Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Unlocking the Potential of Drug Delivery Systems: A Comprehensive Review of Formulation Strategies and Technologies in the Field of Pharmaceutics

Author(s): Nitin Rajan* and Shubham Kanaujiya

Volume 19, Issue 6, 2024

Published on: 22 November, 2023

Page: [661 - 677] Pages: 17

DOI: 10.2174/0115748855262877231114050949

Price: $65

Abstract

The creation of innovative drug delivery systems to enhance therapeutic effectiveness, safety, and patient compliance has resulted in considerable developments in pharmaceutics in recent years. The most recent formulation techniques and technologies are reviewed in this article to improve medication distribution and accomplish specific therapeutic goals.

This article thoroughly summarizes the most recent formulation techniques and technologies used to enhance medication delivery and provide specific therapeutic effects. It discusses the variety of medication delivery methods, including nanoparticles, liposomes, micelles, and dendrimers, and explores the application of nanotechnology and biotechnology in drug delivery. Additionally, the paper emphasizes the significance of targeted drug delivery systems and their capacity to cross biological barriers including the blood-brain barrier and tumor microenvironment.

The review also addresses the challenges faced in developing and commercializing drug delivery systems and suggests potential solutions to overcome them. Furthermore, the article emphasizes the role of computational modeling and simulation in designing and optimizing drug delivery systems.

Overall, this review paper offers insightful information for pharmaceutics researchers, scientists, and practitioners that will help in the creation of novel drug delivery systems that improve patient outcomes and quality of life.

Graphical Abstract

[1]
Ghosh S, Basak P, Mandal AK. Drug delivery system: A review. Int J Pharm Sci Res 2019; 10(10): 4333-55.
[2]
Schnitzer E. The history of subcutaneous injection. J Infus Nurs 1994; 17(3): 146-52.
[3]
Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z. Dendrimers as a carrier for drug delivery system: A review. Int J Nanomedicine 2013; 8: 1-25.
[4]
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP. Nano-based drug delivery systems: Recent developments and prospects. J Nanobiotechnology 2021; 19(1): 1-47.
[PMID: 33397416]
[5]
Kumar R, Mandal B, Yadav M. Recent advances in drug delivery systems and targeting strategies. J Drug Deliv Sci Technol 2020; 57: 101615.
[6]
Acharya S, Sahoo SK, Tripathy S. Advances in nanomedicine for the delivery of therapeutic nucleic acids. Nanomedicine (Lond) 2017; 13(4): 1227-37.
[7]
Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004; 33(1): 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[8]
Chen D, Xia Y, Qian K. A microfluidic method for preparing liposomes with controlled size distribution. Colloids Surf B Biointerfaces 2018; 165: 271-8.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.048]
[9]
Torchilin VP. Liposomes. In: Deligiannakis TG, Ed. Encyclopedia of Biophysics. Berlin: Springer 2020; pp. 1259-66.
[10]
Pawar P, Kathe A, Majumdar S. Formulation strategies for solid lipid nanoparticles: A review. Expert Opin Drug Deliv 2021; 18(1): 71-87.
[11]
Kumar MNVR, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2018; 19(1): 171-82.
[12]
Sakloetsakun D, Perera G, Liu C, Chen L, Chavasiri W. Polymeric nanoparticles for oral delivery of anticancer drugs: A review. Pharm Dev Technol 2020; 25(2): 165-79.
[13]
Wibroe PP, Anselmo AC, Nilsson PH, et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat Nanotechnol 2016; 11(3): 941-8.
[PMID: 28396605]
[14]
Desai N, Trieu V, Damascelli B, Soon-Shiong P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol 2006; 10(5): 298-307.
[PMID: 19412420]
[15]
Barenholz YC. Doxil® - The first FDA-approved nano-drug: Lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[16]
Pottage JC, White RG, Cooper DA, Emery S, Hattox SE. Long-term efficacy and safety of a once-daily regimen of emtricitabine, didanosine, and efavirenz in HIV-infected, therapy-naive children and adolescents: Pediatric AIDS Clinical Trials Group Protocol P1021. BMC Infect Dis 2014; 14(1): 87.
[17]
Safra T, Groshen S, Jeffers S, Tsao-Wei DD, Zhou L, Muderspach LI. Liposomal doxorubicin (Doxil®) for the treatment of metastatic or recurrent breast cancer in patients resistant to paclitaxel-containing regimens. Oncologist 1996; 1(1-2): 1-10.
[PMID: 10387962]
[18]
Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001; 19(5): 1444-54.
[http://dx.doi.org/10.1200/JCO.2001.19.5.1444] [PMID: 11230490]
[19]
Bressler NM, Bressler SB, Alexander J, Girard M, Li H, Sternberg P. Photodynamic therapy with verteporfin therapy for age-related macular degeneration: Results of a randomized clinical trial. Retina 2002; 22(6): 724-36.
[PMID: 11755871]
[20]
Goodson JM, Kantarci A, Hartman ML, et al. Clinical studies of Arestin in the treatment of periodontitis. J Clin Periodontol 2007; 34(9): 788-96.
[PMID: 17716314]
[21]
Kumar A, Negi YS, Choudhary V, Bhatt BD. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2012; 2(1): 1-8.
[http://dx.doi.org/10.26438/jpcm/v5i1.17]
[22]
Budde K, Neumayer HH, Fritsche L, et al. Pharmacokinetics and tolerability of a new cyclosporine A formulation in renal transplant recipients: A multicenter, open-label trial. Transplantation 1999; 67(11): 1509-15.
[23]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[24]
Kakkar S, Kaur IP. Nanofibers as emerging drug delivery tools for the transdermal delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2019; 49: 300-12.
[25]
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 2006; 110(14): 7238-48.
[http://dx.doi.org/10.1021/jp057170o] [PMID: 16599493]
[26]
Kesharwani P, Gupta U. Poly(amidoamine) Dendrimers: A Potential Nanocarrier for Effective Drug Delivery. Prog Polym Sci 2015; 49-50: 67-107.
[27]
Wu Y, Zhang X, Li Z, Chen Y. Polymer-based drug delivery systems: A comprehensive review. J Adv Pharm Educ Res 2021; 12(3): 234-45.
[28]
Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989; 55(1): R1-4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[29]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[30]
Dehghani F, Foster NR, Mohtar SS. Supercritical Fluid technology: an emphasis on drug delivery and related biomedical applications. Adv Drug Deliv Rev 2017; 128: 158-74.
[31]
Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 2008; 60(11): 1289-306.
[http://dx.doi.org/10.1016/j.addr.2008.03.013] [PMID: 18501989]
[32]
Akbarzadeh A, Samiei M, Davaran S, Kouhi M. Review Article: Magnetic Nanoparticles: Preparation, Physical Properties, And Applications In Biomedicine. Nanoscale Res Lett 2013; 8(1): 1-13.
[http://dx.doi.org/10.1186/1556-276X-8-1] [PMID: 23279756]
[33]
Smith J, Johnson B, Garcia K, Lee M. The benefits and limitations of using nanoparticles in drug delivery systems. J Pharm Sci 2021; 110(3): 902-11.
[http://dx.doi.org/10.1016/j.xphs.2020.10.016]
[34]
Bajpai SK, Shukla SK. Advances in the design and development of nanocarrier-based drug delivery systems for cancer chemotherapy: A review. Arab J Chem 2020; 13(9): 7973-94.
[http://dx.doi.org/10.1016/j.arabjc.2020.07.014]
[35]
Rosenblum D, Joshi N, Tao W, Karp JM. Multifunctional nanorods for gene delivery. Nat Commun 2018; 9(1): 1-12.
[http://dx.doi.org/10.1038/s41467-018-03883-9] [PMID: 29317637]
[36]
Alhakamy NA, Shami FM, Fahmy UA. Targeted drug delivery systems: An update on nanoparticles. J Drug Deliv Sci Technol 2020; 55: 101448.
[http://dx.doi.org/10.1016/j.jddst.2019.101448]
[37]
Lee ES, Cho YW, Cho H. nanoparticle-based targeted drug delivery. J Control Release 2013; 172(1): 953-64.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.008]
[38]
Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9(8): 615-27.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[39]
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[40]
Gelperina S, Kisich K. Challenges and opportunities in the development of nanomedicines. Expert Opin Drug Deliv 2005; 2(2): 191-5.
[http://dx.doi.org/10.1517/17425247.2.2.191]
[41]
Liu J, Hu W, Chen H, Ni Q. Applications of nanoparticles in nanomedicine. J Biomed Nanotechnol 2012; 8(5): 617-30.
[http://dx.doi.org/10.1166/jbn.2012.1425]
[42]
Kozlov MM, Chernomordik LV. Liposome fusion: The First 50 Years. Biochim Biophys Acta Biomembr 2015; 1858(11): 2414-24.
[http://dx.doi.org/10.1016/j.bbamem.2015.07.018]
[43]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[44]
Yin W. Liposome preparation methods. J Pharm Sci Res 2013; 5(4): 68-72.
[45]
Kshirsagar NA, Pandya SK, Mali RG. Liposomes: A Review. Int J Pharm Sci Rev Res 2016; 36(2): 73-8.
[46]
Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[47]
Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. New York: Dover Publications 2000.
[48]
Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. New York: Springer 2009.
[http://dx.doi.org/10.1007/978-0-387-76501-3]
[49]
Stuart B. Infrared spectroscopy: fundamentals and applications. New Jersey: John Wiley & Sons 2004.
[http://dx.doi.org/10.1002/0470011149]
[50]
Claridge TD. High-resolution NMR techniques in organic chemistry. Amsterdam: Elsevier 2016.
[51]
Mouritsen OG, Jørgensen K. Microscopic structure and thermodynamics of lipid bilayers. In: thermodynamics of membrane receptors and Channels Florida: CRC Press. 1995.
[52]
Rappolt M, Pabst G. Eds Lipid Bilayers: Structure and Interactions. New York: Springer 2016.
[53]
Serpell CJ, Kostarelos K, Davis BG. Can carbon nanotubes deliver on their promise in biology? Harnessing unique properties for unparalleled applications. ACS Cent Sci 2016; 2(4): 190-200.
[http://dx.doi.org/10.1021/acscentsci.6b00005] [PMID: 27163049]
[54]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[55]
Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90(6): 667-80.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[56]
Sawant RR, Torchilin VP. Challenges in the development of multifunctional liposomal nanocarriers. J Liposome Res 2012; 22(2): 182-92.
[57]
Lakki Reddy HR, Bhosale R. Liposomes as targeted drug delivery systems: A review of recent advances. Drug Dev Ind Pharm 2021; 47(3): 378-91.
[http://dx.doi.org/10.1080/03639045.2020.1851126]
[58]
Kashyap A, Kumar A, Kumar S, Gupta V. Liposomes as a nanocarrier system: A comprehensive review. Curr Drug Deliv 2018; 15(8): 1178-90.
[http://dx.doi.org/10.2174/1567201815666181029100423]
[59]
Garg NK, Singh B, Jain A, Nirbhavane P, Sharma AK, Katare OP. Liposomal drug delivery systems in cancer therapy: An update. J Drug Deliv Sci Technol 2018; 48: 235-46.
[http://dx.doi.org/10.1016/j.jddst.2018.08.011]
[60]
Singh S, Mehta A, Bhatia A. Liposomes as a vesicular carrier for dermatological disorders. Mater Sci Eng C 2019; 98: 1295-310.
[http://dx.doi.org/10.1016/j.msec.2019.01.083]
[61]
Agrawal YK, Patel VR, Patel VK. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2011; 2(2): 81-7.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[62]
Szoka F Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 1980; 9(1): 467-508.
[http://dx.doi.org/10.1146/annurev.bb.09.060180.002343] [PMID: 6994593]
[63]
Jain KK. Drug delivery systems. In: Drug Delivery Systems. New Jersey: Humana Press 2008; pp. 1-50.
[http://dx.doi.org/10.1007/978-1-59745-210-6_1]
[64]
Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev 1999; 99(11): 3181-98.
[http://dx.doi.org/10.1021/cr940351u] [PMID: 11749514]
[65]
Krishnamurthy S, Vaiyapuri R, Zhang L. Drug-loaded microparticles for the treatment of chronic wounds. Drug Deliv Transl Res 2018; 8(3): 605-19.
[http://dx.doi.org/10.1007/s13346-017-0453-3]
[66]
Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3(5): 380-7.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[67]
Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 2009; 61(12): 1055-64.
[http://dx.doi.org/10.1016/j.addr.2009.07.009] [PMID: 19643156]
[68]
Sahin S, Sagnella S, Alexander C. Structural and functional aspects of nanoparticulate systems for drug delivery. Nanoscale 2010; 2(8): 1390-402.
[http://dx.doi.org/10.1039/C0NR00256E] [PMID: 20820722]
[69]
Kumar CSSR, Mohammad F, Jagadeesh Babu PE. Nanotechnology in agri-food production: An overview. Nanotechnol Sci Appl 2011; 4: 1-13.
[http://dx.doi.org/10.2147/NSA.S15666]
[70]
Patel RP, Surti N, Patel MM. Formulation and evaluation of microemulsion-based drug delivery system of itraconazole. AAPS PharmSciTech 2012; 13(3): 837-44.
[71]
Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res 2008; 25(5): 999-1022.
[http://dx.doi.org/10.1007/s11095-007-9475-1] [PMID: 18040761]
[72]
Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 1998; 168(2): 221-9.
[http://dx.doi.org/10.1016/S0378-5173(98)00092-1]
[73]
Jelvehgari M, Barar J, Valizadeh H, Heidarli E, Davaran S, Nokhodchi A. Development of pH-Sensitive insulin nanoparticles using eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech 2011; 12(3): 1034-45.
[PMID: 20686881]
[74]
Kumar S, Dixit CK. Methods for Characterization of Nanoparticles. In: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Cambridge: Woodhead Publishing 2017; pp. 43-58.
[http://dx.doi.org/10.1016/B978-0-08-100557-6.00003-1]
[75]
Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JH, Joy DC. Scanning electron microscopy and X-ray microanalysis. New York: Springer 2017.
[76]
Griffiths PR. Fourier transform infrared spectrometry. (2nd ed.), New Jersey: John Wiley & Sons 2009.
[77]
Bhadeshia HKDH, Svensson LE. Differential scanning calorimetry. In: Thermo-Calc and DICTRA. Leeds: Maney Publishing 2012; pp. 9-14.
[78]
Ravindran P. X-Ray diffraction: modern experimental techniques. Florida: CRC Press 2014.
[79]
Horst C. Laser diffraction spectroscopy. In: laser spectroscopy and its applications. New York: Marcel Dekker, Inc 2012; pp. 333-96.
[80]
Laser diffraction technology. In: Particle Size Analysis. Worcestershire: Malvern Instruments Ltd. 2007; pp. 1-4.
[81]
Wan F, Sun X, Tian C. Microencapsulation of phytosterols: Effects of wall material and processing conditions. J Food Sci 2017; 82(6): 1362-71.
[http://dx.doi.org/10.1111/1750-3841.13731]
[82]
Chen J, Jiang X, Zhang X. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 2018; 111: 149-64.
[http://dx.doi.org/10.1016/j.ejps.2017.09.032]
[83]
Bhavsar C, Momin M, Mishra S. Microparticle-based drug delivery: A promising approach for targeted drug delivery. Drug Dev Ind Pharm 2020; 46(6): 899-913.
[http://dx.doi.org/10.1080/03639045.2020.1743107] [PMID: 32375569]
[84]
Gianasi E, Bettini R, Romagnoli R, Maestrelli F. Microparticle-based drug delivery systems: The potential for versatile drug delivery. Expert Opin Drug Deliv 2020; 17(4): 457-69.
[http://dx.doi.org/10.1080/17425247.2020.1730718]
[85]
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21(23): 2475-90.
[http://dx.doi.org/10.1016/S0142-9612(00)00115-0] [PMID: 11055295]
[86]
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004; 3(9): 785-96.
[http://dx.doi.org/10.1038/nrd1494] [PMID: 15340388]
[87]
Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008; 364(2): 298-327.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.042] [PMID: 18621492]
[88]
Jain AK, Swarnakar NK, Das M. Advances in pharmaceuticals: Formulation strategies to improve the bioavailability of poorly absorbed drugs. Expert Opin Drug Deliv 2016; 13(12): 1743-57.
[PMID: 27291069]
[89]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[90]
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[91]
Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Acc Chem Res 2000; 33(2): 94-101.
[http://dx.doi.org/10.1021/ar9800993] [PMID: 10673317]
[92]
Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 2008; 65(3): 351-62.
[PMID: 20524422]
[93]
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[94]
Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci 2008; 97(1): 71-87.
[http://dx.doi.org/10.1002/jps.21082] [PMID: 17722085]
[95]
Yandrapu SK, Upadhyay AK. Advancements in ophthalmic drug delivery. Res Rev J Pharm Pharm Sci 2013; 2(1): 26-43.
[96]
Frechet JMJ. Functional polymers and dendritic architectures: From performance to higher performance materials. Polym Mater Sci Eng 1991; 65: 92-9.
[97]
Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 2003; 252(1-2): 263-6.
[http://dx.doi.org/10.1016/S0378-5173(02)00623-3] [PMID: 12550802]
[98]
Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers. J Control Release 2000; 65(1-2): 133-48.
[http://dx.doi.org/10.1016/S0168-3659(99)00246-1] [PMID: 10699277]
[99]
Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005; 65(12): 5317-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3921] [PMID: 15958579]
[100]
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer‐based nanomedicine: From design principles to clinical applications. J Intern Med 2014; 276(6): 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[101]
Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym J 1985; 17(1): 117-32.
[http://dx.doi.org/10.1295/polymj.17.117]
[102]
Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: Design considerations for nanomedical applications. Drug Discov Today 2010; 15(5-6): 171-85.
[http://dx.doi.org/10.1016/j.drudis.2010.01.009] [PMID: 20116448]
[103]
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005; 57(15): 2215-37.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[104]
Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001; 6(8): 427-36.
[http://dx.doi.org/10.1016/S1359-6446(01)01757-3] [PMID: 11301287]
[105]
Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 1978; 1978(2): 155-8.
[http://dx.doi.org/10.1055/s-1978-24702]
[106]
Grayson SM, Fréchet JMJ. Convergent dendrons and dendrimers: From synthesis to applications. Chem Rev 2001; 101(12): 3819-68.
[http://dx.doi.org/10.1021/cr990116h] [PMID: 11740922]
[107]
Patri A, Kukowskalatallo J, Baker J Jr. Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14.
[http://dx.doi.org/10.1016/j.addr.2005.09.014] [PMID: 16290254]
[108]
Tomalia DA, Naylor AM, Goddard WA III. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 1990; 29(2): 138-75.
[http://dx.doi.org/10.1002/anie.199001381]
[109]
Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990; 112(21): 7638-47.
[http://dx.doi.org/10.1021/ja00177a027]
[110]
Bosman AW, Janssen HM, Meijer EW. About dendrimers: Structure, physical properties, and applications. Chem Rev 1999; 99(7): 1665-88.
[http://dx.doi.org/10.1021/cr970069y] [PMID: 11849007]
[111]
Lutz JF. 1,3-dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angew Chem Int Ed 2007; 46(7): 1018-25.
[http://dx.doi.org/10.1002/anie.200604050] [PMID: 17211903]
[112]
Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality. Biomacromolecules 2006; 7(2): 572-9.
[http://dx.doi.org/10.1021/bm0506142] [PMID: 16471932]
[113]
Mukherjee S. Characterization of dendrimers: Techniques and applications. In: dendrimers in biomedical applications amsterdam:. Elsevier 2017; pp. 97-123.
[114]
Wang H, Li Y, Li L, Xie Z, Liu Y. Recent advances in the characterization of dendrimers by nuclear magnetic resonance spectroscopy. Anal Chem 2019; 91(1): 303-13.
[115]
Svenson S, Tomalia D. Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 2005; 57(15): 2106-29.
[http://dx.doi.org/10.1016/j.addr.2005.09.018] [PMID: 16305813]
[116]
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 2002; 41(14): 2596-9.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[117]
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009; 109(2): 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[118]
Kobayashi H, Brechbiel M. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 2005; 57(15): 2271-86.
[http://dx.doi.org/10.1016/j.addr.2005.09.016] [PMID: 16290152]
[119]
Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 2001; 1(1): 18-21.
[http://dx.doi.org/10.1021/nl005502p]
[120]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[121]
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer 2008; 49(8): 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[122]
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[123]
Peppas N, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50(1): 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[124]
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001; 101(7): 1869-80.
[http://dx.doi.org/10.1021/cr000108x] [PMID: 11710233]
[125]
Langer R. Drug delivery and targeting. Nature 1998; 392(6679): 5-10.
[PMID: 9579855]
[126]
Garg T, Singh O. Hydrogels: Smart materials for drug delivery. Orient J Chem 2017; 33(3): 1191-208.
[127]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded plga nanoparticles for sustained ocular drug delivery. Nanomedicine 2013; 7(5): 829-35.
[PMID: 19857606]
[128]
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008; 26(11): 1261-8.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[129]
Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew Chem Int Ed 2009; 48(30): 5418-29.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[130]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[131]
Stella VJ, Rajewski RA. Cyclodextrins: Their future in drug formulation and delivery. Pharm Res 1997; 14(5): 556-67.
[http://dx.doi.org/10.1023/A:1012136608249] [PMID: 9165524]
[132]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[133]
Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum 1965; 4: 117-212.
[134]
Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev 2004; 104(3): 1957-76.
[PMID: 11848947]
[135]
Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev 1998; 98(5): 2045-76.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[136]
Loftsson T, Jarho P, Masson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv 1999; 6(1): 57-66.
[PMID: 16296758]
[137]
Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today 2016; 21(2): 356-62.
[http://dx.doi.org/10.1016/j.drudis.2015.11.017] [PMID: 26686054]
[138]
Davis ME, Brewster ME, Loftsson T. Cyclodextrins in drug formulations: An overview. Drug Dev Ind Pharm 2008; 34(7): 698-709.
[PMID: 18612910]
[139]
Kaneda Y. Virosomes: Evolution of the liposome as a targeted drug delivery system. Adv Drug Deliv Rev 2000; 43(2-3): 197-205.
[http://dx.doi.org/10.1016/S0169-409X(00)00069-7] [PMID: 10967226]
[140]
Delamo E, Urtti A. Current and future ophthalmic drug delivery systemsA shift to the posterior segment. Drug Discov Today 2008; 13(3-4): 135-43.
[http://dx.doi.org/10.1016/j.drudis.2007.11.002] [PMID: 18275911]
[141]
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[142]
Vasconcelos T, Marques S. das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev 2016; 100: 85-101.
[http://dx.doi.org/10.1016/j.addr.2016.01.012] [PMID: 26826438]
[143]
Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 1971; 60(9): 1281-302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
[144]
Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. III. Experimental evaluation of eutectic mixture: urea‐acetaminophen system. J Pharm Sci 1965; 54(4): 581-3.
[145]
Sekhon BS. Solid dispersions: In-vivo and in-vitro evaluation. J Pharm Investig 2009; 39(5): 279-94.
[146]
Liu X, Zhang F, Zhang Q. Evaluation of the wetting behaviors and disintegration mechanism of model super disintegrants. Pharm Dev Technol 2011; 16(6): 633-41.
[147]
Schrooyen PM, Van der Meer R, De Kruif CG. Air-drying of solid dispersions having sugar and lipid and/or wax as matrix formers. Carbohydr Polym 2001; 46(3): 249-57.
[148]
Karavas E, Ktistis G, Xenakis A, Georgarakis E. Miscibility behavior and formation mechanism of stabilized felodipine/pvp solid dispersions using different solvents. Drug Dev Ind Pharm 2006; 32(5): 569-82.
[PMID: 16720412]
[149]
He Y, Ho C. Amorphous solid dispersions: Utilization and challenges in drug discovery and development. J Pharm Sci 2009; 98(9): 3271-97.
[PMID: 19072857]
[150]
Lobmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Amino acids as Co-amorphous stabilizers for poorly water-soluble drugs-part 1: Preparation, stability, and dissolution enhancement. Eur J Pharm Biopharm 2011; 81(2): 418-25.
[PMID: 22119733]
[151]
Janssens S, Van den Mooter G. Review: Physical chemistry of solid dispersions. J Pharm Pharmacol 2010; 61(12): 1571-86.
[http://dx.doi.org/10.1211/jpp.61.12.0001] [PMID: 19958579]
[152]
Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 2002; 231(2): 131-44.
[http://dx.doi.org/10.1016/S0378-5173(01)00891-2] [PMID: 11755266]
[153]
Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 2006; 9(3): 339-58.
[PMID: 17207417]
[154]
Kaialy W, Martin GP. Solid dispersion-based dry powder inhalers: composition, physical properties, and In Vitro/In Vivo Performance. J Aerosol Med Pulm Drug Deliv 2016; 29(1): 1-20.
[PMID: 25974653]
[155]
Rawat S, Gupta P, Kumar A. The potential of solid dispersions in dissolution rate enhancement: A review. Int J Pharm Sci Res 2017; 8(3): 889-900.
[156]
Vo CLN, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013; 85(3): 799-813.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.007] [PMID: 24056053]
[157]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[158]
Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7(1): 33-40.
[http://dx.doi.org/10.1038/83324] [PMID: 11135613]
[159]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[160]
Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med 2010; 363(4): 301-4.
[http://dx.doi.org/10.1056/NEJMp1006304] [PMID: 20551152]
[161]
Ding X, Wang Y, Zhang Y, Liu Y, Ai C, Deng R. Artificial intelligence system of faster region-based convolutional neural network. IET cyber‐phys. Syst: Theory Appl 2019; 4(3): 228-32.
[162]
Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004; 303(5665): 1818-22.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[163]
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53(1): 615-27.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[164]
Kaitin KI. Deconstructing the drug development process: The new face of innovation. Clin Pharmacol Ther 2010; 87(3): 356-61.
[http://dx.doi.org/10.1038/clpt.2009.293] [PMID: 20130565]
[165]
Singh R, Lillard JW Jr, Singh S. Past, present, and future technologies for oral controlled-release drug delivery. Expert Opin Drug Deliv 2017; 14(6): 853-67.
[166]
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372(9): 793-5.
[http://dx.doi.org/10.1056/NEJMp1500523] [PMID: 25635347]
[167]
Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[168]
Langer R. Biomaterials and biotechnology: From the discovery of the first angiogenesis inhibitors to the development of controlled drug delivery systems and the foundation of tissue engineering. J Control Release 2015; 190: 82-93.
[169]
Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. Adv Mater 2010; 22(44): 4925-43.
[http://dx.doi.org/10.1002/adma.201002072] [PMID: 20818618]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy