Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Identifying Dental Pulp Stem Cell as a Novel Therapeutic trategy for Digestive Diseases

Author(s): Xieyin Sun, Zhaoyi Lin, Nuo Xu, Yinqi Chen, Saiyan Bian and Wenjie Zheng*

Volume 19, Issue 10, 2024

Published on: 24 November, 2023

Page: [1293 - 1302] Pages: 10

DOI: 10.2174/011574888X275737231120045815

Price: $65

Abstract

Mesenchymal stem cells (MSCs) have been identified as potential therapeutics for various diseases. In contrast to other sources of MSCs, dental stem cells (DSCs) have received increased attention due to their high activity and easy accessibility. Among them, dental pulp stem cells (DPSCs) exhibit superior self-renewal, multipotency, immunomodulatory, and regenerative capacities. Following their inspiring performance in animal models and clinical trials, DPSCs show pharmacological potential in regenerative medicine. In this review, we have generalized the sources, heterogeneity, and biological characteristics of DPSCs, as well as compared them with other types of dental stem cells. In addition, we summarized the application of DPSCs in digestive diseases (such as liver, esophageal, and intestinal diseases), highlighting their regenerative and pharmacological potential based on the existing preclinical and clinical evidence. Specifically, DPSCs can be home to injured or inflamed tissues and exert repair and regeneration functions by facilitating immune regulation, anti-inflammation, and directional differentiation. Although DPSCs have a rosy prospect, future studies should handle the underlying drawbacks and pave the way for the identification of DPSCs as novel regenerative medicine.

Next »
[1]
in ’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; Noort, W.A.; Claas, F.H.J.; Willemze, R.; Fibbe, W.E.; Kanhai, H.H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4), 1548-1549.
[http://dx.doi.org/10.1182/blood-2003-04-1291] [PMID: 12900350]
[2]
Secco, M.; Zucconi, E.; Vieira, N.M.; Fogaça, L.L.Q.; Cerqueira, A.; Carvalho, M.D.F.; Jazedje, T.; Okamoto, O.K.; Muotri, A.R.; Zatz, M. Multipotent stem cells from umbilical cord: Cord is richer than blood!. Stem Cells, 2008, 26(1), 146-150.
[http://dx.doi.org/10.1634/stemcells.2007-0381] [PMID: 17932423]
[3]
Gruber, H.E.; Deepe, R.; Hoelscher, G.L.; Ingram, J.A.; Norton, H.J.; Scannell, B.; Loeffler, B.J.; Zinchenko, N.; Hanley, E.N., Jr; Tapp, H. Human adipose-derived mesenchymal stem cells: Direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng. Part A, 2010, 16(9), 2843-2860.
[http://dx.doi.org/10.1089/ten.tea.2009.0709] [PMID: 20408770]
[4]
Friedenstein, A.J.; Piatetzky-Shapiro, I.I.; Petrakova, K.V. Osteogenesis in transplants of bone marrow cells. Development, 1966, 16(3), 381-390.
[http://dx.doi.org/10.1242/dev.16.3.381] [PMID: 5336210]
[5]
Staniowski, T.; Zawadzka-Knefel, A.; Skośkiewicz-Malinowska, K. Therapeutic potential of dental pulp stem cells according to different transplant types. Molecules, 2021, 26(24), 7423.
[http://dx.doi.org/10.3390/molecules26247423] [PMID: 34946506]
[6]
Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dentalpulp stem cells. J Dent Res 2002; 81(8): 531-5. http://dx.doi.org/10.1177/154405910208100806. PMID: 12147742
[7]
Mai, Z.; Chen, H.; Ye, Y.; Hu, Z.; Sun, W.; Cui, L.; Zhao, X. Translational and clinical applications of dental stem cell-derived exosomes. Front. Genet., 2021, 12, 750990.
[http://dx.doi.org/10.3389/fgene.2021.750990] [PMID: 34764982]
[8]
Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci, 2000, 97(25), 13625-13630.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[9]
Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem cell properties of human dental pulp stem cells. J. Dent. Res., 2002, 81(8), 531-535.
[http://dx.doi.org/10.1177/154405910208100806] [PMID: 12147742]
[10]
Botelho, J.; Cavacas, M.A.; Machado, V.; Mendes, J.J. Dental stem cells: Recent progresses in tissue engineering and regenerative medicine. Ann. Med., 2017, 49(8), 644-651.
[http://dx.doi.org/10.1080/07853890.2017.1347705] [PMID: 28649865]
[11]
Liu, Y.; Wang, L.; Liu, S.; Liu, D.; Chen, C.; Xu, X.; Chen, X.; Shi, S. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J. Dent. Res., 2014, 93(11), 1124-1132.
[http://dx.doi.org/10.1177/0022034514552675] [PMID: 25252877]
[12]
Huang, G.T.J.; Yamaza, T.; Shea, L.D.; Djouad, F.; Kuhn, N.Z.; Tuan, R.S.; Shi, S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng. Part A, 2010, 16(2), 605-615.
[http://dx.doi.org/10.1089/ten.tea.2009.0518] [PMID: 19737072]
[13]
Yamaza, T.; Kentaro, A.; Chen, C.; Liu, Y.; Shi, Y.; Gronthos, S.; Wang, S.; Shi, S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res. Ther., 2010, 1(1), 5.
[http://dx.doi.org/10.1186/scrt5] [PMID: 20504286]
[14]
Liu, Y.; Chen, C.; Liu, S.; Liu, D.; Xu, X.; Chen, X.; Shi, S. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J. Dent. Res., 2015, 94(1), 209-218.
[http://dx.doi.org/10.1177/0022034514557672] [PMID: 25394850]
[15]
Kaukua, N.; Shahidi, M.K.; Konstantinidou, C.; Dyachuk, V.; Kaucka, M.; Furlan, A.; An, Z.; Wang, L.; Hultman, I.; Ährlund-Richter, L.; Blom, H.; Brismar, H.; Lopes, N.A.; Pachnis, V.; Suter, U.; Clevers, H.; Thesleff, I.; Sharpe, P.; Ernfors, P.; Fried, K.; Adameyko, I. Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513(7519), 551-554.
[http://dx.doi.org/10.1038/nature13536] [PMID: 25079316]
[16]
Arthur, A.; Rychkov, G.; Shi, S.; Koblar, S.A.; Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 2008, 26(7), 1787-1795.
[http://dx.doi.org/10.1634/stemcells.2007-0979] [PMID: 18499892]
[17]
Ishizaka, R.; Hayashi, Y.; Iohara, K.; Sugiyama, M.; Murakami, M.; Yamamoto, T.; Fukuta, O.; Nakashima, M. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials, 2013, 34(8), 1888-1897.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.045] [PMID: 23245334]
[18]
Iohara, K.; Zheng, L.; Ito, M.; Ishizaka, R.; Nakamura, H.; Into, T.; Matsushita, K.; Nakashima, M. Regeneration of dental pulp after pulpotomy by transplantation of CD31 -/CD146 - side population cells from a canine tooth. Regen. Med., 2009, 4(3), 377-385.
[http://dx.doi.org/10.2217/rme.09.5] [PMID: 19438313]
[19]
Iohara, K.; Murakami, M.; Takeuchi, N.; Osako, Y.; Ito, M.; Ishizaka, R.; Utunomiya, S.; Nakamura, H.; Matsushita, K.; Nakashima, M. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl. Med., 2013, 2(7), 521-533.
[http://dx.doi.org/10.5966/sctm.2012-0132] [PMID: 23761108]
[20]
Zhao, H.; Feng, J.; Seidel, K.; Shi, S.; Klein, O.; Sharpe, P.; Chai, Y. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell, 2014, 14(2), 160-173.
[http://dx.doi.org/10.1016/j.stem.2013.12.013] [PMID: 24506883]
[21]
Sui, B.; Chen, C.; Kou, X.; Li, B.; Xuan, K.; Shi, S.; Jin, Y. Pulp stem cell–mediated functional pulp regeneration. J. Dent. Res., 2019, 98(1), 27-35.
[http://dx.doi.org/10.1177/0022034518808754] [PMID: 30372659]
[22]
Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci., 2003, 100(10), 5807-5812.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[23]
An, Z.; Sabalic, M.; Bloomquist, R.F.; Fowler, T.E.; Streelman, T.; Sharpe, P.T. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun., 2018, 9(1), 378.
[http://dx.doi.org/10.1038/s41467-017-02785-6] [PMID: 29371677]
[24]
Liu, Y.; Jing, H.; Kou, X.; Chen, C.; Liu, D.; Jin, Y.; Lu, L.; Shi, S. PD-1 is required to maintain stem cell properties in human dental pulp stem cells. Cell Death Differ., 2018, 25(7), 1350-1360.
[http://dx.doi.org/10.1038/s41418-018-0077-8] [PMID: 29472716]
[25]
Iohara, K.; Imabayashi, K.; Ishizaka, R.; Watanabe, A.; Nabekura, J.; Ito, M.; Matsushita, K.; Nakamura, H.; Nakashima, M. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng. Part A, 2011, 17(15-16), 1911-1920.
[http://dx.doi.org/10.1089/ten.tea.2010.0615] [PMID: 21417716]
[26]
Sui, B.; Wu, D.; Xiang, L.; Fu, Y.; Kou, X.; Shi, S. Dental pulp stem cells: From discovery to clinical application. J. Endod., 2020, 46(9), S46-S55.
[http://dx.doi.org/10.1016/j.joen.2020.06.027] [PMID: 32950195]
[27]
Galipeau, J.; Sensébé, L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell, 2018, 22(6), 824-833.
[http://dx.doi.org/10.1016/j.stem.2018.05.004] [PMID: 29859173]
[28]
Nosrat, I.V.; Smith, C.A.; Mullally, P.; Olson, L.; Nosrat, C.A. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur. J. Neurosci., 2004, 19(9), 2388-2398.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03314.x] [PMID: 15128393]
[29]
Kou, X.; Xu, X.; Chen, C.; Sanmillan, M.L.; Cai, T.; Zhou, Y.; Giraudo, C.; Le, A.; Shi, S. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med., 2018, 10(432), eaai8524.
[http://dx.doi.org/10.1126/scitranslmed.aai8524] [PMID: 29540618]
[30]
Jarmalavičiūtė, A.; Tunaitis, V.; Pivoraitė, U.; Venalis, A.; Pivoriūnas, A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis. Cytotherapy, 2015, 17(7), 932-939.
[http://dx.doi.org/10.1016/j.jcyt.2014.07.013] [PMID: 25981557]
[31]
Lee, A.E.; Choi, J.G.; Shi, S.H.; He, P.; Zhang, Q.Z.; Le, A.D. DPSC-derived extracellular vesicles promote rat jawbone regeneration. J. Dent. Res., 2023, 102(3), 313-321.
[http://dx.doi.org/10.1177/00220345221133716] [PMID: 36348514]
[32]
Imanishi, Y.; Hata, M.; Matsukawa, R.; Aoyagi, A.; Omi, M.; Mizutani, M.; Naruse, K.; Ozawa, S.; Honda, M.; Matsubara, T.; Takebe, J. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects. Inflamm. Regen., 2021, 41(1), 12.
[http://dx.doi.org/10.1186/s41232-021-00163-w] [PMID: 33853679]
[33]
Takaoka, S.; Uchida, F.; Ishikawa, H.; Toyomura, J.; Ohyama, A.; Watanabe, M.; Matsumura, H.; Marushima, A.; Iizumi, S.; Fukuzawa, S.; Ishibashi-Kanno, N.; Yamagata, K.; Yanagawa, T.; Matsumaru, Y.; Bukawa, H. Transplanted neural lineage cells derived from dental pulp stem cells promote peripheral nerve regeneration. Hum. Cell, 2022, 35(2), 462-471.
[http://dx.doi.org/10.1007/s13577-021-00634-9] [PMID: 34993901]
[34]
Zheng, C.; Chen, J.; Liu, S.; Jin, Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int. J. Oral Sci., 2019, 11(3), 23.
[http://dx.doi.org/10.1038/s41368-019-0060-3] [PMID: 31423011]
[35]
El Moshy, S.; Radwan, I.A.; Rady, D.; Abbass, M.M.S.; El-Rashidy, A.A.; Sadek, K.M.; Dörfer, C.E.; Fawzy El-Sayed, K.M. Dental stem cell-derived secretome/conditioned medium: The future for regenerative therapeutic applications. Stem Cells Int., 2020, 2020, 1-29.
[http://dx.doi.org/10.1155/2020/7593402] [PMID: 32089709]
[36]
Tanikawa, D.Y.S.; Pinheiro, C.C.G.; Almeida, M.C.A.; Oliveira, C.R.G.C.M.; Coudry, R.A.; Rocha, D.L.; Bueno, D.F. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/6234167] [PMID: 32256610]
[37]
Ye, Q.; Wang, H.; Xia, X.; Zhou, C.; Liu, Z.; Xia, Z.; Zhang, Z.; Zhao, Y.; Yehenala, J.; Wang, S.; Zhou, G.; Hu, K.; Wu, B.; Wu, C.T.; Wang, S.; He, Y. Safety and efficacy assessment of allogeneic human dental pulp stem cells to treat patients with severe COVID-19: Structured summary of a study protocol for a randomized controlled trial (Phase I/II). Trials, 2020, 21(1), 520.
[http://dx.doi.org/10.1186/s13063-020-04380-5] [PMID: 32532356]
[38]
Song, W.P.; Jin, L.Y.; Zhu, M.D.; Wang, H.; Xia, D.S. Clinical trials using dental stem cells: 2022 update. World J. Stem Cells, 2023, 15(3), 31-51.
[http://dx.doi.org/10.4252/wjsc.v15.i3.31] [PMID: 37007456]
[39]
Pinheiro, C.C.G.; Leyendecker Junior, A.; Tanikawa, D.Y.S.; Ferreira, J.R.M.; Jarrahy, R.; Bueno, D.F. Is there a noninvasive source of MSCs isolated with GMP methods with better osteogenic potential? Stem Cells Int., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/7951696] [PMID: 31781247]
[40]
Wenceslau, C.V.; de Souza, D.M.; Mambelli-Lisboa, N.C.; Ynoue, L.H.; Araldi, R.P.; da Silva, J.M.; Pagani, E.; Haddad, M.S.; Kerkis, I. Restoration of BDNF, DARPP32, and D2R expression following intravenous infusion of human immature dental pulp stem cells in huntington’s disease 3-NP rat model. Cells, 2022, 11(10), 1664.
[http://dx.doi.org/10.3390/cells11101664] [PMID: 35626701]
[41]
Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol., 2020, 18(12), 2650-2666.
[http://dx.doi.org/10.1016/j.cgh.2019.07.060] [PMID: 31401364]
[42]
Du, X.S.; Li, H.D.; Yang, X.J.; Li, J.J.; Xu, J.J.; Chen, Y.; Xu, Q.Q.; Yang, L.; He, C.S.; Huang, C.; Meng, X.M.; Li, J. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol., 2019, 75, 105671.
[http://dx.doi.org/10.1016/j.intimp.2019.05.056] [PMID: 31377590]
[43]
Devaraj, E.; Perumal, E.; Subramaniyan, R.; Mustapha, N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology, 2022, 76(1), 275-285.
[http://dx.doi.org/10.1002/hep.32239] [PMID: 34773651]
[44]
Schildberg, F.A.; Sharpe, A.H.; Turley, S.J. Hepatic immune regulation by stromal cells. Curr. Opin. Immunol., 2015, 32, 1-6.
[http://dx.doi.org/10.1016/j.coi.2014.10.002] [PMID: 25463592]
[45]
Luo, N.; Li, J.; Wei, Y.; Lu, J.; Dong, R. Hepatic stellate cell: A double-edged sword in the liver. Physiol. Res., 2021, 70(6), 821-829.
[http://dx.doi.org/10.33549/physiolres.934755] [PMID: 34717063]
[46]
Kim, H.J.; Cho, Y.A.; Lee, Y.M.; Lee, S.Y.; Bae, W.J.; Kim, E.C. PIN1 suppresses the hepatic differentiation of pulp stem cells via Wnt3a. J. Dent. Res., 2016, 95(12), 1415-1424.
[http://dx.doi.org/10.1177/0022034516659642] [PMID: 27439725]
[47]
Psaraki, A.; Ntari, L.; Karakostas, C.; Korrou-Karava, D.; Roubelakis, M.G. Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatology, 2022, 75(6), 1590-1603.
[http://dx.doi.org/10.1002/hep.32129] [PMID: 34449901]
[48]
Li, P.; Ou, Q.; Shi, S.; Shao, C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell. Mol. Immunol., 2023, 20(6), 558-569.
[http://dx.doi.org/10.1038/s41423-023-00998-y] [PMID: 36973490]
[49]
Yao, J.; Chen, N.; Wang, X.; Zhang, L.; Huo, J.; Chi, Y.; Li, Z.; Han, Z. Human supernumerary teeth-derived apical papillary stem cells possess preferable characteristics and efficacy on hepatic fibrosis in mice. Stem Cells Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/6489396] [PMID: 32399047]
[50]
Nagano, T.; Mori-Kudo, I.; Kawamura, T.; Taiji, M.; Noguchi, H. Pre- or post-treatment with hepatocyte growth factor prevents glycerol-induced acute renal failure. Ren. Fail., 2004, 26(1), 5-11.
[http://dx.doi.org/10.1081/JDI-120028537] [PMID: 15083915]
[51]
Li, J.T.; Liao, Z.X.; Ping, J.; Xu, D.; Wang, H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J. Gastroenterol., 2008, 43(6), 419-428.
[http://dx.doi.org/10.1007/s00535-008-2180-y] [PMID: 18600385]
[52]
Mormone, E.; George, J.; Nieto, N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem. Biol. Interact., 2011, 193(3), 225-231.
[http://dx.doi.org/10.1016/j.cbi.2011.07.001] [PMID: 21803030]
[53]
Iwanaka, T.; Yamaza, T.; Sonoda, S.; Yoshimaru, K.; Matsuura, T.; Yamaza, H.; Ohga, S.; Oda, Y.; Taguchi, T. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment. Stem Cell Res. Ther., 2020, 11(1), 134.
[http://dx.doi.org/10.1186/s13287-020-01630-w] [PMID: 32213198]
[54]
Morishita, R.; Aoki, M.; Yo, Y.; Ogihara, T. Hepatocyte growth factor as cardiovascular hormone: Role of HGF in the pathogenesis of cardiovascular disease. Endocr. J., 2002, 49(3), 273-284.
[http://dx.doi.org/10.1507/endocrj.49.273] [PMID: 12201209]
[55]
Ding, B.S.; Nolan, D.J.; Butler, J.M.; James, D.; Babazadeh, A.O.; Rosenwaks, Z.; Mittal, V.; Kobayashi, H.; Shido, K.; Lyden, D.; Sato, T.N.; Rabbany, S.Y.; Rafii, S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468(7321), 310-315.
[http://dx.doi.org/10.1038/nature09493] [PMID: 21068842]
[56]
Kawaida, K.; Matsumoto, K.; Shimazu, H.; Nakamura, T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc. Natl. Acad. Sci., 1994, 91(10), 4357-4361.
[http://dx.doi.org/10.1073/pnas.91.10.4357] [PMID: 8183913]
[57]
Cao, X.; Jin, S.; Sun, L.; Zhan, Y.; Lin, F.; Li, Y.; Zhou, Y.; Wang, X.; Gao, L.; Zhang, B. Therapeutic effects of hepatocyte growth factor-overexpressing dental pulp stem cells on liver cirrhosis in a rat model. Sci. Rep., 2017, 7(1), 15812.
[http://dx.doi.org/10.1038/s41598-017-14995-5] [PMID: 29150644]
[58]
Verma, V.; Simone, C., II; Werner-Wasik, M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers, 2017, 9(12), 120.
[http://dx.doi.org/10.3390/cancers9090120] [PMID: 28885561]
[59]
Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist, 2010, 15(4), 360-371.
[http://dx.doi.org/10.1634/theoncologist.2009-S104] [PMID: 20413641]
[60]
Palma, D.A.; Senan, S.; Oberije, C.; Belderbos, J.; Dios, N.R.; Bradley, J.D.; Barriger, R.B.; Moreno-Jiménez, M.; Kim, T.H.; Ramella, S.; Everitt, S.; Rengan, R.; Marks, L.B.; De Ruyck, K.; Warner, A.; Rodrigues, G. Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: An individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(4), 690-696.
[http://dx.doi.org/10.1016/j.ijrobp.2013.07.029] [PMID: 24035329]
[61]
Kim, D.B.; Bowers, S.; Thomas, M. Black and white esophagus: Rare presentations of severe esophageal ischemia. Semin. Thorac. Cardiovasc. Surg., 2017, 29(2), 256-259.
[http://dx.doi.org/10.1053/j.semtcvs.2017.01.006] [PMID: 28823340]
[62]
Zhang, C.; Zhang, Y.; Feng, Z.; Zhang, F.; Liu, Z.; Sun, X.; Ruan, M.; Liu, M.; Jin, S. Therapeutic effect of dental pulp stem cell transplantation on a rat model of radioactivity-induced esophageal injury. Cell Death Dis., 2018, 9(7), 738.
[http://dx.doi.org/10.1038/s41419-018-0753-0] [PMID: 29970894]
[63]
Herrera-Imbroda, B.; Aragón, I.M.; Hierro, M.I.; Álvarez, M.; Alaminos, M.; Campos, A.; Izeta, A.; Machuca, J.; Lara, M.F. An immunohistochemical study of cytokeratins distribution of the human adult male and female urethra. Histol. Histopathol., 2017, 32(3), 283-291.
[PMID: 27337975]
[64]
Giampietri, C.; Petrungaro, S.; Coluccia, P.; Antonangeli, F.; Giannakakis, K.; Faraggiana, T.; Filippini, A.; Cossu, G.; Ziparo, E. c-Flip overexpression affects satellite cell proliferation and promotes skeletal muscle aging. Cell Death Dis., 2010, 1(4), e38.
[http://dx.doi.org/10.1038/cddis.2010.17] [PMID: 21364645]
[65]
Croagh, D.; Phillips, W.A.; Redvers, R.; Thomas, R.J.S.; Kaur, P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells, 2007, 25(2), 313-318.
[http://dx.doi.org/10.1634/stemcells.2006-0421] [PMID: 17038667]
[66]
Croagh, D.; Thomas, R.J.S.; Phillips, W.A.; Kaur, P. Esophageal stem cells-a review of their identification and characterization. Stem Cell Rev., 2008, 4(4), 261-268.
[http://dx.doi.org/10.1007/s12015-008-9031-3] [PMID: 18679835]
[67]
Loftus, E.V., Jr Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 2004, 126(6), 1504-1517.
[http://dx.doi.org/10.1053/j.gastro.2004.01.063] [PMID: 15168363]
[68]
Kumar, M.; Garand, M.; Al Khodor, S. Integrating omics for a better understanding of Inflammatory Bowel Disease: A step towards personalized medicine. J. Transl. Med., 2019, 17(1), 419.
[http://dx.doi.org/10.1186/s12967-019-02174-1] [PMID: 31836022]
[69]
Conrad, K.; Roggenbuck, D.; Laass, M.W. Diagnosis and classification of ulcerative colitis. Autoimmun. Rev., 2014, 13(4-5), 463-466.
[http://dx.doi.org/10.1016/j.autrev.2014.01.028] [PMID: 24424198]
[70]
West, N.R.; Hegazy, A.N.; Owens, B.M.J.; Bullers, S.J.; Linggi, B.; Buonocore, S.; Coccia, M.; Görtz, D.; This, S.; Stockenhuber, K.; Pott, J.; Friedrich, M.; Ryzhakov, G.; Baribaud, F.; Brodmerkel, C.; Cieluch, C.; Rahman, N.; Müller-Newen, G.; Owens, R.J.; Kühl, A.A.; Maloy, K.J.; Plevy, S.E.; Keshav, S.; Travis, S.P.L.; Powrie, F. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat. Med., 2017, 23(5), 579-589.
[http://dx.doi.org/10.1038/nm.4307] [PMID: 28368383]
[71]
Lightner, A.L. Duodenal Crohn’s Disease. Inflamm. Bowel Dis., 2018, 24(3), 546-551.
[http://dx.doi.org/10.1093/ibd/izx083] [PMID: 29462397]
[72]
Liu, H.; Liang, Z.; Wang, F.; Zhou, C.; Zheng, X.; Hu, T.; He, X.; Wu, X.; Lan, P. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight, 2019, 4(24), e131273.
[http://dx.doi.org/10.1172/jci.insight.131273] [PMID: 31689240]
[73]
Li, N.; Zhang, Y.; Nepal, N.; Li, G.; Yang, N.; Chen, H.; Lin, Q.; Ji, X.; Zhang, S.; Jin, S. Dental pulp stem cells overexpressing hepatocyte growth factor facilitate the repair of DSS-induced ulcerative colitis. Stem Cell Res. Ther., 2021, 12(1), 30.
[http://dx.doi.org/10.1186/s13287-020-02098-4] [PMID: 33413675]
[74]
Zhao, Y.; Wang, L.; Jin, Y.; Shi, S. Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J. Dent. Res., 2012, 91(10), 948-954.
[http://dx.doi.org/10.1177/0022034512458690] [PMID: 22904205]
[75]
Duijvestein, M.; Vos, A.C.W.; Roelofs, H.; Wildenberg, M.E.; Wendrich, B.B.; Verspaget, H.W.; Kooy-Winkelaar, E.M.C.; Koning, F.; Zwaginga, J.J.; Fidder, H.H.; Verhaar, A.P.; Fibbe, W.E.; van den Brink, G.R.; Hommes, D.W. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: Results of a phase I study. Gut, 2010, 59(12), 1662-1669.
[http://dx.doi.org/10.1136/gut.2010.215152] [PMID: 20921206]
[76]
Barnhoorn, M.C.; Wasser, M.N.J.M.; Roelofs, H.; Maljaars, P.W.J.; Molendijk, I.; Bonsing, B.A.; Oosten, L.E.M.; Dijkstra, G.; van der Woude, C.J.; Roelen, D.L.; Zwaginga, J.J.; Verspaget, H.W.; Fibbe, W.E.; Hommes, D.W.; Peeters, K.C.M.J.; van der Meulen-de Jong, A.E. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for crohn’s disease perianal fistulas. J. Crohn’s Colitis, 2020, 14(1), 64-70.
[http://dx.doi.org/10.1093/ecco-jcc/jjz116] [PMID: 31197361]
[77]
Vieujean, S.; Loly, J.P.; Boutaffala, L.; Meunier, P.; Reenaers, C.; Briquet, A.; Lechanteur, C.; Baudoux, E.; Beguin, Y.; Louis, E. Mesenchymal stem cell injection in crohn’s disease strictures: A phase I–II clinical study. J. Crohn’s Colitis, 2022, 16(3), 506-510.
[http://dx.doi.org/10.1093/ecco-jcc/jjab154] [PMID: 34473270]
[78]
Wang, H. MicroRNAs and apoptosis in colorectal cancer. Int. J. Mol. Sci., 2020, 21(15), 5353.
[http://dx.doi.org/10.3390/ijms21155353] [PMID: 32731413]
[79]
Lei, G.; Xu, M.; Xu, Z.; Lu, C.; Tan, S. Combination of novel DR5 targeting agonistic scFv antibody TR2-3 with cisplatin shows enhanced synergistic antitumor activity in vitro and in vivo. Biomed. Pharmacother., 2018, 98, 271-279.
[http://dx.doi.org/10.1016/j.biopha.2017.12.033] [PMID: 29272788]
[80]
Liu, F.R.; Bai, S.; Feng, Q.; Pan, X.Y.; Song, S.L.; Fang, H.; Cui, J.; Yang, J.L. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer, 2018, 18(1), 1087.
[http://dx.doi.org/10.1186/s12885-018-4989-y] [PMID: 30419845]
[81]
Rajabinejad, M.; Ranjbar, S.; Afshar Hezarkhani, L.; Salari, F.; Gorgin Karaji, A.; Rezaiemanesh, A. Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: A clinical and preclinical systematic review. J. Cell. Physiol., 2020, 235(6), 5030-5040.
[http://dx.doi.org/10.1002/jcp.29401] [PMID: 31788795]
[82]
Rajabinejad, M.; Salari, F.; Gorgin Karaji, A.; Rezaiemanesh, A. The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti- or pro-inflammatory cells? Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4149-4158.
[http://dx.doi.org/10.1080/21691401.2019.1687504] [PMID: 31698956]
[83]
Lee, H.Y.; Hong, I.S. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci., 2017, 108(10), 1939-1946.
[http://dx.doi.org/10.1111/cas.13334] [PMID: 28756624]
[84]
Nikkhah, E.; Kalalinia, F.; Asgharian Rezaee, M.; Tayarani-Najaran, Z. Suppressive effects of dental pulp stem cells and its conditioned medium on development and migration of colorectal cancer cells through MAPKinase pathways. Iran. J. Basic Med. Sci., 2021, 24(9), 1292-1300.
[PMID: 35083017]
[85]
Chen, K.; Liu, Q.; Tsang, L.L.; Ye, Q.; Chan, H.C.; Sun, Y.; Jiang, X. Human MSCs promotes colorectal cancer epithelial–mesenchymal transition and progression via CCL5/β-catenin/Slug pathway. Cell Death Dis., 2017, 8(5), e2819.
[http://dx.doi.org/10.1038/cddis.2017.138] [PMID: 28542126]
[86]
Sani, I.K.; Marashi, S.H.; Kalalinia, F. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicol. In vitro 2015, 29(5), 893-900.
[http://dx.doi.org/10.1016/j.tiv.2015.03.012] [PMID: 25819016]
[87]
Ramazani, E.; Tayarani-Najaran, Z.; Fereidoni, M. Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran. J. Basic Med. Sci., 2019, 22(5), 477-484.
[PMID: 31217926]
[88]
Rahiman, N.; Akaberi, M.; Sahebkar, A.; Emami, S.A.; Tayarani-Najaran, Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc. Res., 2018, 118, 82-89.
[http://dx.doi.org/10.1016/j.mvr.2018.03.003] [PMID: 29524452]
[89]
Yamada, Y.; Nakamura-Yamada, S.; Kusano, K.; Baba, S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci., 2019, 20(5), 1132.
[http://dx.doi.org/10.3390/ijms20051132] [PMID: 30845639]
[90]
Wilson, R.; Urraca, N.; Skobowiat, C.; Hope, K.A.; Miravalle, L.; Chamberlin, R.; Donaldson, M.; Seagroves, T.N.; Reiter, L.T. Assessment of the tumorigenic potential of spontaneously immortalized and hTERT -immortalized cultured dental pulp stem cells. Stem Cells Transl. Med., 2015, 4(8), 905-912.
[http://dx.doi.org/10.5966/sctm.2014-0196] [PMID: 26032749]
[91]
Masuda, K.; Han, X.; Kato, H.; Sato, H.; Zhang, Y.; Sun, X.; Hirofuji, Y.; Yamaza, H.; Yamada, A.; Fukumoto, S. Dental pulp-derived mesenchymal stem cells for modeling genetic disorders. Int. J. Mol. Sci., 2021, 22(5), 2269.
[http://dx.doi.org/10.3390/ijms22052269] [PMID: 33668763]
[92]
Rubio, D.; Garcia, S.; Paz, M.F.; De la Cueva, T.; Lopez-Fernandez, L.A.; Lloyd, A.C.; Garcia-Castro, J.; Bernad, A. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One, 2008, 3(1), e1398.
[http://dx.doi.org/10.1371/journal.pone.0001398] [PMID: 18167557]
[93]
Spagnuolo G. Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent J 2018; 6(4).
[http://dx.doi.org/10.3390/dj6040072]
[94]
Li, Y.; Lü, X.; Sun, X.; Bai, S.; Li, S.; Shi, J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch. Oral Biol., 2011, 56(11), 1221-1229.
[http://dx.doi.org/10.1016/j.archoralbio.2011.05.002] [PMID: 21641578]
[95]
Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J. Dent. Res., 2014, 93(12), 1296-1303.
[http://dx.doi.org/10.1177/0022034514550040] [PMID: 25201919]
[96]
Prescott, R.S.; Alsanea, R.; Fayad, M.I.; Johnson, B.R.; Wenckus, C.S.; Hao, J.; John, A.S.; George, A. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J. Endod., 2008, 34(4), 421-426.
[http://dx.doi.org/10.1016/j.joen.2008.02.005] [PMID: 18358888]
[97]
Shen, Z.; Kuang, S.; Zhang, Y.; Yang, M.; Qin, W.; Shi, X.; Lin, Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater., 2020, 5(4), 1113-1126.
[http://dx.doi.org/10.1016/j.bioactmat.2020.07.002] [PMID: 32743122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy