Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Preparation of Menthyl 3-amino-4-(2,4,5-trifluorophenyl) Butyrate and Investigation of its Hypoglycemic Activity

In Press, (this is not the final "Version of Record"). Available online 27 November, 2023
Author(s): Xinmou Kuang, Minru Su, Hao Li, Xiaolan Sheng, Huan Cai, Shuilin Xie and Zhonghua Liu*
Published on: 27 November, 2023

DOI: 10.2174/0115665240256416231120105956

Price: $95

Abstract

Background: 3-Amino-4-(2,4,5-trifluorophenyl) butyric acid has potential pharmacological effects in promoting insulin secretion. Menthol promotes drug transdermal absorption and hypoglycemic effects.

Objective: The objective of the study was to combine the 3-amino-4-(2,4,5- trifluorophenyl) butyric acid and menthol to develop a new candidate drug molecule that can be used as a hypoglycemic drug in type II diabetes.

Methods: In this study, the molecular structure of 3-amino-4-(2,4,5-trifluorophenyl) butyric acid in sitagliptin was modified by replacing pyrazine imidazole with menthol. The structure of the target compound was characterized by nuclear magnetic resonance (NMR). The anti-diabetic activity of BHF in N000180 BKS.Cg-Dock7m+/ +Leprdb/Nju mice with spontaneous diabetes was preliminarily studied.

Results: A potential multi-target drug molecule, 3-amino-4-(2,4,5-trifluorophenyl) butyrate (BHF), was synthesized by combining 3-amino-4-(2,4,5-trifluorophenyl) butyric acid and menthol. BHF is suitable for hyperglycemic mice and has a significant hypoglycemic effect; the low dose of 10 mg/kg-1 started to be effective, and the high dose of 40 mg/kg-1 was more effective than the positive drug metformin.

Conclusion: In this study, BHF has been synthesized and presented significant antidiabetic activities.

[1]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013; 310(9): 948-59.
[http://dx.doi.org/10.1001/jama.2013.168118] [PMID: 24002281]
[2]
Santos LL, Lima FJC, Sousa-Rodrigues CF, Barbosa FT. Use of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus. Rev Assoc Med Bras 2017; 63(7): 636-41.
[http://dx.doi.org/10.1590/1806-9282.63.07.636] [PMID: 28977090]
[3]
Obodoagha AL. Using telehealth education to improve medication adherence and lower HbA1c among african americans with type 2 diabetes. University of Massachusetts Global 2022.
[4]
DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131(4): 281-303.
[http://dx.doi.org/10.7326/0003-4819-131-4-199908170-00008] [PMID: 10454950]
[5]
Expert Group of Metformin in Clinical Practice. Chinese expert consensus statement on metformin in clinical practice. Chin Med J 2020; 133(12): 1445-7.
[http://dx.doi.org/10.1097/CM9.0000000000000883] [PMID: 32472786]
[6]
Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed Pharmacother 2020; 131: 110708.
[http://dx.doi.org/10.1016/j.biopha.2020.110708] [PMID: 32927252]
[7]
Renehan A, Smith U, Kirkman MS. Linking diabetes and cancer: A consensus on complexity. Lancet 2010; 375(9733): 2201-2.
[http://dx.doi.org/10.1016/S0140-6736(10)60706-4] [PMID: 20609959]
[8]
Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP. Efficacy and safety of the dipeptidyl peptidase‐4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: A randomized, double‐blind, non‐inferiority trial. Diabetes Obes Metab 2007; 9(2): 194-205.
[http://dx.doi.org/10.1111/j.1463-1326.2006.00704.x] [PMID: 17300595]
[9]
Shi M, Liu Z, Zhu Y, et al. Effect of health education based on integrative therapy of Chinese and Western medicine for adult patients with type 2 diabetes mellitus: A randomized controlled study. Chin J Integr Med 2018; 24(2): 94-102.
[http://dx.doi.org/10.1007/s11655-015-2113-6] [PMID: 26688178]
[10]
Mann JF, Nauck MA, Jacob S, et al. Liraglutid und renale endpunkte bei typ 2 diabetes: Ergebnisse der LEADER studie. Diabetol Stoffwech 2017; 12(S1): P168.
[http://dx.doi.org/10.1055/s-0037-1601747]
[11]
Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes reply. N Engl J Med 2016; 374(11): 1094-4.
[PMID: 26981940]
[12]
Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379(6560): 69-72.
[http://dx.doi.org/10.1038/379069a0] [PMID: 8538742]
[13]
Roda S, Fernandez-Lopez L, Benedens M, et al. A plurizyme with transaminase and hydrolase activity catalyzes cascade reactions. Angew Chem Int Ed 2022; 61(37): e202207344.
[http://dx.doi.org/10.1002/anie.202207344] [PMID: 35734849]
[14]
Cai X, Ji L, Chen Y, et al. Comparisons of weight changes between sodium‐glucose cotransporter 2 inhibitors treatment and glucagon‐like peptide‐1 analogs treatment in type 2 diabetes patients: A meta‐analysis. J Diabetes Investig 2017; 8(4): 510-7.
[http://dx.doi.org/10.1111/jdi.12625] [PMID: 28106956]
[15]
Moher D, Hopewell S, Schulz KF. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2008; 358: 2560-72.
[16]
Ji L, Ma J, Li H, et al. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: A randomized, blinded, prospective phase III study. Clin therap 2014; 361: 84-100.
[http://dx.doi.org/10.1016/j.clinthera.2013.11.002]
[17]
Lin HB, Li FX, Zhang JY, et al. Cerebral-cardiac syndrome and diabetes: Cardiac damage after ischemic stroke in diabetic state. Front Immunol 2021; 12: 737170.
[http://dx.doi.org/10.3389/fimmu.2021.737170] [PMID: 34512671]
[18]
Sawant SD, Nerkar AG, Pawar ND, et al. Design, synthesis, QSAR studies and biological evaluation of novel triazolopiperazine based β-amino amides as dipeptidyl peptidase-IV (DPP-IV) inhibitors: Part-II. Int J Pharm Pharm Sci 2014; 6: 812-7.
[19]
Wang H. Effect of l-menthol pretreated nasal cavity on insulin pharmacological bioavailability. Zhongguo Yaolixue Tongbao 1987.
[20]
Miyamoto Y, Banno Y, Yamashita T, et al. Discovery of a 3-pyridylacetic acid derivative (TAK-100) as a potent, selective and orally active dipeptidyl peptidase IV (DPP-4) inhibitor. J Med Chem 2011; 54(3): 831-50.
[http://dx.doi.org/10.1021/jm101236h] [PMID: 21218817]
[21]
Jethava DJ, Borad MA, Bhoi MN, Acharya PT, Bhavsar ZA, Patel HD. New dimensions in triazolo[4,3-a]pyrazine derivatives: The land of opportunity in organic and medicinal chemistry. Arab J Chem 2020; 13(12): 8532-91.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.038]
[22]
Zhao X, Zheng X, Fan TP, et al. A novel drug discovery strategy inspired by traditional medicine philosophies. Science 2015; 347(6219): S38-40.
[23]
Coban M, Morrison J, Freeman W, et al. Targeting Tmprss2, S-protein: Ace2, and 3CLpro for synergetic inhibitory engagement. chemrxiv 2020; 2020: 12616151.
[http://dx.doi.org/10.26434/chemrxiv.12616151.v1]
[24]
Kim GH, Jeon H, Khobragade TP, et al. Enzymatic synthesis of sitagliptin intermediate using a novel ω-transaminase. Enzyme Microb Technol 2019; 120: 52-60.
[http://dx.doi.org/10.1016/j.enzmictec.2018.10.003] [PMID: 30396399]
[25]
Liu Y, Hu Y, Liu T. Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: Medicinal chemistry and preclinical aspects. Curr Med Chem 2012; 19(23): 3982-99.
[http://dx.doi.org/10.2174/092986712802002491] [PMID: 22709010]
[26]
Banno Y, Miyamoto Y, Sasaki M, et al. Identification of 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones: A new class of potent, selective, and orally active non-peptide dipeptidyl peptidase IV inhibitors that form a unique interaction with Lys554. Bioorg Med Chem 2011; 19(16): 4953-70.
[http://dx.doi.org/10.1016/j.bmc.2011.06.059] [PMID: 21764322]
[27]
Chen J, Zhang W, Geng H, et al. Efficient synthesis of chiral β-arylisopropylamines by using catalytic asymmetric hydrogenation. Angew Chem Int Ed 2009; 48(4): 800-2.
[http://dx.doi.org/10.1002/anie.200805058] [PMID: 19101975]
[28]
Maezaki H, Banno Y, Miyamoto Y, et al. Discovery of potent, selective, and orally bioavailable quinoline-based dipeptidyl peptidase IV inhibitors targeting Lys554. Bioorg Med Chem 2011; 19(15): 4482-98.
[http://dx.doi.org/10.1016/j.bmc.2011.06.032] [PMID: 21741847]
[29]
Zhao G, Taunk PC, Magnin DR, et al. Diprolyl nitriles as potent dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2005; 15(18): 3992-5.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.043] [PMID: 16046120]
[30]
Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005; 48(1): 141-51.
[http://dx.doi.org/10.1021/jm0493156] [PMID: 15634008]
[31]
Hansen KB, Hsiao Y, Xu F, et al. Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 2009; 131(25): 8798-804.
[http://dx.doi.org/10.1021/ja902462q] [PMID: 19507853]
[32]
Uchida T, Nozaki K, Iwamura M. Chiral sensing of various amino acids using induced circularly polarized luminescence from europium (III) complexes of phenanthroline dicarboxylic acid derivatives. Chem Asian J 2016; 11(17): 2415-22.
[http://dx.doi.org/10.1002/asia.201600798] [PMID: 27380553]
[33]
Hussain H, Abbas G, Green IR, Ali I. Dipeptidyl peptidase IV inhibitors as a potential target for diabetes: Patent review (2015-2018). Expert Opin Ther Pat 2019; 29(7): 535-53.
[http://dx.doi.org/10.1080/13543776.2019.1632290] [PMID: 31203700]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy