Aishah, S.; Razak, A. Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview; MDPI, 2021, pp. 6-18.
[http://dx.doi.org/10.3390/cancers13030400]
[42]
Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394]
[43]
Khodabandehloo, H.; Zahednasab, H.; Ashrafi, H, A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev., 2016, In Press, e3966.
[http://dx.doi.org/10.17795/ijcp-3966] [PMID: 27482328]
[44]
Lisa, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286]
[45]
Skupin-Mrugalska, P. Liposome-Based Drug Delivery for Lung Cancer; Academic press, 2019, pp. 126-127.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00006-X]
[46]
Lin, C. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci. Rep., 2017, 7(1), 1097.
[http://dx.doi.org/10.1038/s41598-017-00957-4]
[47]
Maruyama, K.; Ishida, O.; Takizawa, T.; Moribe, K. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev., 1999, 40(1-2), 89-102.
[http://dx.doi.org/10.1016/S0169-409X(99)00042-3] [PMID: 10837782]
[48]
Berlin Grace, V.M.; Viswanathan, S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J. Drug Deliv. Sci. Technol., 2017, 39, 223-236.
[http://dx.doi.org/10.1016/j.jddst.2017.04.005]
[49]
De, M. Applications of nanoparticles in biology. Adv. Mater., 2008, 20(22), 4225-4241.
[http://dx.doi.org/10.1002/adma.200703183]
[50]
Mohanraj, V.J.; Chen, Y. Nanoparticles – a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[51]
Wang, G.; Wang, Z.; Li, C.; Duan, G.; Wang, K.; Li, Q.; Tao, T. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed. Pharmacother., 2018, 106, 275-284.
[http://dx.doi.org/10.1016/j.biopha.2018.06.137] [PMID: 29966971]
[52]
Humblet, Y. Cetuximab: An IgG1 monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Expert Opin. Pharmacother., 2004, 5(7), 1621-1633.
[http://dx.doi.org/10.1517/14656566.5.7.1621] [PMID: 15212612]
[53]
Jeffrey, H.; Von Daniel, H. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med., 2012, 4(128), 128ra39.
[54]
Carboplatin and paclitaxel albumin-stabilized nanoparticle formulation followed by radiation therapy and erlotinib in treating patients with stage iii non-small cell lung cancer that cannot be removed by surgery. Patent NCT00553462, 2018.
[55]
Owen, D.H.; Williams, T.M.; Bertino, E.M.; Mo, X.; Webb, A.; Schweitzer, C.; Liu, T.; Roychowdhury, S.; Timmers, C.D.; Otterson, G.A. Homologous recombination and DNA repair mutations in patients treated with carboplatin and nab-paclitaxel for metastatic non-small cell lung cancer. Lung Cancer, 2019, 134, 167-173.
[http://dx.doi.org/10.1016/j.lungcan.2019.06.017] [PMID: 31319977]
[56]
A phase 2 study of CRLX101(NLG207) in patients with advanced non-small cell lung cancer. Patent NCT01380769, 2022.
[57]
Rizvi, N.A.; Riely, G.J.; Azzoli, C.G.; Miller, V.A.; Ng, K.K.; Fiore, J.; Chia, G.; Brower, M.; Heelan, R.; Hawkins, M.J.; Kris, M.G. Phase I/II trial of weekly intravenous 130-nm albumin-bound paclitaxel as initial chemotherapy in patients with stage IV non-small-cell lung cancer. J. Clin. Oncol., 2008, 26(4), 639-643.
[http://dx.doi.org/10.1200/JCO.2007.10.8605] [PMID: 18235124]
[58]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[59]
Pooja, M.; Saharan, A. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int., 2021, 2021, 8844030.
[http://dx.doi.org/10.1155/2021/8844030]
[60]
Zhong, Q.; Bielski, E.R.; Rodrigues, L.S.; Brown, M.R.; Reineke, J.J.; da Rocha, S.R.P. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol. Pharm., 2016, 13(7), 2363-2375.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00126] [PMID: 27253493]
[61]
Yoon, A.R.; Kasala, D.; Li, Y.; Hong, J.; Lee, W.; Jung, S.- J.; Yun, C.-O. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J. Control. Release, 2016, 231, 2e16.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.046]
[62]
Park, T.; Jeong, J.; Kim, S. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev., 2006, 58(4), 467-486.
[http://dx.doi.org/10.1016/j.addr.2006.03.007] [PMID: 16781003]
[63]
De, M. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics, 2018, 10, 231.
[64]
Valdivia, L.; García-Hevia, L. Solid Lipid Particles for Lung Metastasis Treatment Pharmaceutical, 2021, 13(1), 93.
[http://dx.doi.org/10.3390/pharmaceutics13010093]
[65]
Jarvi, M.; Krishnan, V.; Mitragotri, S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med., 2018, 5-7.
[http://dx.doi.org/10.1002/btm2.10122]
[66]
Salah, L.S.; Ouslimani, N. Carbon nanotubes (CNTs) from Synthesis to Functionalized (CNTs) using conventional and new chemical approaches. J. Nanomater., 2021, 2021.
[http://dx.doi.org/10.1155/2021/4972770]
[67]
Mohamed, F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098]
[68]
Daniel, R.; Nitin, J. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y]
[69]
Maeda, H.; Matsumura, Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst., 1989, 6(3), 193-210.
[PMID: 2692843]
[70]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[71]
Mansour, A.M.; Drevs, J.; Esser, N. A new approach for the treatment of malignant melanoma: Enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res., 2003, 63(14), 4062-4066.
[72]
Nomura, T.; Saikawa, A.; Morita, S.; Sakaeda, K.T.; Yamashita, F.; Honda, K.; Takakura, Y.; Hashida, M. Pharmacokinetic characteristics and therapeutic effects of mitomycin C-dextran conjugates after intratumoural injection. J. Control. Release, 1998, 52(3), 239-252.
[http://dx.doi.org/10.1016/S0168-3659(97)00185-5] [PMID: 9743445]
[73]
Li, S.; Schmitz, K.R.; Jeffrey, P.D.; Wiltzius, J.J.W.; Kussie, P.; Ferguson, K.M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell, 2005, 7(4), 301-311.
[http://dx.doi.org/10.1016/j.ccr.2005.03.003] [PMID: 15837620]
[74]
Cai, Z.; Xu, D. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol. Biosyst., 2015, 11, 791-800.
[http://dx.doi.org/10.1039/C4MB00659C]
[75]
Chen, D-W.; Cheng, L.; Huang, F.; Cheng, L.; Zhu, Y.; Hu, Q.; Li, L.; Wei, L. GE11-modified liposomes for non-small cell lung cancer targeting: Preparation, ex vitro and in vivo evaluation. Int. J. Nanomedicine, 2014, 9, 921-935.
[http://dx.doi.org/10.2147/IJN.S53310] [PMID: 24611009]
[76]
Askarian, S.; Abnous, K.; Taghavi, S.; Oskuee, R.K.; Ramezani, M. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 355-364.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.023] [PMID: 26433348]
[77]
Yu, L.; Hu, Y.; Duan, J.; Yang, X-D. A novel approach of targeted immunotherapy against adenocarcinoma cells with nanoparticles modified by CD16 and MUC1 aptamers. J. Nanomater., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/316968]
[78]
Nagano, O.; Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Sci., 2004, 95(12), 930-935.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03179.x] [PMID: 15596040]
[79]
Wang, S.J.; Huo, Z.J.; Liu, K.; Yu, N.; Ma, Y.; Qin, Y-H.; Li, X-C.; Yu, J-M.; Wang, Z-Q. Ligand-conjugated pH-sensitive polymeric micelles for the targeted delivery of gefitinib in lung cancers. RSC Advances, 2015, 5(89), 73184-73193.
[http://dx.doi.org/10.1039/C5RA09931E]
[80]
Muthukumar, T.; Chamundeeswari, M.; Prabhavathi, S.; Gurunathan, B.; Chandhuru, J.; Sastry, T.P. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells. Eur. J. Pharm. Biopharm., 2014, 88(3), 730-736.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.011] [PMID: 25305584]
[81]
Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00846] [PMID: 29341619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy