Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

A Multi-dimensional Data Mining-based Study on the Prescriptions Developed by Professor Xu Zhiyin in Treating Thyroid Nodules

Author(s): Hai-Jian Sun, Xiao-Man Wei, Ming Lu, Hong Zhu* and Yao Zhu*

Volume 24, Issue 9, 2024

Published on: 20 November, 2023

Page: [1081 - 1089] Pages: 9

DOI: 10.2174/0118715303258346231101190843

Price: $65

Abstract

Objectives: In this study, we employed a multi-dimensional data mining approach to examine the clinical instances where Professor Xu Zhiyin treated thyroid nodules. Our aim is to understand the patterns of symptoms, underlying causes, and treatment approaches used for thyroid nodules. By doing so, the intention is to distill the essential aspects, compile Professor Xu Zhiyin's clinical insights, and investigate his scholarly perspectives.

Methods: Professor Xu Zhiyin's clinical diagnoses and treatments spanning from 2009 to 2019 were entered into Microsoft Excel. Subsequently, the collected data was imported into the Medcase V5.2 system to facilitate data mining. Various techniques, such as frequency-based method, association rule analysis, and clustering, including a decentralized system clustering approach, were employed on a set of 346 cases involving patients with thyroid nodules that conformed to the specified criteria. The primary focus was on extracting insights regarding symptoms and the underlying causes from the medical records. By integrating these findings with Professor Xu Zhiyin's clinical expertise, we examined and summarized the outcomes of the data mining process.

Results: The fundamental prescriptions were successfully extracted using the techniques for mining across multiple dimensions. Utilizing the scattered grouping of these prescriptions and with reference to the cluster analysis of the frequency-linked system, the fundamental prescriptions proposed by Professor Xu Zhiyin for addressing thyroid nodules encompass the following ingredients: Glycyrrhiza uralensis Fisch, Cortex Moutan, Paeoniae radix rubra, Curcuma longa L., Radix Curcumae, persica seed, Citri Reticulatae Viride Pericarpium, Pinellia ternata, Spica Prunellae, Ostreae concha, Gleditsia sinensis spine, Tuckahoe and Radix Codonopsis.

Conclusion: The fundamental prescriptions were acquired using the frequency approach, association rule technique, k-means clustering approach, and systematic clustering approach. The research findings corroborate one another, demonstrating that Professor Xu Zhiyin's approach to distinguishing and treating thyroid nodules is embodied in distinct prescriptions tailored to specific diseases.

Graphical Abstract

[1]
Bernet, V.J.; Chindris, A.M. Update on the evaluation of thyroid nodules. J. Nucl. Med., 2021, 62(Suppl. 2), 13S-19S.
[http://dx.doi.org/10.2967/jnumed.120.246025] [PMID: 34230067]
[2]
Durante, C.; Grani, G.; Lamartina, L.; Filetti, S.; Mandel, S.J.; Cooper, D.S. The diagnosis and management of thyroid nodules. JAMA, 2018, 319(9), 914-924.
[http://dx.doi.org/10.1001/jama.2018.0898] [PMID: 29509871]
[3]
Alexander, E.K.; Doherty, G.M.; Barletta, J.A. Management of thyroid nodules. Lancet Diabetes Endocrinol., 2022, 10(7), 540-548.
[http://dx.doi.org/10.1016/S2213-8587(22)00139-5] [PMID: 35752201]
[4]
Alexander, E.K.; Cibas, E.S. Diagnosis of thyroid nodules. Lancet Diabetes Endocrinol., 2022, 10(7), 533-539.
[http://dx.doi.org/10.1016/S2213-8587(22)00101-2] [PMID: 35752200]
[5]
Jeong, S.Y.; Ha, E.J.; Baek, J.H.; Kim, T.Y.; Lee, Y.M.; Lee, J.H.; Lee, J. Assessment of thyroid-specific quality of life in patients with benign symptomatic thyroid nodules treated with radiofrequency or ethanol ablation: A prospective multicenter study. Ultrasonography, 2022, 41(1), 204-211.
[http://dx.doi.org/10.14366/usg.21003] [PMID: 34517695]
[6]
Mauri, G.; Bernardi, S.; Palermo, A.; Cesareo, R.; Papini, E.; Solbiati, L.; Barbaro, D.; Monti, S.; Deandrea, M.; Fugazzola, L.; Gambelunghe, G.; Negro, R.; Spiezia, S.; Stacul, F.; Sconfienza, L.M.; Cavallaro, M.; Achille, G.; Cantisani, V.; Cozzaglio, L.; Crescenzi, A.; De Cobelli, F.; Garberoglio, R.; Giugliano, G.; Persani, L.; Raggiunti, B.; Seregni, E.; Van Doorne, D.; Frasoldati, A.; Carzaniga, C.; Lombardi, C.P.; Papi, G.; Guglielmi, R.; Orsi, F.; Cervelli, R.; Barbieri, C.; Trimboli, P.; Monzani, D. Minimally-invasive treatments for benign thyroid nodules: recommendations for information to patients and referring physicians by the italian minimally-invasive treatments of the thyroid group. Endocrine, 2022, 76(1), 1-8.
[http://dx.doi.org/10.1007/s12020-022-03005-y] [PMID: 35290617]
[7]
Jasim, S.; Baranski, T.J.; Teefey, S.A.; Middleton, W.D. Investigating the effect of thyroid nodule location on the risk of thyroid cancer. Thyroid, 2020, 30(3), 401-407.
[http://dx.doi.org/10.1089/thy.2019.0478] [PMID: 31910102]
[8]
Kobaly, K.; Kim, C.S.; Mandel, S.J. Contemporary management of thyroid nodules. Annu. Rev. Med., 2022, 73(1), 517-528.
[http://dx.doi.org/10.1146/annurev-med-042220-015032] [PMID: 34416120]
[9]
Wu, Z.; Peng, S.; Zhou, L. Visualization of traditional chinese medicine formulas: Development and usability study. JMIR Form. Res., 2023, 7, e40805.
[http://dx.doi.org/10.2196/40805] [PMID: 37083631]
[10]
Zhu, Y.; Huang, J.; Yue, R.; Shen, T. Clinical efficacy of chinese and western medicine in the treatment of benign thyroid nodules: A meta-analysis. Contrast Media Mol. Imaging, 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/3108485] [PMID: 35685672]
[11]
Yu, Q.; Liu, X-Y.; Li, J-H.; Wang, Y-H.; Weihan, L.; Wang, Y-M.; Tian, Y.; Huang, Y.; Tian, S-L. Application of the data mining algorithm in the clinical guide medical records. World J. Tradit. Chin. Med., 2022, 8(4), 548-555.
[http://dx.doi.org/10.4103/2311-8571.351511]
[12]
Wu, W.; Yin, D.; Yang, W.; Kan, Q.; Liu, Z.; Ren, X.; Zhai, C.; Zhang, S. Chinese herbal medicines for benign thyroid nodules in adults. Cochrane Libr., 2014, (3), CD010492.
[http://dx.doi.org/10.1002/14651858.CD010492.pub2] [PMID: 24596045]
[13]
Mehridehnavi, A.; Kafieh, R. A comprehensive comparison of different clustering methods for reliability analysis of microarray data. J. Med. Signals Sens., 2013, 3(1), 22-30.
[http://dx.doi.org/10.4103/2228-7477.114306] [PMID: 24083134]
[14]
Mohamed, N.E.; Leung, T.M.; Kata, H.E.; Shah, Q.N.; Lee, C.T.; Quale, D. Identifying distinct high unmet-need phenotypes and their associated bladder cancer patient demographic, clinical, psychosocial, and functional characteristics: Results of two clustering methods. Semin. Oncol. Nurs., 2021, 37(1), 151112.
[http://dx.doi.org/10.1016/j.soncn.2020.151112] [PMID: 33423865]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy