Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Study Deciphering the Crucial Involvement of Notch Signaling Pathway in Human Cancers

Author(s): Pratibha Pandey*, Fahad Khan, Megha Singh, Aditi verma, Hariom Kumar, Avijit Mazumder and Gurmeen Rakhra

Volume 24, Issue 11, 2024

Published on: 22 November, 2023

Page: [1241 - 1253] Pages: 13

DOI: 10.2174/0118715303261691231107113548

Price: $65

Abstract

In recent years, dysregulation of the notch pathway has been associated with the development and progression of various cancers. Notch signaling is involved in several cellular processes, such as proliferation, differentiation, apoptosis, and angiogenesis, and its abnormal activation can lead to uncontrolled cell growth and tumorigenesis. In various human cancers, the Notch pathway has been shown to have both tumor-promoting and tumor-suppressive effects, depending on the context and stage of cancer development. Notch signaling has been implicated in tumor initiation, cancer cell proliferation, cell migration and maintenance of cancer stem cells in several human cancers, including leukemia, breast, pancreatic and lung cancer. Understanding the role of the Notch pathway in cancer development and progression may provide new opportunities for the development of potent targeted therapies for cancer treatment. Several drugs targeting the Notch pathway are currently in preclinical or clinical development and may hold promise for anticancer therapy in the future.

Next »
Graphical Abstract

[1]
Yuan, X.; Wu, H.; Xu, H.; Xiong, H.; Chu, Q.; Yu, S.; Wu, G.S.; Wu, K. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett., 2015, 369(1), 20-27.
[http://dx.doi.org/10.1016/j.canlet.2015.07.048] [PMID: 26341688]
[2]
Shih, I.M.; Wang, T.L. Notch signaling, γ-secretase inhibitors, and cancer therapy. Cancer Res., 2007, 67(5), 1879-1882.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3958] [PMID: 17332312]
[3]
Purow, B.W.; Haque, R.M.; Noel, M.W.; Su, Q.; Burdick, M.J.; Lee, J.; Sundaresan, T.; Pastorino, S.; Park, J.K.; Mikolaenko, I.; Maric, D.; Eberhart, C.G.; Fine, H.A. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res., 2005, 65(6), 2353-2363.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1890] [PMID: 15781650]
[4]
Srivastava, S.; Ramdass, B.; Nagarajan, S.; Rehman, M.; Mukherjee, G.; Krishna, S. Notch1 regulates the functional contribution of RhoC to cervical carcinoma progression. Br. J. Cancer, 2010, 102(1), 196-205.
[http://dx.doi.org/10.1038/sj.bjc.6605451] [PMID: 19953094]
[5]
Shaik, J.P.; Alanazi, I.O.; Pathan, A.A.K.; Parine, N.R.; Almadi, M.A.; Azzam, N.A.; Aljebreen, A.M.; Alharbi, O.; Alanazi, M.S.; Khan, Z. Frequent activation of notch signaling pathway in colorectal cancers and its implication in patient survival outcome. J. Oncol., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/6768942] [PMID: 32211044]
[6]
Wu, B.; Słabicki, M.; Sellner, L.; Dietrich, S.; Liu, X.; Jethwa, A.; Hüllein, J.; Walther, T.; Wagner, L.; Huang, Z.; Zapatka, M.; Zenz, T. MED 12 mutations and NOTCH signalling in chronic lymphocytic leukaemia. Br. J. Haematol., 2017, 179(3), 421-429.
[http://dx.doi.org/10.1111/bjh.14869] [PMID: 28771672]
[7]
Ahmed, H.M.M.; Nimmagadda, S.C.; Al-Matary, Y.S.; Fiori, M.; May, T.; Frank, D.; Patnana, P.K.; Récher, C.; Schliemann, C.; Mikesch, J.H.; Koenig, T.; Rosenbauer, F.; Hartmann, W.; Tuckermann, J.; Dührsen, U.; Lanying, W.; Dugas, M.; Opalka, B.; Lenz, G.; Khandanpour, C. Dexamethasone‐mediated inhibition of Notch signalling blocks the interaction of leukaemia and mesenchymal stromal cells. Br. J. Haematol., 2022, 196(4), 995-1006.
[http://dx.doi.org/10.1111/bjh.17940] [PMID: 34792186]
[8]
Tyagi, A.; Sharma, A.K.; Damodaran, C. A review on notch signaling and colorectal cancer. Cells, 2020, 9(6), 1549.
[http://dx.doi.org/10.3390/cells9061549] [PMID: 32630477]
[9]
Henrique, D.; Schweisguth, F. Mechanisms of Notch signaling: A simple logic deployed in time and space. Development, 2019, 146(3), dev172148.
[http://dx.doi.org/10.1242/dev.172148] [PMID: 30709911]
[10]
Aljedai, A.; Buckle, A.M.; Hiwarkar, P.; Syed, F. Potential role of Notch signalling in CD34+ chronic myeloid leukaemia cells: Cross-talk between Notch and BCR-ABL. PLoS One, 2015, 10(4), e0123016.
[http://dx.doi.org/10.1371/journal.pone.0123016] [PMID: 25849484]
[11]
Yue, Y.; Zhou, K.; Li, J.; Jiang, S.; Li, C.; Men, H. MSX1 induces G0/G1 arrest and apoptosis by suppressing Notch signaling and is frequently methylated in cervical cancer. OncoTargets Ther., 2018, 11, 4769-4780.
[http://dx.doi.org/10.2147/OTT.S165144] [PMID: 30127625]
[12]
Rodrigues, C.; Joy, L.R.; Sachithanandan, S.P.; Krishna, S. Notch signalling in cervical cancer. Exp. Cell Res., 2019, 385(2), 111682.
[http://dx.doi.org/10.1016/j.yexcr.2019.111682] [PMID: 31634483]
[13]
Kamga, P.T.; Bassi, G.; Cassaro, A.; Midolo, M.; Di Trapani, M.; Gatti, A.; Carusone, R.; Resci, F.; Perbellini, O.; Gottardi, M.; Bonifacio, M.; Kamdje, A.H.N.; Ambrosetti, A.; Krampera, M. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget, 2016, 7(16), 21713-21727.
[http://dx.doi.org/10.18632/oncotarget.7964] [PMID: 26967055]
[14]
Si, Y.; Li, L.; Zhang, W.; Liu, Q.; Liu, B. GANT61 exerts anticancer cell and anticancer stem cell capacity in colorectal cancer by blocking the Wnt/β-catenin and Notch signalling pathways. Oncol. Rep., 2022, 48(4), 182.
[http://dx.doi.org/10.3892/or.2022.8397] [PMID: 36069229]
[15]
Brandstadter, J.D.; Maillard, I. Notch signalling in T cell homeostasis and differentiation. Open Biol., 2019, 9(11), 190187.
[http://dx.doi.org/10.1098/rsob.190187] [PMID: 31690218]
[16]
Zhang, Z.; Li, G.; Qiu, H.; Yang, J.; Bu, X.; Zhu, S.; Zheng, J.; Dang, C.; Wang, W.; Chu, D. The novel notch-induced long noncoding RNA LUNAR1 determines the proliferation and prognosis of colorectal cancer. Sci. Rep., 2019, 9(1), 19915.
[http://dx.doi.org/10.1038/s41598-019-56536-2] [PMID: 31882986]
[17]
Aster, J.C.; Pear, W.S.; Blacklow, S.C. The varied roles of notch in cancer. Annu. Rev. Pathol., 2017, 12(1), 245-275.
[http://dx.doi.org/10.1146/annurev-pathol-052016-100127] [PMID: 27959635]
[18]
Bhat, A.; Yadav, J.; Thakur, K.; Aggarwal, N.; Tripathi, T.; Chhokar, A.; Singh, T.; Jadli, M.; Bharti, A.C. Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog–GLI signaling components. Cancer Cell Int., 2021, 21(1), 319.
[http://dx.doi.org/10.1186/s12935-021-02026-3] [PMID: 34167524]
[19]
Jiao, D.; Wang, J.; Lu, W.; Tang, X.; Chen, J.; Mou, H.; Chen, Q. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol. Ther. Oncolytics, 2016, 3, 16018.
[http://dx.doi.org/10.1038/mto.2016.18] [PMID: 27525306]
[20]
Fu, N.; Xi, R.; Shi, X.; Li, R.; Zhang, Z.; Li, L.; Zhang, G.; Wang, F. Hexachlorophene, a selective SHP2 inhibitor, suppresses proliferation and metastasis of KRAS-mutant NSCLC cells by inhibiting RAS/MEK/ERK and PI3K/AKT signaling pathways. Toxicol. Appl. Pharmacol., 2022, 441, 115988.
[http://dx.doi.org/10.1016/j.taap.2022.115988] [PMID: 35307375]
[21]
Wu, D.D.; Chen, X.; Sun, K.X.; Wang, L.L.; Chen, S.; Zhao, Y. Role of the lncRNA ABHD11-AS1 in the tumorigenesis and progression of epithelial ovarian cancer through targeted regulation of RhoC. Mol. Cancer, 2017, 16(1), 138.
[http://dx.doi.org/10.1186/s12943-017-0709-5]
[22]
Shi, Y.; Beckett, M.C.; Blair, H.J.; Tirtakusuma, R.; Nakjang, S.; Enshaei, A.; Halsey, C.; Vormoor, J.; Heidenreich, O.; Krippner-Heidenreich, A.; van Delft, F.W. Phase II-like murine trial identifies synergy between dexamethasone and dasatinib in T-cell acute lymphoblastic leukemia. Haematologica, 2021, 106(4), 1056-1066.
[PMID: 32139432]
[23]
Grunenberg, A.; Sala, E.; Kapp-Schwoerer, S.; Viardot, A. Pharmacotherapeutic management of T-cell acute lymphoblastic leukemia in adults: An update of the literature. Expert Opin. Pharmacother., 2022, 23(5), 561-571.
[http://dx.doi.org/10.1080/14656566.2022.2033725] [PMID: 35193450]
[24]
Motaln, H.; Rogelj, B. (2023). The role of C-Abl tyrosine kinase in brain and its payhologies. cells, 2023, 12(16), 2041.
[25]
Srivastava, S.; Kulshreshtha, R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J. Cell. Physiol., 2021, 236(5), 3163-3177.
[http://dx.doi.org/10.1002/jcp.30099] [PMID: 33174211]
[26]
Pozzo, F.; Bittolo, T.; Tissino, E.; Zucchetto, A.; Bomben, R.; Polcik, L.; Dannewitz Prosseda, S.; Hartmann, T.N.; Gattei, V. Multiple mechanisms of NOTCH1 activation in chronic lymphocytic leukemia: NOTCH1 mutations and beyond. Cancers , 2022, 14(12), 2997.
[http://dx.doi.org/10.3390/cancers14122997] [PMID: 35740661]
[27]
Takam Kamga, P.; Dal Collo, G.; Midolo, M.; Adamo, A.; Delfino, P.; Mercuri, A.; Cesaro, S.; Mimiola, E.; Bonifacio, M.; Andreini, A.; Chilosi, M.; Krampera, M. Inhibition of notch signaling enhances chemosensitivity in B-cell precursor acute lymphoblastic leukemia. Cancer Res., 2019, 79(3), 639-649.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1617] [PMID: 30563887]
[28]
Takam Kamga, P.; Collo, G.D.; Resci, F.; Bazzoni, R.; Mercuri, A.; Quaglia, F.M.; Tanasi, I.; Delfino, P.; Visco, C.; Bonifacio, M.; Krampera, M. Notch signaling molecules as prognostic biomarkers for acute myeloid leukemia. Cancers , 2019, 11(12), 1958.
[http://dx.doi.org/10.3390/cancers11121958] [PMID: 31817634]
[29]
Takam Kamga, P.; Resci, F.; Dal Collo, G.; Adamo, A.; Bazzoni, R.; Mercuri, A.; Bonifacio, M.; Krampera, M. Prognostic impact of notch signaling in acute myeloid leukemia (AML). Blood, 2018, 132(Suppl. 1), 5242.
[http://dx.doi.org/10.1182/blood-2018-99-118701]
[30]
Céspedes, P.F.; Jainarayanan, A.; Fernández-Messina, L.; Valvo, S.; Saliba, D.G.; Kurz, E.; Kvalvaag, A.; Chen, L.; Ganskow, C.; Colin-York, H.; Fritzsche, M.; Peng, Y.; Dong, T.; Johnson, E.; Siller-Farfán, J.A.; Dushek, O.; Sezgin, E.; Peacock, B.; Law, A.; Aubert, D.; Engledow, S.; Attar, M.; Hester, S.; Fischer, R.; Sánchez-Madrid, F.; Dustin, M.L. T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles. Nat. Commun., 2022, 13(1), 3460.
[http://dx.doi.org/10.1038/s41467-022-31160-3] [PMID: 35710644]
[31]
Han, J.; Zúñiga-Pflücker, J.C.A. 2020 view of thymus stromal cells in T cell development. J. Immunol., 2021, 206(2), 249-256.
[http://dx.doi.org/10.4049/jimmunol.2000889] [PMID: 33397738]
[32]
Condorelli, A.G.; El Hachem, M.; Zambruno, G.; Nystrom, A.; Candi, E.; Castiglia, D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: Focus on the multifaceted Notch signalling pathway. J. Biomed. Sci., 2021, 28(1), 36.
[http://dx.doi.org/10.1186/s12929-021-00732-8] [PMID: 33966637]
[33]
Emam, O.; Wasfey, E.F.; Hamdy, N.M. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int., 2022, 22(1), 316.
[http://dx.doi.org/10.1186/s12935-022-02736-2] [PMID: 36229883]
[34]
Zeng, S.; Tan, L.; Sun, Q.; Chen, L.; Zhao, H.; Liu, M.; Yang, H.; Ren, S.; Ming, T.; Tang, S.; Tao, Q.; Meng, X.; Xu, H. Suppression of colitis-associated colorectal cancer by scutellarin through inhibiting Hedgehog signaling pathway activity. Phytomedicine, 2022, 98, 153972.
[http://dx.doi.org/10.1016/j.phymed.2022.153972] [PMID: 35151214]
[35]
Yang, Y.; Li, X.; Wang, T.; Guo, Q.; Xi, T.; Zheng, L. Emerging agents that target signaling pathways in cancer stem cells. J. Hematol. Oncol., 2020, 13(1), 60.
[http://dx.doi.org/10.1186/s13045-020-00901-6] [PMID: 32456660]
[36]
Das, P.K.; Islam, F.; Lam, A.K. The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells, 2020, 9(6), 1392.
[http://dx.doi.org/10.3390/cells9061392] [PMID: 32503256]
[37]
Chin, V.L.; Lim, C.L. Epithelial-mesenchymal plasticity—engaging stemness in an interplay of phenotypes. Stem Cell Investig., 2019, 6, 25.
[http://dx.doi.org/10.21037/sci.2019.08.08] [PMID: 31559312]
[38]
Zhou, H.; Liu, Z.; Wang, Y.; Wen, X.; Amador, E.H.; Yuan, L.; Ran, X.; Xiong, L.; Ran, Y.; Chen, W.; Wen, Y. Colorectal liver metastasis: Molecular mechanism and interventional therapy. Signal Transduct. Target. Ther., 2022, 7(1), 70.
[http://dx.doi.org/10.1038/s41392-022-00922-2] [PMID: 35246503]
[39]
Pal, D.; Tyagi, A.; Chandrasekaran, B.; Alattasi, H.; Ankem, M.K.; Sharma, A.K.; Damodaran, C. Suppression of Notch1 and AKT mediated epithelial to mesenchymal transition by Verrucarin J in metastatic colon cancer. Cell Death Dis., 2018, 9(8), 798.
[http://dx.doi.org/10.1038/s41419-018-0810-8] [PMID: 30038258]
[40]
Koveitypour, Z.; Panahi, F.; Vakilian, M.; Peymani, M.; Seyed Forootan, F.; Nasr, E.M.H.; Ghaedi, K. Signaling pathways involved in colorectal cancer progression. Cell Biosci., 2019, 9(1), 97.
[http://dx.doi.org/10.1186/s13578-019-0361-4] [PMID: 31827763]
[41]
Lim, J.S.; Ibaseta, A.; Fischer, M.M.; Cancilla, B.; O’Young, G.; Cristea, S.; Luca, V.C.; Yang, D.; Jahchan, N.S.; Hamard, C.; Antoine, M.; Wislez, M.; Kong, C.; Cain, J.; Liu, Y.W.; Kapoun, A.M.; Garcia, K.C.; Hoey, T.; Murriel, C.L.; Sage, J. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 2017, 545(7654), 360-364.
[http://dx.doi.org/10.1038/nature22323] [PMID: 28489825]
[42]
Venkatesh, V.; Nataraj, R.; Thangaraj, G.S.; Karthikeyan, M.; Gnanasekaran, A.; Kaginelli, S.B.; Kuppanna, G.; Kallappa, C.G.; Basalingappa, K.M. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig., 2018, 5, 5.
[http://dx.doi.org/10.21037/sci.2018.02.02] [PMID: 29682512]
[43]
Esposito, M.; Ganesan, S.; Kang, Y. Emerging strategies for treating metastasis. Nature cancer, 2021, 2(3), 258-270.
[http://dx.doi.org/10.1038/s43018-021-00181-0]
[44]
Zhuang, H.; Zhou, Z.; Ma, Z.; Li, Z.; Liu, C.; Huang, S.; Zhang, C.; Hou, B. Characterization of the prognostic and oncologic values of ITGB superfamily members in pancreatic cancer. J. Cell. Mol. Med., 2020, 24(22), 13481-13493.
[http://dx.doi.org/10.1111/jcmm.15990] [PMID: 33073486]
[45]
Teoh, S.L.; Das, S. Notch signaling pathways and their importance in the treatment of cancers. Curr. Drug Targets, 2018, 19(2), 128-143.
[http://dx.doi.org/10.2174/1389450118666170309143419] [PMID: 28294046]
[46]
Gao, J.; Long, B.; Wang, Z. Role of Notch signaling pathway in pancreatic cancer. Am. J. Cancer Res., 2017, 7(2), 173-186.
[PMID: 28337369]
[47]
Edwards, A.; Brennan, K. Notch signaling in breast development and cancer. Front. Cell Dev. Biol., 2021, 9, 692173.
[http://dx.doi.org/10.3389/fcell.2021.692173] [PMID: 34295896]
[48]
Ren, S.; Hu, Y.; Ju, Y.; Sang, Y.; Wu, J.; Ge, Y.; Liu, B.; Zhao, X.; Zhang, X.; Liu, Y. Blocking the Notch signal transduction pathway promotes tumor growth in breast cancer by promoting the expression of suppressible inflammatory factors. Ann. Transl. Med., 2022, 10(6), 361.
[http://dx.doi.org/10.21037/atm-22-1041] [PMID: 35434013]
[49]
Küçükköse, C.; Yalçin Özuysal, Ö. Effects of Notch signalling on the expression of SEMA3C, HMGA2, CXCL14, CXCR7, and CCL20 in breast cancer. Turk. J. Biol., 2019, 43(1), 70-76.
[http://dx.doi.org/10.3906/biy-1808-58] [PMID: 30930637]
[50]
Ghafouri-Fard, S.; Glassy, M.C.; Abak, A.; Hussen, B.M.; Niazi, V.; Taheri, M. The interaction between miRNAs/lncRNAs and Notch pathway in human disorders. Biomed. Pharmacother., 2021, 138, 111496.
[http://dx.doi.org/10.1016/j.biopha.2021.111496] [PMID: 33743335]
[51]
Aquila, G.; Kostina, A.; Vieceli Dalla Sega, F.; Shlyakhto, E.; Kostareva, A.; Marracino, L.; Ferrari, R.; Rizzo, P.; Malaschicheva, A. The Notch pathway: A novel therapeutic target for cardiovascular diseases? Expert Opin. Ther. Targets, 2019, 23(8), 695-710.
[http://dx.doi.org/10.1080/14728222.2019.1641198] [PMID: 31304807]
[52]
Fukusumi, T.; Califano, J.A. The NOTCH pathway in head and neck squamous cell carcinoma. J. Dent. Res., 2018, 97(6), 645-653.
[http://dx.doi.org/10.1177/0022034518760297] [PMID: 29489439]
[53]
Leonetti, A.; Facchinetti, F.; Minari, R.; Cortellini, A.; Rolfo, C.D.; Giovannetti, E.; Tiseo, M. Notch pathway in small-cell lung cancer: from preclinical evidence to therapeutic challenges. Cell. Oncol., 2019, 42(3), 261-273.
[http://dx.doi.org/10.1007/s13402-019-00441-3] [PMID: 30968324]
[54]
Arruga, F.; Vaisitti, T.; Deaglio, S. The NOTCH pathway and its mutations in mature B cell malignancies. Front. Oncol., 2018, 8, 550.
[http://dx.doi.org/10.3389/fonc.2018.00550] [PMID: 30534535]
[55]
Marelli, F.; Persani, L. Role of Jagged1-Notch pathway in thyroid development. J. Endocrinol. Invest., 2018, 41(1), 75-81.
[http://dx.doi.org/10.1007/s40618-017-0715-x] [PMID: 28653287]
[56]
Lu, J.; Xia, Y.; Chen, K.; Zheng, Y.; Wang, J.; Lu, W.; Guo, C. Oncogenic role of the Notch pathway in primary liver cancer (Review) Corrigendum in/10.3892/ol. 2016.5145. Oncol. Letters, 2016, 12(1), 3-10.
[57]
Zhang, K.; Han, X.; Zhang, Z.; Zheng, L.; Hu, Z.; Yao, Q.; Cui, H.; Shu, G.; Si, M.; Li, C.; Shi, Z.; Chen, T.; Han, Y.; Chang, Y.; Yao, Z.; Han, T.; Hong, W. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat. Commun., 2017, 8(1), 144.
[http://dx.doi.org/10.1038/s41467-017-00204-4] [PMID: 28747678]
[58]
Xue, D.; Li, D.; Dou, C.; Li, J. A comprehensive bioinformatic analysis of NOTCH pathway involvement in stomach adenocarcinoma. Dis. Markers, 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/4739868] [PMID: 34925644]
[59]
Zhang, L.; Sha, J.; Yang, G.; Huang, X.; Bo, J.; Huang, Y. Activation of Notch pathway is linked with epithelial-mesenchymal transition in prostate cancer cells. Cell Cycle, 2017, 16(10), 999-1007.
[http://dx.doi.org/10.1080/15384101.2017.1312237] [PMID: 28388267]
[60]
Jin, L.; Vu, T.; Yuan, G.; Datta, P.K. STRAP promotes stemness of human colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Res., 2017, 77(20), 5464-5478.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0286] [PMID: 28827371]
[61]
Aquila, G.; Marracino, L.; Martino, V.; Calabria, D.; Campo, G.; Caliceti, C.; Rizzo, P. The use of nutraceuticals to counteract atherosclerosis: The role of the notch pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-30.
[http://dx.doi.org/10.1155/2019/5470470] [PMID: 31915510]
[62]
Garcia-Heredia, J.M.; Lucena-Cacace, A.; Verdugo-Sivianes, E.M.; Pérez, M.; Carnero, A. The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the notch pathway by abducting NUMB. Clin. Cancer Res., 2017, 23(14), 3871-3883.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2358] [PMID: 28153862]
[63]
Wen, Z.; Shen, Y.; Berry, G.; Shahram, F.; Li, Y.; Watanabe, R.; Liao, Y.J.; Goronzy, J.J.; Weyand, C.M. The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway. Sci. Transl. Med., 2017, 9(399), eaal3322.
[http://dx.doi.org/10.1126/scitranslmed.aal3322] [PMID: 28724574]
[64]
Zhu, D.; Wang, Y.; Zou, C.; She, X.; Zheng, Z. The role of uric acid in the pathogenesis of diabetic retinopathy based on Notch pathway. Biochem. Biophys. Res. Commun., 2018, 503(2), 921-929.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.097] [PMID: 29932924]
[65]
Canté-Barrett, K.; Holtzer, L.; Van Ooijen, H.; Hagelaar, R.; Cordo’, V.; Verhaegh, W.; Van de Stolpe, A.; Meijerink, J.P.P. A molecular test for quantifying functional Notch signaling pathway activity in human cancer. Cancers , 2020, 12(11), 3142.
[http://dx.doi.org/10.3390/cancers12113142] [PMID: 33120947]
[66]
Suliman, M.A.; Zhang, Z.; Na, H.; Ribeiro, A.L.L.; Zhang, Y.; Niang, B.; Hamid, A.S.; Zhang, H.; Xu, L.; Zuo, Y. Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family. Int. J. Mol. Med., 2016, 38(3), 776-784.
[http://dx.doi.org/10.3892/ijmm.2016.2689] [PMID: 27460529]
[67]
Wang, Q.; Ren, H.; Xu, Y.; Jiang, J.; Wudu, M.; Liu, Z.; Su, H.; Jiang, X.; Zhang, Y.; Zhang, B.; Qiu, X. GRWD1 promotes cell proliferation and migration in non-small cell lung cancer by activating the Notch pathway. Exp. Cell Res., 2020, 387(2), 111806.
[http://dx.doi.org/10.1016/j.yexcr.2019.111806] [PMID: 31891681]
[68]
Shang, C.; Lang, B.; Meng, L. Blocking NOTCH pathway can enhance the effect of EGFR inhibitor through targeting CD133+ endometrial cancer cells. Cancer Biol. Ther., 2018, 19(2), 113-119.
[http://dx.doi.org/10.1080/15384047.2016.1250985] [PMID: 27791463]
[69]
Braune, E.B.; Lendahl, U. Notch-a goldilocks signaling pathway in disease and cancer therapy. Discov. Med., 2016, 21(115), 189-196.
[PMID: 27115169]
[70]
De Santis, F.; Romero-Cordoba, S.L.; Castagnoli, L.; Volpari, T.; Faraci, S.; Fucà, G.; Tagliabue, E.; De Braud, F.; Pupa, S.M.; Di Nicola, M. BCL6 and the Notch pathway: A signaling axis leading to a novel druggable biotarget in triple negative breast cancer. Cell. Oncol., 2022, 45(2), 257-274.
[http://dx.doi.org/10.1007/s13402-022-00663-y] [PMID: 35357654]
[71]
Vázquez-Ulloa, E.; Lizano, M.; Sjöqvist, M.; Olmedo-Nieva, L.; Contreras-Paredes, A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Rev. Med. Virol., 2018, 28(5), e1988.
[http://dx.doi.org/10.1002/rmv.1988] [PMID: 29956408]
[72]
Högström, J.; Heino, S.; Kallio, P.; Lähde, M.; Leppänen, V.M.; Balboa, D.; Wiener, Z.; Alitalo, K. Transcription factor PROX1 suppresses notch pathway activation via the nucleosome remodeling and deacetylase complex in colorectal cancer stem–like cells. Cancer Res., 2018, 78(20), 5820-5832.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0451] [PMID: 30154153]
[73]
Zhou, Y.; Su, Y.; Zhu, H.; Wang, X.; Li, X.; Dai, C.; Xu, C.; Zheng, T.; Mao, C.; Chen, D. Interleukin-23 receptor signaling mediates cancer dormancy and radioresistance in human esophageal squamous carcinoma cells via the Wnt/Notch pathway. J. Mol. Med., 2019, 97(2), 177-188.
[http://dx.doi.org/10.1007/s00109-018-1724-8] [PMID: 30483821]
[74]
Gersey, Z.; Osiason, A.D.; Bloom, L.; Shah, S.; Thompson, J.W.; Bregy, A.; Agarwal, N.; Komotar, R.J. Therapeutic targeting of the notch pathway in glioblastoma multiforme. World Neurosurg., 2019, 131, 252-263.e2.
[http://dx.doi.org/10.1016/j.wneu.2019.07.180] [PMID: 31376551]
[75]
Jain, C.K.; Bhargava, S.; Jain, I.; Varshney, S. Targeting notch pathway in cancer diagnostics and therapeutics: An emerging approach. Recent Patents Anticancer Drug Discov., 2022, 17(3), 244-252.
[http://dx.doi.org/10.2174/1574892816666210607092350] [PMID: 34109915]
[76]
De Almeida Magalhães, T.; Cruzeiro, G.A.V.; de Sousa, G.R.; da Silva, K.R.; Lira, R.C.P.; Scrideli, C.A.; Tone, L.G.; Valera, E.T.; Borges, K.S. Notch pathway in ependymoma RELA-fused subgroup: Upregulation and association with cancer stem cells markers expression. Cancer Gene Ther., 2020, 27(6), 509-512.
[http://dx.doi.org/10.1038/s41417-019-0122-x] [PMID: 31308481]
[77]
Zhang, T.; Chen, S.; Peng, Y.; Wang, C.; Cheng, X.; Zhao, R.; Liu, K. NOVA1-mediated SORBS2 isoform promotes colorectal cancer migration by activating the Notch pathway. Front. Cell Dev. Biol., 2021, 9, 673873.
[http://dx.doi.org/10.3389/fcell.2021.673873] [PMID: 34692669]
[78]
Cheng, C.; Cui, H.; Zhang, L.; Jia, Z.; Song, B.; Wang, F.; Li, Y.; Liu, J.; Kong, P.; Shi, R.; Bi, Y.; Yang, B.; Wang, J.; Zhao, Z.; Zhang, Y.; Hu, X.; Yang, J.; He, C.; Zhao, Z.; Wang, J.; Xi, Y.; Xu, E.; Li, G.; Guo, S.; Chen, Y.; Yang, X.; Chen, X.; Liang, J.; Guo, J.; Cheng, X.; Wang, C.; Zhan, Q.; Cui, Y. Genomic analyses reveal FAM84B and the NOTCH pathway are associated with the progression of esophageal squamous cell carcinoma. Gigascience, 2016, 5(1), 1.
[http://dx.doi.org/10.1186/s13742-015-0107-0] [PMID: 26759717]
[79]
Wei, H.; Ge, Q.; Zhang, L.Y.; Xie, J.; Gan, R.H.; Lu, Y.G.; Zheng, D.L. EGCG inhibits growth of tumoral lesions on lip and tongue of K-Ras transgenic mice through the Notch pathway. J. Nutr. Biochem., 2022, 99, 108843.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108843] [PMID: 34407449]
[80]
Gordon-Weeks, A.; Lim, S.Y.; Yuzhalin, A.; Lucotti, S.; Vermeer, J.A.F.; Jones, K.; Chen, J.; Muschel, R.J. Tumor-derived laminin α5 (LAMA5) promotes colorectal liver metastasis growth, branching angiogenesis and notch pathway inhibition. Cancers, 2019, 11(5), 630.
[http://dx.doi.org/10.3390/cancers11050630] [PMID: 31064120]
[81]
Jo, M.K.; Moon, C.M.; Kim, E.J.; Kwon, J.H.; Fei, X.; Kim, S.E.; Jung, S.A.; Kim, M.; Mun, Y.C.; Ahn, Y.H.; Seo, S.Y.; Kim, T.I. Suppressive effect of α-mangostin for cancer stem cells in colorectal cancer via the Notch pathway. BMC Cancer, 2022, 22(1), 341.
[http://dx.doi.org/10.1186/s12885-022-09414-6] [PMID: 35351071]
[82]
Fortini, F.; Vieceli Dalla Sega, F.; Caliceti, C.; Lambertini, E.; Pannuti, A.; Peiffer, D.S.; Balla, C.; Rizzo, P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J. Steroid Biochem. Mol. Biol., 2019, 189, 87-100.
[http://dx.doi.org/10.1016/j.jsbmb.2019.02.008] [PMID: 30817989]
[83]
Wang, T.; Chen, Y.; Nystrom, N.N.; Liu, S.; Fu, Y.; Martinez, F.M.; Scholl, T.J.; Ronald, J.A. Visualizing cell–cell communication using synthetic notch activated MRI. Proc. Natl. Acad. Sci. USA, 2023, 120(11), e2216901120.
[http://dx.doi.org/10.1073/pnas.2216901120] [PMID: 36893267]
[84]
You, W.K.; Schuetz, T.J.; Lee, S.H. Targeting the DLL/Notch signaling pathway in cancer: challenges and advances in clinical development. Mol. Cancer Ther., 2023, 22(1), 3-11.
[http://dx.doi.org/10.1158/1535-7163.MCT-22-0243] [PMID: 36223541]
[85]
Zhang, H.; Yang, Y.; Li, X.; Yuan, X.; Chu, Q. Targeting the Notch signaling pathway and the Notch ligand, DLL3, in small cell lung cancer. Biomed. Pharmacother., 2023, 159, 114248.
[http://dx.doi.org/10.1016/j.biopha.2023.114248] [PMID: 36645960]
[86]
Fu, J.; Zhao, B.; Luo, G.; Ni, H.; Xu, L.; He, Q.; Yao, M. JAG-1/Notch signaling axis in the spinal cord contributes to bone cancer pain in rats. J. Neurochem., 2023, 166(4), 747-762.
[87]
Bhal, S.; Kundu, C.N. Targeting crosstalk of signaling pathways in cancer stem cells: A promising approach for development of novel anti-cancer therapeutics. Med. Oncol., 2023, 40(2), 82.
[http://dx.doi.org/10.1007/s12032-022-01905-7] [PMID: 36662310]
[88]
Guo, M.; Niu, Y.; Xie, M.; Liu, X.; Li, X. Notch signaling, hypoxia, and cancer. Front. Oncol., 2023, 13, 1078768.
[http://dx.doi.org/10.3389/fonc.2023.1078768] [PMID: 36798826]
[89]
Shukla, M.; Nadkarni, K.S.; Bhatt, M.L.B.; Santra, M.; Mahdi, A.A. Targeting aberrantly activated Notch pathway receptors by using novel combination of Oleanolic acid and β-sitosterol in breast cancer. Lat. Am. J. Pharm., 2023, 42(3), 448-465.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy