Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

DeepTransformer: Node Classification Research of a Deep Graph Network on an Osteoporosis Graph based on GraphTransformer

In Press, (this is not the final "Version of Record"). Available online 27 November, 2023
Author(s): Yixin Liu, Guowei Jiang, Miaomiao Sun, Ziyan Zhou, Pengchen Liang and Qing Chang*
Published on: 27 November, 2023

DOI: 10.2174/0115734099266731231115065030

Price: $95

Abstract

Background: Osteoporosis (OP) is one of the most common diseases in the elderly population. It is mostly treated with medication, but drug research and development have the disadvantage of taking a long time and having a high cost.

Objective: Therefore, we developed a graph neural network with the help of artificial intelligence to provide new ideas for drug research and development for OP.

Methods: In this study, we built a new osteoporosis graph (called OPGraph) and proposed a deep graph neural network (called DeepTransformer) to predict new drugs for OP. OPGraph is a graph data model established by gathering features and their interrelationships from a vast amount of OP data. DeepTransformer uses GraphTransformer as its foundational network and applies residual connections for deep layering.

Results: The analysis and results showed that DeepTransformer outperformed numerous models on OPGraph, with area under the curve (AUC) and area under the precision-recall curve (AUPR) reaching 0.9916 and 0.9911, respectively. In addition, we conducted an in vitro validation experiment on two of the seven predicted compounds (Puerarin and Aucubin), and the results corroborated the predictions of our model.

Conclusion: The model we developed with the help of artificial intelligence can effectively reduce the time and cost of OP drug development and reduce the heavy economic burden brought to patient's family by complications caused by osteoporosis.

[1]
Stumpf, U.; Kraus, M.; Ladurner, R.; Neuerburg, C.; Böcker, W. Osteoporose: Diagnostik und behandlung. Die Orthopädie, 2023, 52(3), 246-258.
[http://dx.doi.org/10.1007/s00132-023-04351-z] [PMID: 36806953]
[2]
Kanis, J.A.; Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int., 1994, 4(6), 368-381.
[http://dx.doi.org/10.1007/BF01622200] [PMID: 7696835]
[3]
Si, L.; Winzenberg, T.M.; Jiang, Q.; Chen, M.; Palmer, A.J. Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos. Int., 2015, 26(7), 1929-1937.
[http://dx.doi.org/10.1007/s00198-015-3093-2] [PMID: 25761729]
[4]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[5]
Hassan Baig, M.; Ahmad, K.; Roy, S.; Mohammad Ashraf, J.; Adil, M.; Haris Siddiqui, M.; Khan, S.; Amjad Kamal, M.; Provazník, I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]
[6]
Nguyen, T.; Le, H.; Quinn, T.P.; Nguyen, T.; Le, T.D.; Venkatesh, S. GraphDTA: Predicting drug–target binding affinity with graph neural networks. Bioinformatics, 2021, 37(8), 1140-1147.
[http://dx.doi.org/10.1093/bioinformatics/btaa921] [PMID: 33119053]
[7]
Yang, Z.; Zhong, W.; Zhao, L.; Yu-Chian Chen, C. MGraphDTA: Deep multiscale graph neural network for explainable drug–target binding affinity prediction. Chem. Sci., 2022, 13(3), 816-833.
[http://dx.doi.org/10.1039/D1SC05180F] [PMID: 35173947]
[8]
Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), PP.3844-3852, 2016.
[9]
Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; Kingsbury, B. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag., 2012, 29(6), 82-97.
[http://dx.doi.org/10.1109/MSP.2012.2205597]
[10]
Zhao, T.; Hu, Y.; Valsdottir, L.R.; Zang, T.; Peng, J. Identifying drug–target interactions based on graph convolutional network and deep neural network. Brief. Bioinform., 2021, 22(2), 2141-2150.
[http://dx.doi.org/10.1093/bib/bbaa044] [PMID: 32367110]
[11]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[12]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[13]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[14]
Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20.
[http://dx.doi.org/10.1186/s13321-015-0069-3] [PMID: 26052348]
[15]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[16]
Yunsheng, S.; Zhengjie, H.; Shikun, F.; Hui, Z.; Wenjing, W.; Yu, S. Masked label prediction: unified message passing model for semi-supervised classification. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp.1548-1554, 2021.
[17]
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. 6th International Conference on Learning Representations, 2018.Vancouver, Canada
[18]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 2016 Jun, pp. 770-778.
[19]
Li, G.; Xiong, C.; Qian, G.; Thabet, A.; Ghanem, B. DeeperGCN: All You Need to Train Deeper GCNs. 10th International Conference on Learning Representations, 2021.
[20]
Brody, S.; Alon, U.; Yahav, E. How attentive are graph attention networks? 10th International Conference on Learning Representations, 2022.
[21]
You, J.; Ying, R.; Leskovec, J. Design space for graph neural networks. Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20), pp.17009-17021,2020.
[22]
Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.; Bronstein, M.M. Geometric deep learning on graphs and manifolds using mixture model CNNs. IEEE Conference on Computer Vision and Pattern Recognition, 2017 Jul, pp. 5115-5124.
[http://dx.doi.org/10.1109/CVPR.2017.576]
[23]
Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for Quantum chemistry. Proceedings of the 34th International Conference on Machine Learning, pp.1263-1272, 2017.
[24]
Zhou, Z.; Sun, M.; Tang, Y.; Liang, P.; Liang, D.; Chang, Q. Screening and activity verification of osteogenic compounds from salvia miltiorrhiza based on virtual screening. J. Jiang/ Univ., 2022, 32(5), 1-13.
[25]
Sun, M.; Liang, P.; Zhou, Z. Screening of bone promoting active ingredients in ginkgo bilobaon bioinformatics. Central South Pharmacy., 2022, 20(3), 517-524.
[26]
Liao, Y.; Zhang, X.; Li, C.; Qiu, F. Research progress on the correlation between traditional Chinese medicine syndrome and bone turnover markers of osteoporosis. Zhongguo Guzhi Shusong Zazhi, 2022, 28(12), 1823-1827.
[27]
Bose, S.; Sarkar, N. Natural medicinal compounds in bone tissue engineering. Trends Biotechnol., 2020, 38(4), 404-417.
[http://dx.doi.org/10.1016/j.tibtech.2019.11.005] [PMID: 31882304]
[28]
Fan, H.; Guo, J.; Xin, B. Analysis of modern molecular pharmacology mechanism and clinical application of puerarin. Gansu Med. J., 2020, 39(8), 684-690.
[29]
Liang, Q.; Li, H.; Xie, J. Effects of Puerarin on OPG, RANKL and bone tissue in postmenopausal osteoporosis model rats. Zhongguo Laonianxue Zazhi, 2019, 39(16), 4031-4034.
[30]
Chen, H.; Pang, J.; Zhang, X.; Sun, J.; Zhou, L.; Liu, B. Effects of puerarin on bone mineral density around the artificial prosthesis of elderly patients after osteoporotic fracture artificial hip joint replacement. Jiyinzuxue Yu Yingyong Shengwuxue, 2019, 38(12), 5695-5699.
[31]
Wang, C.; Su, Z.; Dong, X. Therapeutic effect and the underlying molecular mechanism of aucubin on osteoporosis in castrated rats. Zhej. J. Integ. Trad. Chin. West. Med., 2022, 32(6), 511-544.
[32]
Li, Y. Study on Aucubin Promotes Osteoblast Differentiation and Inhibits Osteoporosis through Nrf2/Keap1 Signaling Pathway. PhD dissertation; Jilin University: Changchun (Jilin Province), 2019.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy