Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Link between miRNAs and PCKS9 in Atherosclerosis

In Press, (this is not the final "Version of Record"). Available online 16 November, 2023
Author(s): Mirjana T. Macvanin*, Zoran M. Gluvic, Aleksandra N. Klisic, Mia S. Manojlovic, Jasjit S. Suri, Manfredi Rizzo and Esma R. Isenovic
Published on: 16 November, 2023

DOI: 10.2174/0109298673262124231102042914

Price: $95

Abstract

Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, miRNA levels manipulation by therapeutic agents, and the most recent advances in PSCK9 gene editing using CRISPR/Cas9 platform, meganuclease, and base editors.

[1]
Rotllan, N. The underlying pathology of atherosclerosis: Different players. Int. J. Mol. Sci., 2022, 23(6), 3235.
[http://dx.doi.org/10.3390/ijms23063235] [PMID: 35328656]
[2]
Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: recent developments. Cell, 2022, 185(10), 1630-1645.
[http://dx.doi.org/10.1016/j.cell.2022.04.004] [PMID: 35504280]
[3]
Klisic, A.; Kavaric, N.; Vujcic, S.; Mihajlovic, M.; Zeljkovic, A.; Ivanisevic, J.; Spasojevic-Kalimanovska, V.; Ninic, A.; Kotur-Stevuljevic, J.; Vekic, J. Inverse association between serum endocan levels and small LDL and HDL particles in patients with type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(15), 8127-8135.
[http://dx.doi.org/10.26355/eurrev_202008_22499] [PMID: 32767341]
[4]
Salekeen, R.; Haider, A. N.; Akhter, F.; Billah, M. M.; Islam, M. E.; Didarul Islam, K. M. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. Int. J. Cardiol. Cardiovasc. Risk Prev., 2022, 14, 200143.
[http://dx.doi.org/10.1016/j.ijcrp.2022.200143]
[5]
Shao, W.; Wang, S.; Wang, X.; Yao, L.; Yuan, X.; Huang, D.; Lv, B.; Ye, Y.; Xue, H. miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging, 2022, 14(5), 2418-2431.
[http://dx.doi.org/10.18632/aging.203951] [PMID: 35288486]
[6]
Javadifar, A.; Rastgoo, S.; Banach, M.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci., 2021, 22(5), 2529.
[http://dx.doi.org/10.3390/ijms22052529] [PMID: 33802600]
[7]
Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism, 2019, 92, 71-81.
[http://dx.doi.org/10.1016/j.metabol.2018.11.005] [PMID: 30447223]
[8]
Khalifeh, M.; Santos, R.D.; Oskuee, R.K.; Badiee, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog. Lipid Res., 2023, 89, 101197.
[http://dx.doi.org/10.1016/j.plipres.2022.101197] [PMID: 36400247]
[9]
Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther., 2022, 7(1), 131.
[http://dx.doi.org/10.1038/s41392-022-00955-7] [PMID: 35459215]
[10]
Yurtseven, E.; Ural, D.; Baysal, K.; Tokgözoğlu, L. An update on the role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb., 2020, 27(9), 909-918.
[http://dx.doi.org/10.5551/jat.55400] [PMID: 32713931]
[11]
D'Ardes, D.; Santilli, F.; Guagnano, M. T.; Bucci, M.; Cipollone, F. From endothelium to lipids, through microRNAs and PCSK9: A fascinating travel across atherosclerosis. High Blood Press Cardiovasc. Prev., 2020, 27(>1), 1-8.
[http://dx.doi.org/10.1007/s40292-019-00356-y]
[12]
Ricci, C.; Ruscica, M. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep., 2018, 8(1), 2267.
[http://dx.doi.org/10.1038/s41598-018-20425-x]
[13]
Ferri, N.; Tibolla, G.; Pirillo, A.; Cipollone, F.; Mezzetti, A.; Pacia, S.; Corsini, A.; Catapano, A.L. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis, 2012, 220(2), 381-386.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.11.026] [PMID: 22176652]
[14]
Ference, B.A.; Robinson, J.G.; Brook, R.D.; Catapano, A.L.; Chapman, M.J.; Neff, D.R.; Voros, S.; Giugliano, R.P.; Davey Smith, G.; Fazio, S.; Sabatine, M.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 2016, 375(22), 2144-2153.
[http://dx.doi.org/10.1056/NEJMoa1604304] [PMID: 27959767]
[15]
Khan, S.U.; Yedlapati, S.H.; Lone, A.N.; Hao, Q.; Guyatt, G.; Delvaux, N.; Bekkering, G.E.T.; Vandvik, P.O.; Riaz, I.B.; Li, S.; Aertgeerts, B.; Rodondi, N. PCSK9 inhibitors and ezetimibe with or without statin therapy for cardiovascular risk reduction: A systematic review and network meta-analysis. BMJ, 2022, 377, e069116.
[http://dx.doi.org/10.1136/bmj-2021-069116] [PMID: 35508321]
[16]
Banerjee, Y.; Pantea Stoian, A.; Cicero, A. F. G. Inclisiran: A small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin. Drug Saf., 2022, 21(1), 9-20.
[http://dx.doi.org/10.1080/14740338.2022.1988568]
[17]
Maulucci, G.; Cipriani, F.; Russo, D.; Casavecchia, G.; Di Staso, C.; Di Martino, L.; Ruggiero, A.; Di Biase, M.; Brunetti, N.D. Improved endothelial function after short-term therapy with evolocumab. J. Clin. Lipidol., 2018, 12(3), 669-673.
[http://dx.doi.org/10.1016/j.jacl.2018.02.004] [PMID: 29544724]
[18]
Cicero, A.F.G.; Toth, P.P.; Fogacci, F.; Virdis, A.; Borghi, C. Improvement in arterial stiffness after short-term treatment with PCSK9 inhibitors. Nutr. Metab. Cardiovasc. Dis., 2019, 29(5), 527-529.
[http://dx.doi.org/10.1016/j.numecd.2019.01.010] [PMID: 30954414]
[19]
Klisic, A.; Radoman Vujacic, I.; Munjas, J.; Ninic, A.; Kotur-Stevuljevic, J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch. Med. Sci., 2022, 18(4), 870-880.
[http://dx.doi.org/10.5114/aoms/146796] [PMID: 35832702]
[20]
Xiang, Y.; Mao, L.; Zuo, M. L.; Song, G. L.; Tan, L. M.; Yang, Z. B. The role of MicroRNAs in hyperlipidemia: From pathogenesis to therapeutical application. Mediators Inflamm., 2022, 2022, 3101900.
[http://dx.doi.org/10.1155/2022/3101900]
[21]
Giglio, R. V.; Nikolic, D.; Volti, G. L. Liraglutide increases serum levels of microRNA-27b, -130a and -210 in patients with type 2 diabetes mellitus: A novel epigenetic effect. Metabolites, 2020, 10(10), 391.
[http://dx.doi.org/10.3390/metabo10100391]
[22]
Signorelli, S.S.; Volsi, G.L.; Pitruzzella, A.; Fiore, V.; Mangiafico, M.; Vanella, L.; Parenti, R.; Rizzo, M.; Volti, G.L. Circulating miR-130a, miR-27b, and miR-210 in patients with peripheral artery disease and their potential relationship with oxidative stress. Angiology, 2016, 67(10), 945-950.
[http://dx.doi.org/10.1177/0003319716638242] [PMID: 26980776]
[23]
Macvanin, M.T.; Zafirovic, S.; Obradovic, M.; Isenovic, E.R. Editorial: Non-coding RNA in diabetes and cardiovascular diseases. Front. Endocrinol., 2023, 14, 1149857.
[http://dx.doi.org/10.3389/fendo.2023.1149857] [PMID: 36814579]
[24]
Macvanin, M.; Obradovic, M.; Zafirovic, S.; Stanimirovic, J.; Isenovic, E.R. The role of miRNAs in metabolic diseases. Curr. Med. Chem., 2023, 30(17), 1922-1944.
[http://dx.doi.org/10.2174/0929867329666220801161536] [PMID: 35927902]
[25]
Macvanin, M.T.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front. Endocrinol., 2023, 14, 1124613.
[http://dx.doi.org/10.3389/fendo.2023.1124613] [PMID: 36950696]
[26]
Aryal, B.; Rotllan, N.; Fernández-Hernando, C. Noncoding RNAs and atherosclerosis. Curr. Atheroscler. Rep., 2014, 16(5), 407.
[http://dx.doi.org/10.1007/s11883-014-0407-3] [PMID: 24623179]
[27]
Jackson, A.O.; Regine, M.A.; Subrata, C.; Long, S. Molecular mechanisms and genetic regulation in atherosclerosis. Int. J. Cardiol. Heart Vasc., 2018, 21, 36-44.
[http://dx.doi.org/10.1016/j.ijcha.2018.09.006] [PMID: 30276232]
[28]
Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812.
[http://dx.doi.org/10.1172/jci.insight.143812] [PMID: 33119548]
[29]
Krittanawong, C.; Khawaja, M.; Rosenson, R.S.; Amos, C.I.; Nambi, V.; Lavie, C.J.; Virani, S.S. Association of PCSK9 variants with the risk of atherosclerotic cardiovascular disease and variable responses to PCSK9 inhibitor therapy. Curr. Probl. Cardiol., 2022, 47(7), 101043.
[http://dx.doi.org/10.1016/j.cpcardiol.2021.101043] [PMID: 34780866]
[30]
Jeong, H.J.; Lee, H.S.; Kim, K.S.; Kim, Y.K.; Yoon, D.; Park, S.W. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res., 2008, 49(2), 399-409.
[http://dx.doi.org/10.1194/jlr.M700443-JLR200] [PMID: 17921436]
[31]
Cao, G.; Qian, Y.W.; Kowala, M.; Konrad, R. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(4), 238-243.
[http://dx.doi.org/10.2174/187153008786848286] [PMID: 19075777]
[32]
Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051.
[http://dx.doi.org/10.1161/ATVBAHA.108.179705] [PMID: 22895665]
[33]
Topper, J.N.; Cai, J.; Falb, D.; Gimbrone, M.A., Jr Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci., 1996, 93(19), 10417-10422.
[http://dx.doi.org/10.1073/pnas.93.19.10417] [PMID: 8816815]
[34]
Ridker, P.M. Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J., 2016, 37(22), 1720-1722.
[http://dx.doi.org/10.1093/eurheartj/ehw024] [PMID: 26908943]
[35]
Libby, P. Inflammation in atherosclerosis. Nature, 2002, 420(6917), 868-874.
[http://dx.doi.org/10.1038/nature01323] [PMID: 12490960]
[36]
Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533.
[http://dx.doi.org/10.1038/s41586-021-03392-8] [PMID: 33883728]
[37]
Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[38]
Suwaidi, J.A.; Hamasaki, S.; Higano, S.T.; Nishimura, R.A.; Holmes, D.R., Jr; Lerman, A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation, 2000, 101(9), 948-954.
[http://dx.doi.org/10.1161/01.CIR.101.9.948] [PMID: 10704159]
[39]
Schächinger, V.; Britten, M.B.; Zeiher, A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation, 2000, 101(16), 1899-1906.
[http://dx.doi.org/10.1161/01.CIR.101.16.1899] [PMID: 10779454]
[40]
Félétou, M.; Vanhoutte, P.M. Endothelial dysfunction: A multifaceted disorder (The Wiggers Award Lecture). Am. J. Physiol. Heart Circ. Physiol., 2006, 291(3), H985-H1002.
[http://dx.doi.org/10.1152/ajpheart.00292.2006] [PMID: 16632549]
[41]
Landmesser, U.; Drexler, H. The clinical significance of endothelial dysfunction. Curr. Opin. Cardiol., 2005, 20(6), 547-551.
[http://dx.doi.org/10.1097/01.hco.0000179821.11071.79] [PMID: 16234629]
[42]
Zago, A.S.; Zanesco, A. Nitric oxide, cardiovascular disease and physical exercise. Arq. Bras. Cardiol., 2006, 87(6), e264-e270.
[http://dx.doi.org/10.1590/S0066-782X2006001900029] [PMID: 17262101]
[43]
Flammer, A.J.; Lüscher, T.F. Three decades of endothelium research: From the detection of NO to the everyday implementation of endothelial function measurements in cardiovascular diseases. Swiss Med. Wkly., 2010, 140, w13122.
[http://dx.doi.org/10.4414/smw.2010.13122] [PMID: 21120736]
[44]
Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell, 2015, 161(1), 161-172.
[http://dx.doi.org/10.1016/j.cell.2015.01.036] [PMID: 25815993]
[45]
Gisterå, A.; Klement, M.L.; Polyzos, K.A.; Mailer, R.K.W.; Duhlin, A.; Karlsson, M.C.I.; Ketelhuth, D.F.J.; Hansson, G.K. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation, 2018, 138(22), 2513-2526.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034076] [PMID: 29997115]
[46]
Kruth, H.S. Sequestration of aggregated low-density lipoproteins by macrophages. Curr. Opin. Lipidol., 2002, 13(5), 483-488.
[http://dx.doi.org/10.1097/00041433-200210000-00003] [PMID: 12352011]
[47]
Witztum, J.L.; Berliner, J.A. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr. Opin. Lipidol., 1998, 9(5), 441-448.
[http://dx.doi.org/10.1097/00041433-199810000-00008] [PMID: 9812198]
[48]
Dichtl, W.; Nilsson, L.; Goncalves, I.; Ares, M.P.S.; Banfi, C.; Calara, F.; Hamsten, A.; Eriksson, P.; Nilsson, J. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ. Res., 1999, 84(9), 1085-1094.
[http://dx.doi.org/10.1161/01.RES.84.9.1085] [PMID: 10325246]
[49]
Kranzhöfer, R.; Schmidt, J.; Pfeiffer, C.A.H.; Hagl, S.; Libby, P.; Kübler, W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 1999, 19(7), 1623-1629.
[http://dx.doi.org/10.1161/01.ATV.19.7.1623] [PMID: 10397679]
[50]
Yudkin, J.S.; Stehouwer, C.D.A.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 972-978.
[http://dx.doi.org/10.1161/01.ATV.19.4.972] [PMID: 10195925]
[51]
Karabulut, A. The role of microbiologic agents in the progression of the atherosclerosis: A comprehensive review. J. Saudi Heart Assoc., 2020, 32(3), 440-450.
[http://dx.doi.org/10.37616/2212-5043.1198] [PMID: 33299789]
[52]
Zaric, B.L.; Radovanovic, J.N.; Gluvic, Z.; Stewart, A.J.; Essack, M.; Motwalli, O.; Gojobori, T.; Isenovic, E.R. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front. Immunol., 2020, 11, 551758.
[http://dx.doi.org/10.3389/fimmu.2020.551758] [PMID: 33117340]
[53]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[54]
Obradovic, M.; Zaric, B.; Sudar-Milovanovic, E.; Ilincic, B.; Stokic, E.; Perovic, M.; Isenovic, E.R. PCSK9 and hypercholesterolemia: Therapeutic approach. Curr. Drug Targets, 2018, 19(9), 1058-1067.
[http://dx.doi.org/10.2174/1389450119666171205101401] [PMID: 29210646]
[55]
Davies, M.J. Stability and instability: Two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation, 1996, 94(8), 2013-2020.
[http://dx.doi.org/10.1161/01.CIR.94.8.2013] [PMID: 8873680]
[56]
de Boer, O.; van der Wal, A.C.; Teeling, P.; Becker, A.E. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: A prominent role for neovascularization? Cardiovasc. Res., 1999, 41(2), 443-449.
[http://dx.doi.org/10.1016/S0008-6363(98)00255-7] [PMID: 10341843]
[57]
Seidah, N. G.; Prat, A. The multifaceted biology of PCSK9. Endocr. Rev., 2022, 43(3), 558-582.
[http://dx.doi.org/10.1210/endrev/bnab035]
[58]
Banach, M.; Rizzo, M.; Obradovic, M.; Montalto, G.; Rysz, J.; Mikhailidis, D.P.; Isenovic, E.R. PCSK9 inhibition - a novel mechanism to treat lipid disorders? Curr. Pharm. Des., 2013, 19(21), 3869-3877.
[http://dx.doi.org/10.2174/13816128113199990303] [PMID: 23286435]
[59]
Piper, D. E.; Jackson, S.; Liu, Q.; Romanow, W. G.; Shetterly, S.; Thibault, S. T.; Shan, B.; Walker, N. P. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol. Structure, 2007, 15(5), 545-552.
[http://dx.doi.org/10.1016/j.str.2007.04.004]
[60]
Salowe, S.P.; Zhang, L.; Zokian, H.J.; Gesell, J.J.; Zink, D.L.; Wiltsie, J.; Ai, X.; Kavana, M.; Pinto, S. In vitro assays for the discovery of PCSK9 autoprocessing inhibitors. SLAS Discov., 2016, 21(10), 1034-1041.
[http://dx.doi.org/10.1177/1087057116657312] [PMID: 27412534]
[61]
Korneva, V.; Kuznetsova, T.; Julius, U. The state of the problem of achieving extremely low LDL levels. Curr. Pharm. Des., 2021, 27(37), 3841-3857.
[http://dx.doi.org/10.2174/1381612827999210111182030] [PMID: 33430743]
[62]
Shapiro, M.D.; Tavori, H.; Fazio, S. PCSK9: From basic science discoveries to clinical trials. Circ. Res., 2018, 122(10), 1420-1438.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311227] [PMID: 29748367]
[63]
Seidah, N.G.; Garçon, D. Expanding biology of PCSK9: Roles in atherosclerosis and beyond. Curr. Atheroscler. Rep., 2022, 24(10), 821-830.
[http://dx.doi.org/10.1007/s11883-022-01057-z] [PMID: 35904732]
[64]
Chorba, J.S.; Shokat, K.M. The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J. Biol. Chem., 2014, 289(42), 29030-29043.
[http://dx.doi.org/10.1074/jbc.M114.594861] [PMID: 25210046]
[65]
Lin, X.L.; Xiao, L.L.; Tang, Z.H.; Jiang, Z.S.; Liu, M.H. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed. Pharmacother., 2018, 104, 36-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.024] [PMID: 29758414]
[66]
Sun, L.; Yang, X.; Li, Q.; Zeng, P.; Liu, Y.; Liu, L.; Chen, Y.; Yu, M.; Ma, C.; Li, X.; Li, Y.; Zhang, R.; Zhu, Y.; Miao, Q.R.; Han, J.; Duan, Y. Activation of adiponectin receptor regulates proprotein convertase subtilisin/kexin type 9 expression and inhibits lesions in apoe-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2017, 37(7), 1290-1300.
[http://dx.doi.org/10.1161/ATVBAHA.117.309630] [PMID: 28546220]
[67]
Schulz, R.; Schlüter, K.D.; Laufs, U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res. Cardiol., 2015, 110(2), 4.
[http://dx.doi.org/10.1007/s00395-015-0463-z] [PMID: 25600226]
[68]
Soskić, S.S.; Dobutović, B.D.; Sudar, E.M.; Obradović, M.M.; Nikolić, D.M.; Zarić, B.L.; Stojanović, S.Đ.; Stokić, E.J.; Mikhailidis, D.P.; Isenović, E.R. Peroxisome proliferator-activated receptors and atherosclerosis. Angiology, 2011, 62(7), 523-534.
[http://dx.doi.org/10.1177/0003319711401012] [PMID: 21467121]
[69]
Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.027] [PMID: 28870631]
[70]
Winnik, S.; Auwerx, J.; Sinclair, D.A.; Matter, C.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur. Heart J., 2015, 36(48), 3404-3412.
[http://dx.doi.org/10.1093/eurheartj/ehv290] [PMID: 26112889]
[71]
Luquero, A.; Badimon, L.; Borrell-Pages, M. PCSK9 functions in atherosclerosis are not limited to plasmatic LDL-cholesterol regulation. Front. Cardiovasc. Med., 2021, 8, 639727.
[http://dx.doi.org/10.3389/fcvm.2021.639727] [PMID: 33834043]
[72]
Stanimirovic, J.; Obradovic, M.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Pitt, S. J.; Stewart, A. J.; Isenovic, E. R. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide : Biol. Chem., 2016, 54, 51-59.
[http://dx.doi.org/10.1016/j.niox.2016.02.007]
[73]
Seidah, N.G.; Pasquato, A.; Andréo, U. How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread? Viruses, 2021, 13(7), 1229.
[http://dx.doi.org/10.3390/v13071229] [PMID: 34202098]
[74]
Liu, X.; Bao, X.; Hu, M.; Chang, H.; Jiao, M.; Cheng, J.; Xie, L.; Huang, Q.; Li, F.; Li, C. Y. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature, 2020, 588(7839), 693-698.
[http://dx.doi.org/10.1038/s41586-020-2911-7]
[75]
Coppinger, C.; Movahed, M.R.; Azemawah, V.; Peyton, L.; Gregory, J.; Hashemzadeh, M. A comprehensive review of PCSK9 inhibitors. J. Cardiovasc. Pharmacol. Ther., 2022, 27, 10742484221100107.
[http://dx.doi.org/10.1177/10742484221100107] [PMID: 35593194]
[76]
Tomic Naglic, D.; Manojlovic, M.; Pejakovic, S.; Stepanovic, K.; Prodanovic Simeunovic, J. Lipoprotein(a): Role in atherosclerosis and new treatment options. Biomol. Biomed., 2023, 23(4), 575-583.
[http://dx.doi.org/10.17305/bb.2023.8992]
[77]
Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[78]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[79]
Chen, H.; Chen, X. PCSK9 inhibitors for acute coronary syndrome: The era of early implementation. Front. Cardiovasc. Med., 2023, 10, 1138787.
[http://dx.doi.org/10.3389/fcvm.2023.1138787] [PMID: 37200976]
[80]
Hao, Y.; Yang, Y.; Wang, Y.; Li, J. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome. Int. Heart J., 2022, 63(4), 669-677.
[http://dx.doi.org/10.1536/ihj.22-052] [PMID: 35831153]
[81]
Blom, D.J.; Koren, M.J.; Roth, E.; Monsalvo, M.L.; Djedjos, C.S.; Nelson, P.; Elliott, M.; Wasserman, S.M.; Ballantyne, C.M.; Holman, R.R. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes. Metab., 2017, 19(1), 98-107.
[http://dx.doi.org/10.1111/dom.12788] [PMID: 27619750]
[82]
Giugliano, R.P.; Mach, F.; Zavitz, K.; Kurtz, C.; Im, K.; Kanevsky, E.; Schneider, J.; Wang, H.; Keech, A.; Pedersen, T.R.; Sabatine, M.S.; Sever, P.S.; Robinson, J.G.; Honarpour, N.; Wasserman, S.M.; Ott, B.R. Cognitive function in a randomized trial of evolocumab. N. Engl. J. Med., 2017, 377(7), 633-643.
[http://dx.doi.org/10.1056/NEJMoa1701131] [PMID: 28813214]
[83]
Mehta, S.R.; Pare, G.; Lonn, E.M.; Jolly, S.S.; Natarajan, M.K.; Pinilla-Echeverri, N.; Schwalm, J.D.; Sheth, T.N.; Sibbald, M.; Tsang, M.; Valettas, N.; Velianou, J.L.; Lee, S.F.; Ferdous, T.; Nauman, S.; Nguyen, H.; McCready, T.; McQueen, M.J. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A randomised, double-blind, sham-controlled trial. EuroIntervention, 2022, 18(11), e888-e896.
[http://dx.doi.org/10.4244/EIJ-D-22-00735] [PMID: 36349701]
[84]
Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; Amini, P.; Deckarm, O.; Iglesias, J.F.; Räber, L.; Heg, D.; Mach, F. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS). J. Am. Coll. Cardiol., 2019, 74(20), 2452-2462.
[http://dx.doi.org/10.1016/j.jacc.2019.08.010] [PMID: 31479722]
[85]
Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.J.; Ondracek, A.S.; Radu Juul Jensen, M.D.; Zanchin, C.; Stortecky, S.; Spirk, D.; Siontis, G.C.M.; Saleh, L.; Matter, C.M.; Daemen, J.; Mach, F.; Heg, D.; Windecker, S.; Engstrøm, T.; Lang, I.M.; Koskinas, K.C.; Ambühl, M.; Bär, S.; Frenk, A.; Morf, L.U.; Inderkum, A.; Leuthard, S.; Kavaliauskaite, R.; Rexhaj, E.; Shibutani, H.; Mitter, V.R.; Kaiser, C.; Mayr, M.; Eberli, F.R.; O’Sullivan, C.J.; Templin, C.; von Eckardstein, A.; Ghandilyan, A.; Pawar, R.; Jonker, H.; Hofbauer, T.; Goliasch, G.; Bang, L.; Sørensen, R.; Tovar Forero, M.N.; Degrauwe, S.; Ten Cate, T. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction. JAMA, 2022, 327(18), 1771-1781.
[http://dx.doi.org/10.1001/jama.2022.5218] [PMID: 35368058]
[86]
Gaba, P.; O’Donoghue, M.L.; Park, J.G.; Wiviott, S.D.; Atar, D.; Kuder, J.F.; Im, K.; Murphy, S.A.; De Ferrari, G.M.; Gaciong, Z.A.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; Mach, F.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Giugliano, R.P.; Sabatine, M.S. Association between achieved low-density lipoprotein cholesterol levels and long-term cardiovascular and safety outcomes: An analysis of fourier-ole. Circulation, 2023, 147(16), 1192-1203.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.122.063399] [PMID: 36779348]
[87]
Kaufman, T.M.; Warden, B.A.; Minnier, J.; Miles, J.R.; Duell, P.B.; Purnell, J.Q.; Wojcik, C.; Fazio, S.; Shapiro, M.D. Application of PCSK9 inhibitors in practice. Circ. Res., 2019, 124(1), 32-37.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314191] [PMID: 30605414]
[88]
O’Donoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.; Kuder, J.F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Sabatine, M.S. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation, 2022, 146(15), 1109-1119.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.122.061620] [PMID: 36031810]
[89]
Ferrari, F.; Stein, R.; Motta, M.T.; Moriguchi, E.H. PCSK9 inhibitors: Clinical relevance, molecular mechanisms, and safety in clinical practice. Arq. Bras. Cardiol., 2019, 112(4), 453-460.
[http://dx.doi.org/10.5935/abc.20190029] [PMID: 30843929]
[90]
Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543.
[http://dx.doi.org/10.1210/jc.2009-0141] [PMID: 19351729]
[91]
Tóth, Š.; Fedačko, J.; Pekárová, T.; Hertelyová, Z.; Katz, M.; Mughees, A.; Kuzma, J.; Štefanič, P.; Kopolovets, I.; Pella, D. Elevated circulating PCSK9 concentrations predict subclinical atherosclerotic changes in low risk obese and non-obese patients. Cardiol. Ther., 2017, 6(2), 281-289.
[http://dx.doi.org/10.1007/s40119-017-0092-8] [PMID: 28623549]
[92]
Sotler, T.; Šebeštjen, M. PCSK9 as an atherothrombotic risk factor. Int. J. Mol. Sci., 2023, 24(3), 1966.
[http://dx.doi.org/10.3390/ijms24031966]
[93]
Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules, 2018, 8(3), 80.
[http://dx.doi.org/10.3390/biom8030080] [PMID: 30142970]
[94]
Barale, C.; Melchionda, E.; Morotti, A. PCSK9 biology and its role in atherothrombosis. Int. J. Mol. Sci., 2021, 22(11), 5880.
[http://dx.doi.org/10.3390/ijms22115880]
[95]
Xia, X.; Peng, Z.; Gu, H.; Wang, M.; Wang, G.; Zhang, D. Regulation of PCSK9 expression and function: mechanisms and therapeutic implications. Front. Cardiovasc. Med., 2021, 8, 764038.
[http://dx.doi.org/10.3389/fcvm.2021.764038] [PMID: 34782856]
[96]
Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci., 2015, 52(2), 70-85.
[http://dx.doi.org/10.3109/10408363.2014.992063] [PMID: 25537066]
[97]
Ding, Z.; Liu, S.; Wang, X.; Theus, S.; Deng, X.; Fan, Y.; Zhou, S.; Mehta, J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res., 2018, 114(8), 1145-1153.
[http://dx.doi.org/10.1093/cvr/cvy079] [PMID: 29617722]
[98]
Wu, N.Q.; Shi, H.W.; Li, J.J. Proprotein convertase subtilisin/kexin type 9 and inflammation: An updated review. Front. Cardiovasc. Med., 2022, 9, 763516.
[http://dx.doi.org/10.3389/fcvm.2022.763516] [PMID: 35252378]
[99]
Shapiro, M.D.; Fazio, S. PCSK9 and atherosclerosis - lipids and beyond. J. Atheroscler. Thromb., 2017, 24(5), 462-472.
[http://dx.doi.org/10.5551/jat.RV17003] [PMID: 28302950]
[100]
Xu, B.; Li, S.; Fang, Y.; Zou, Y.; Song, D.; Zhang, S.; Cai, Y. Proprotein convertase subtilisin/kexin type 9 promotes gastric cancer metastasis and suppresses apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. Front. Oncol., 2021, 10, 609663.
[http://dx.doi.org/10.3389/fonc.2020.609663] [PMID: 33489919]
[101]
Guijarro-Muñoz, I.; Compte, M.; Álvarez-Cienfuegos, A.; Álvarez-Vallina, L.; Sanz, L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J. Biol. Chem., 2014, 289(4), 2457-2468.
[http://dx.doi.org/10.1074/jbc.M113.521161] [PMID: 24307174]
[102]
Liu, A.; Frostegård, J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med., 2018, 284(2), 193-210.
[http://dx.doi.org/10.1111/joim.12758] [PMID: 29617044]
[103]
Cammisotto, V.; Pastori, D.; Nocella, C.; Bartimoccia, S.; Castellani, V.; Marchese, C.; Sili Scavalli, A.; Ettorre, E.; Viceconte, N.; Violi, F.; Pignatelli, P.; Carnevale, R. PCSK9 regulates Nox2-mediated platelet activation via CD36 receptor in patients with atrial fibrillation. Antioxidants, 2020, 9(4), 296.
[http://dx.doi.org/10.3390/antiox9040296] [PMID: 32252393]
[104]
Camera, M.; Rossetti, L.; Barbieri, S.S.; Zanotti, I.; Canciani, B.; Trabattoni, D.; Ruscica, M.; Tremoli, E.; Ferri, N. PCSK9 as a positive modulator of platelet activation. J. Am. Coll. Cardiol., 2018, 71(8), 952-954.
[http://dx.doi.org/10.1016/j.jacc.2017.11.069] [PMID: 29471945]
[105]
Ochoa, E.; Iriondo, M.; Manzano, C.; Fullaondo, A.; Villar, I.; Ruiz-Irastorza, G.; Zubiaga, A.M.; Estonba, A. LDLR and PCSK9 are associated with the presence of antiphospholipid antibodies and the development of thrombosis in aPLA carriers. PLoS One, 2016, 11(1), e0146990.
[http://dx.doi.org/10.1371/journal.pone.0146990] [PMID: 26820623]
[106]
Zulkapli, R.; Muid, S.A.; Wang, S.M.; Nawawi, H. PCSK9 inhibitors reduce PCSK9 and early atherogenic biomarkers in stimulated human coronary artery endothelial cells. Int. J. Mol. Sci., 2023, 24(6), 5098.
[http://dx.doi.org/10.3390/ijms24065098] [PMID: 36982171]
[107]
Feingold, K.R.; Moser, A.; Shigenaga, J.K.; Grunfeld, C. Inflammation stimulates niacin receptor (GPR109A/HCA2) expression in adipose tissue and macrophages. J. Lipid Res., 2014, 55(12), 2501-2508.
[http://dx.doi.org/10.1194/jlr.M050955] [PMID: 25320346]
[108]
Shah, P.K. Inflammation and plaque vulnerability. Cardiovasc. Drugs Ther., 2009, 23(1), 31-40.
[http://dx.doi.org/10.1007/s10557-008-6147-2] [PMID: 18949542]
[109]
Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[110]
Wu, C.Y.; Tang, Z.H.; Jiang, L.; Li, X.F.; Jiang, Z.S.; Liu, L.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway. Mol. Cell. Biochem., 2012, 359(1-2), 347-358.
[http://dx.doi.org/10.1007/s11010-011-1028-6] [PMID: 21847580]
[111]
Li, J.; Liang, X.; Wang, Y.; Xu, Z.; Li, G. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis. Mol. Med. Rep., 2017, 16(2), 1817-1825.
[http://dx.doi.org/10.3892/mmr.2017.6803] [PMID: 28656218]
[112]
Li, S.; Guo, Y.L.; Xu, R.X.; Zhang, Y.; Zhu, C.G.; Sun, J.; Qing, P.; Wu, N.Q.; Jiang, L.X.; Li, J.J. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis, 2014, 234(2), 441-445.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.001] [PMID: 24769476]
[113]
Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; Goldbourt, U.; Willeit, J.; Kiechl, S.; Yarnell, J.W.; Sweetnam, P.M.; Elwood, P.C.; Cushman, M.; Psaty, B.M.; Tracy, R.P.; Tybjaerg-Hansen, A.; Haverkate, F.; de Maat, M.P.; Fowkes, F.G.; Lee, A.J.; Smith, F.B.; Salomaa, V.; Harald, K.; Rasi, R.; Vahtera, E.; Jousilahti, P.; Pekkanen, J.; D’Agostino, R.; Kannel, W.B.; Wilson, P.W.; Tofler, G.; Arocha-Piñango, C.L.; Rodriguez-Larralde, A.; Nagy, E.; Mijares, M.; Espinosa, R.; Rodriquez-Roa, E.; Ryder, E.; Diez-Ewald, M.P.; Campos, G.; Fernandez, V.; Torres, E.; Marchioli, R.; Valagussa, F.; Rosengren, A.; Wilhelmsen, L.; Lappas, G.; Eriksson, H.; Cremer, P.; Nagel, D.; Curb, J.D.; Rodriguez, B.; Yano, K.; Salonen, J.T.; Nyyssönen, K.; Tuomainen, T.P.; Hedblad, B.; Lind, P.; Loewel, H.; Koenig, W.; Meade, T.W.; Cooper, J.A.; De Stavola, B.; Knottenbelt, C.; Miller, G.J.; Cooper, J.A.; Bauer, K.A.; Rosenberg, R.D.; Sato, S.; Kitamura, A.; Naito, Y.; Palosuo, T.; Ducimetiere, P.; Amouyel, P.; Arveiler, D.; Evans, A.E.; Ferrieres, J.; Juhan-Vague, I.; Bingham, A.; Schulte, H.; Assmann, G.; Cantin, B.; Lamarche, B.; Després, J.P.; Dagenais, G.R.; Tunstall-Pedoe, H.; Woodward, M.; Ben-Shlomo, Y.; Davey Smith, G.; Palmieri, V.; Yeh, J.L.; Rudnicka, A.; Ridker, P.; Rodeghiero, F.; Tosetto, A.; Shepherd, J.; Ford, I.; Robertson, M.; Brunner, E.; Shipley, M.; Feskens, E.J.; Kromhout, D.; Dickinson, A.; Ireland, B.; Juzwishin, K.; Kaptoge, S.; Lewington, S.; Memon, A.; Sarwar, N.; Walker, M.; Wheeler, J.; White, I.; Wood, A. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA, 2005, 294(14), 1799-1809.
[http://dx.doi.org/10.1001/jama.294.14.1799] [PMID: 16219884]
[114]
Zhang, Y.; Zhu, C.G.; Xu, R.X.; Li, S.; Guo, Y.L.; Sun, J.; Li, J.J. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J. Clin. Lipidol., 2014, 8(5), 494-500.
[http://dx.doi.org/10.1016/j.jacl.2014.07.001] [PMID: 25234562]
[115]
Taechalertpaisarn, J.; Zhao, B.; Liang, X.; Burgess, K. Small molecule inhibitors of the PCSK9·LDLR interaction. J. Am. Chem. Soc., 2018, 140(9), 3242-3249.
[http://dx.doi.org/10.1021/jacs.7b09360]
[116]
Londregan, A.T.; Wei, L.; Xiao, J.; Lintner, N.G.; Petersen, D.; Dullea, R.G.; McClure, K.F.; Bolt, M.W.; Warmus, J.S.; Coffey, S.B.; Limberakis, C.; Genovino, J.; Thuma, B.A.; Hesp, K.D.; Aspnes, G.E.; Reidich, B.; Salatto, C.T.; Chabot, J.R.; Cate, J.H.D.; Liras, S.; Piotrowski, D.W. Small molecule proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Hit to lead optimization of systemic agents. J. Med. Chem., 2018, 61(13), 5704-5718.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00650] [PMID: 29878763]
[117]
Pettersen, D.; Fjellström, O. Small molecule modulators of PCSK9 - A literature and patent overview. Bioorg. Med. Chem. Lett., 2018, 28(7), 1155-1160.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.046] [PMID: 29519739]
[118]
Ahamad, S.; Mathew, S.; Khan, W.A.; Mohanan, K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov. Today, 2022, 27(5), 1332-1349.
[http://dx.doi.org/10.1016/j.drudis.2022.01.014] [PMID: 35121175]
[119]
Lintner, N. G.; McClure, K. F.; Petersen, D.; Londregan, A. T.; Piotrowski, D. W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P. M.; Maguire, B. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, 15(3), e2001882.
[http://dx.doi.org/10.1371/journal.pbio.2001882]
[120]
Petersen, D.N.; Hawkins, J.; Ruangsiriluk, W.; Stevens, K.A.; Maguire, B.A.; O’Connell, T.N.; Rocke, B.N.; Boehm, M.; Ruggeri, R.B.; Rolph, T.; Hepworth, D.; Loria, P.M.; Carpino, P.A. A small-molecule anti-secretagogue of PCSK9 targets the 80S ribosome to inhibit PCSK9 protein translation. Cell Chem. Biol., 2016, 23(11), 1362-1371.
[http://dx.doi.org/10.1016/j.chembiol.2016.08.016] [PMID: 27746128]
[121]
McClure, K.F.; Piotrowski, D.W.; Petersen, D.; Wei, L.; Xiao, J.; Londregan, A.T.; Kamlet, A.S.; Dechert-Schmitt, A.M.; Raymer, B.; Ruggeri, R.B.; Canterbury, D.; Limberakis, C.; Liras, S.; DaSilva-Jardine, P.; Dullea, R.G.; Loria, P.M.; Reidich, B.; Salatto, C.T.; Eng, H.; Kimoto, E.; Atkinson, K.; King-Ahmad, A.; Scott, D.; Beaumont, K.; Chabot, J.R.; Bolt, M.W.; Maresca, K.; Dahl, K.; Arakawa, R.; Takano, A.; Halldin, C. Liver-targeted small-molecule inhibitors of proprotein convertase subtilisin/kexin type 9 synthesis. Angew. Chem. Int. Ed., 2017, 56(51), 16218-16222.
[http://dx.doi.org/10.1002/anie.201708744] [PMID: 29073340]
[122]
Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong-Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955.
[http://dx.doi.org/10.1074/jbc.M113.514067] [PMID: 24225950]
[123]
Schroeder, C.I.; Swedberg, J.E.; Withka, J.M.; Rosengren, K.J.; Akcan, M.; Clayton, D.J.; Daly, N.L.; Cheneval, O.; Borzilleri, K.A.; Griffor, M.; Stock, I.; Colless, B.; Walsh, P.; Sunderland, P.; Reyes, A.; Dullea, R.; Ammirati, M.; Liu, S.; McClure, K.F.; Tu, M.; Bhattacharya, S.K.; Liras, S.; Price, D.A.; Craik, D.J. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem. Biol., 2014, 21(2), 284-294.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.014] [PMID: 24440079]
[124]
Zhang, Y.; Ultsch, M.; Skelton, N. J.; Burdick, D. J.; Beresini, M. H.; Li, W.; Kong-Beltran, M.; Peterson, A.; Quinn, J.; Chiu, C. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat. Struct. Mol. Biol., 2017, 24(10), 848-856.
[http://dx.doi.org/10.1038/nsmb.3453]
[125]
Evison, B.J.; Palmer, J.T.; Lambert, G.; Treutlein, H.; Zeng, J.; Nativel, B.; Chemello, K.; Zhu, Q.; Wang, J.; Teng, Y.; Tang, W.; Xu, Y.; Rathi, A.K.; Kumar, S.; Suchowerska, A.K.; Parmar, J.; Dixon, I.; Kelly, G.E.; Bonnar, J. A small molecule inhibitor of PCSK9 that antagonizes LDL receptor binding via interaction with a cryptic PCSK9 binding groove. Bioorg. Med. Chem., 2020, 28(6), 115344.
[http://dx.doi.org/10.1016/j.bmc.2020.115344] [PMID: 32051094]
[126]
Min, D.K.; Lee, H.S.; Lee, N.; Lee, C.J.; Song, H.J.; Yang, G.E.; Yoon, D.; Park, S.W. In silico screening of chemical libraries to develop inhibitors that hamper the interaction of PCSK9 with the LDL receptor. Yonsei Med. J., 2015, 56(5), 1251-1257.
[http://dx.doi.org/10.3349/ymj.2015.56.5.1251] [PMID: 26256967]
[127]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[128]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[129]
Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[130]
Forman, J.J.; Legesse-Miller, A.; Coller, H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci., 2008, 105(39), 14879-14884.
[http://dx.doi.org/10.1073/pnas.0803230105] [PMID: 18812516]
[131]
Zhou, H.; Rigoutsos, I. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA, 2014, 20(9), 1431-1439.
[http://dx.doi.org/10.1261/rna.045757.114] [PMID: 24984703]
[132]
Zhang, Y.; Fan, M.; Zhang, X.; Huang, F.; Wu, K.; Zhang, J.; Liu, J.; Huang, Z.; Luo, H.; Tao, L.; Zhang, H. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA, 2014, 20(12), 1878-1889.
[http://dx.doi.org/10.1261/rna.045633.114] [PMID: 25336585]
[133]
Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[134]
Siomi, H.; Siomi, M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell, 2010, 38(3), 323-332.
[http://dx.doi.org/10.1016/j.molcel.2010.03.013] [PMID: 20471939]
[135]
Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[136]
Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63.
[http://dx.doi.org/10.1038/nature07228] [PMID: 18668040]
[137]
Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105.
[http://dx.doi.org/10.1016/j.molcel.2007.06.017] [PMID: 17612493]
[138]
Doench, J.G.; Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev., 2004, 18(5), 504-511.
[http://dx.doi.org/10.1101/gad.1184404] [PMID: 15014042]
[139]
Wang, R.; Dong, L.D.; Meng, X.B.; Shi, Q.; Sun, W.Y. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Biochem. Biophys. Res. Commun., 2015, 464(2), 574-579.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.010] [PMID: 26159918]
[140]
Raitoharju, E.; Lyytikäinen, L.P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.; Kähönen, M.; Karhunen, P.J.; Laaksonen, R.; Lehtimäki, T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis, 2011, 219(1), 211-217.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.020] [PMID: 21820659]
[141]
Cipollone, F.; Felicioni, L.; Sarzani, R.; Ucchino, S.; Spigonardo, F.; Mandolini, C.; Malatesta, S.; Bucci, M.; Mammarella, C.; Santovito, D.; de Lutiis, F.; Marchetti, A.; Mezzetti, A.; Buttitta, F. A unique microRNA signature associated with plaque instability in humans. Stroke, 2011, 42(9), 2556-2563.
[http://dx.doi.org/10.1161/STROKEAHA.110.597575] [PMID: 21817153]
[142]
Faccini, J.; Ruidavets, J.B.; Cordelier, P.; Martins, F.; Maoret, J.J.; Bongard, V.; Ferrières, J.; Roncalli, J.; Elbaz, M.; Vindis, C. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci. Rep., 2017, 7(1), 42916.
[http://dx.doi.org/10.1038/srep42916] [PMID: 28205634]
[143]
Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Röxe, T.; Müller-Ardogan, M.; Bonauer, A.; Zeiher, A.M.; Dimmeler, S. Circulating microRNAs in patients with coronary artery disease. Circ. Res., 2010, 107(5), 677-684.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215566] [PMID: 20595655]
[144]
Weber, M.; Baker, M.B.; Patel, R.S.; Quyyumi, A.A.; Bao, G.; Searles, C.D. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol. Res. Pract., 2011, 2011, 1-5.
[http://dx.doi.org/10.4061/2011/532915] [PMID: 21785714]
[145]
Zhu, G.; Yang, L.; Guo, R.; Liu, H.; Shi, Y.; Ye, J.; Yang, Z. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the gensini score. Coron. Artery Dis., 2014, 25(4), 304-310.
[http://dx.doi.org/10.1097/MCA.0000000000000088] [PMID: 24525789]
[146]
Zeller, T.; Keller, T.; Ojeda, F.; Reichlin, T.; Twerenbold, R.; Tzikas, S.; Wild, P.S.; Reiter, M.; Czyz, E.; Lackner, K.J.; Munzel, T.; Mueller, C.; Blankenberg, S. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J., 2014, 35(31), 2106-2114.
[http://dx.doi.org/10.1093/eurheartj/ehu151] [PMID: 24727883]
[147]
Liu, K.; Xuekelati, S.; Zhou, K.; Yan, Z.; Yang, X.; Inayat, A.; Wu, J.; Guo, X. Expression profiles of six atherosclerosis-associated microRNAs that cluster in patients with hyperhomocysteinemia: A clinical study. DNA Cell Biol., 2018, 37(3), 189-198.
[http://dx.doi.org/10.1089/dna.2017.3845] [PMID: 29461880]
[148]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[149]
Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306300] [PMID: 26892968]
[150]
Boon, R.A. Endothelial microRNA tells smooth muscle cells to proliferate. Circ. Res., 2013, 113(1), 7-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301636] [PMID: 23788500]
[151]
Jaé, N.; Dimmeler, S. Noncoding RNAs in vascular diseases. Circ. Res., 2020, 126(9), 1127-1145.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315938] [PMID: 32324505]
[152]
Fasolo, F.; Di Gregoli, K.; Maegdefessel, L.; Johnson, J.L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res., 2019, 115(12), 1732-1756.
[http://dx.doi.org/10.1093/cvr/cvz203] [PMID: 31389987]
[153]
Fang, Y.; Davies, P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 979-987.
[http://dx.doi.org/10.1161/ATVBAHA.111.244053] [PMID: 22267480]
[154]
Loyer, X.; Potteaux, S.; Vion, A.C.; Guérin, C.L.; Boulkroun, S.; Rautou, P.E.; Ramkhelawon, B.; Esposito, B.; Dalloz, M.; Paul, J.L.; Julia, P.; Maccario, J.; Boulanger, C.M.; Mallat, Z.; Tedgui, A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res., 2014, 114(3), 434-443.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302213] [PMID: 24255059]
[155]
Hosen, M.R.; Goody, P.R.; Zietzer, A.; Nickenig, G.; Jansen, F. MicroRNAs as master regulators of atherosclerosis: From pathogenesis to novel therapeutic options. Antioxid. Redox Signal., 2020, 33(9), 621-644.
[http://dx.doi.org/10.1089/ars.2020.8107] [PMID: 32408755]
[156]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[157]
Self-Fordham, J.B.; Naqvi, A.R.; Uttamani, J.R.; Kulkarni, V.; Nares, S. MicroRNA: Dynamic regulators of macrophage polarization and plasticity. Front. Immunol., 2017, 8, 1062.
[http://dx.doi.org/10.3389/fimmu.2017.01062] [PMID: 28912781]
[158]
Curtale, G.; Rubino, M.; Locati, M. MicroRNAs as molecular switches in macrophage activation. Front. Immunol., 2019, 10, 799.
[http://dx.doi.org/10.3389/fimmu.2019.00799] [PMID: 31057539]
[159]
Zhang, Y.; Zhang, M.; Zhong, M.; Suo, Q.; Lv, K. Expression profiles of miRNAs in polarized macrophages. Int. J. Mol. Med., 2013, 31(4), 797-802.
[http://dx.doi.org/10.3892/ijmm.2013.1260] [PMID: 23443577]
[160]
Park, Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med., 2014, 46(6), e99.
[http://dx.doi.org/10.1038/emm.2014.38] [PMID: 24903227]
[161]
Kuchibhotla, S.; Vanegas, D.; Kennedy, D.J.; Guy, E.; Nimako, G.; Morton, R.E.; Febbraio, M. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc. Res., 2008, 78(1), 185-196.
[http://dx.doi.org/10.1093/cvr/cvm093] [PMID: 18065445]
[162]
Li, B.R.; Xia, L.Q.; Liu, J.; liao, L.L.; Zhang, Y.; Deng, M.; Zhong, H.J.; Feng, T.T.; He, P.P.; Ouyang, X.P. miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 384-389.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.150] [PMID: 28965954]
[163]
Chen, T.; Huang, Z.; Wang, L.; Wang, Y.; Wu, F.; Meng, S.; Wang, C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res., 2009, 83(1), 131-139.
[http://dx.doi.org/10.1093/cvr/cvp121] [PMID: 19377067]
[164]
Banerjee, S.; Cui, H.; Xie, N.; Tan, Z.; Yang, S.; Icyuz, M.; Thannickal, V.J.; Abraham, E.; Liu, G. miR-125a-5p regulates differential activation of macrophages and inflammation. J. Biol. Chem., 2013, 288(49), 35428-35436.
[http://dx.doi.org/10.1074/jbc.M112.426866] [PMID: 24151079]
[165]
Yang, K.; He, Y.S.; Wang, X.Q.; Lu, L.; Chen, Q.J.; Liu, J.; Sun, Z.; Shen, W.F. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett., 2011, 585(6), 854-860.
[http://dx.doi.org/10.1016/j.febslet.2011.02.009] [PMID: 21329689]
[166]
Zhang, M.; Wu, J.F.; Chen, W.J.; Tang, S.L.; Mo, Z.C.; Tang, Y.Y.; Li, Y.; Wang, J.L.; Liu, X.Y.; Peng, J.; Chen, K.; He, P.P.; Lv, Y.C.; Ouyang, X.P.; Yao, F.; Tang, D.P.; Cayabyab, F.S.; Zhang, D.W.; Zheng, X.L.; Tian, G.P.; Tang, C.K. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis, 2014, 234(1), 54-64.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.02.008] [PMID: 24608080]
[167]
Xie, W.; Li, L.; Zhang, M.; Cheng, H.P.; Gong, D.; Lv, Y.C.; Yao, F.; He, P.P.; Ouyang, X.P.; Lan, G.; Liu, D.; Zhao, Z.W.; Tan, Y.L.; Zheng, X.L.; Yin, W.D.; Tang, C.K. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One, 2016, 11(6), e0157085.
[http://dx.doi.org/10.1371/journal.pone.0157085] [PMID: 27257686]
[168]
Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.023] [PMID: 26318398]
[169]
Canfrán-Duque, A.; Lin, C.S.; Goedeke, L.; Suárez, Y.; Fernández-Hernando, C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol., 2016, 36(6), 1076-1084.
[http://dx.doi.org/10.1161/ATVBAHA.116.307028] [PMID: 27079881]
[170]
Nishiga, M.; Horie, T.; Kuwabara, Y.; Nagao, K.; Baba, O.; Nakao, T.; Nishino, T.; Hakuno, D.; Nakashima, Y.; Nishi, H.; Nakazeki, F.; Ide, Y.; Koyama, S.; Kimura, M.; Hanada, R.; Nakamura, T.; Inada, T.; Hasegawa, K.; Conway, S.J.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol. Circ. Res., 2017, 120(5), 835-847.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309528] [PMID: 27920122]
[171]
Karunakaran, D.; Thrush, A.B.; Nguyen, M.A.; Richards, L.; Geoffrion, M.; Singaravelu, R.; Ramphos, E.; Shangari, P.; Ouimet, M.; Pezacki, J.P.; Moore, K.J.; Perisic, L.; Maegdefessel, L.; Hedin, U.; Harper, M.E.; Rayner, K.J. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-mir33 in atherosclerosis. Circ. Res., 2015, 117(3), 266-278.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305624] [PMID: 26002865]
[172]
Ouimet, M.; Ediriweera, H.N.; Gundra, U.M.; Sheedy, F.J.; Ramkhelawon, B.; Hutchison, S.B.; Rinehold, K.; van Solingen, C.; Fullerton, M.D.; Cecchini, K.; Rayner, K.J.; Steinberg, G.R.; Zamore, P.D.; Fisher, E.A.; Loke, P.; Moore, K.J. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest., 2015, 125(12), 4334-4348.
[http://dx.doi.org/10.1172/JCI81676] [PMID: 26517695]
[173]
Rayner, K.J.; Suárez, Y.; Dávalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A.; Moore, K.J.; Fernández-Hernando, C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985), 1570-1573.
[http://dx.doi.org/10.1126/science.1189862] [PMID: 20466885]
[174]
Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931.
[http://dx.doi.org/10.1172/JCI57275] [PMID: 21646721]
[175]
Goedeke, L.; Rotllan, N.; Canfrán-Duque, A.; Aranda, J.F.; Ramírez, C.M.; Araldi, E.; Lin, C.S.; Anderson, N.N.; Wagschal, A.; de Cabo, R.; Horton, J.D.; Lasunción, M.A.; Näär, A.M.; Suárez, Y.; Fernández-Hernando, C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med., 2015, 21(11), 1280-1289.
[http://dx.doi.org/10.1038/nm.3949] [PMID: 26437365]
[176]
de Aguiar Vallim, T.Q.; Tarling, E.J.; Kim, T.; Civelek, M.; Baldán, Á.; Esau, C.; Edwards, P.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res., 2013, 112(12), 1602-1612.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300648] [PMID: 23519696]
[177]
Ramírez, C.M.; Goedeke, L.; Rotllan, N.; Yoon, J.H.; Cirera-Salinas, D.; Mattison, J.A.; Suárez, Y.; de Cabo, R.; Gorospe, M.; Fernández-Hernando, C. MicroRNA 33 regulates glucose metabolism. Mol. Cell. Biol., 2013, 33(15), 2891-2902.
[http://dx.doi.org/10.1128/MCB.00016-13] [PMID: 23716591]
[178]
Ouimet, M.; Ediriweera, H.; Afonso, M.S.; Ramkhelawon, B.; Singaravelu, R.; Liao, X.; Bandler, R.C.; Rahman, K.; Fisher, E.A.; Rayner, K.J.; Pezacki, J.P.; Tabas, I.; Moore, K.J. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1058-1067.
[http://dx.doi.org/10.1161/ATVBAHA.116.308916] [PMID: 28428217]
[179]
Afonso, M.S.; Sharma, M.; Schlegel, M.; van Solingen, C.; Koelwyn, G.J.; Shanley, L.C.; Beckett, L.; Peled, D.; Rahman, K.; Giannarelli, C.; Li, H.; Brown, E.J.; Khodadadi-Jamayran, A.; Fisher, E.A.; Moore, K.J. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res., 2021, 128(8), 1122-1138.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317914] [PMID: 33593073]
[180]
Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circ Res., 2022, 131(11), 77-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.320296]
[181]
Canfrán-Duque, A.; Ramírez, C.M.; Goedeke, L.; Lin, C.S.; Fernández-Hernando, C. microRNAs and HDL life cycle. Cardiovasc. Res., 2014, 103(3), 414-422.
[http://dx.doi.org/10.1093/cvr/cvu140] [PMID: 24895349]
[182]
Najafi-Shoushtari, S.H.; Kristo, F.; Li, Y.; Shioda, T.; Cohen, D.E.; Gerszten, R.E.; Näär, A.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010, 328(5985), 1566-1569.
[http://dx.doi.org/10.1126/science.1189123] [PMID: 20466882]
[183]
Marquart, T.J.; Allen, R.M.; Ory, D.S.; Baldán, Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci., 2010, 107(27), 12228-12232.
[http://dx.doi.org/10.1073/pnas.1005191107] [PMID: 20566875]
[184]
Sidorkiewicz, M. Is microRNA-33 an appropriate target in the treatment of atherosclerosis? Nutrients, 2023, 15(4), 902.
[http://dx.doi.org/10.3390/nu15040902] [PMID: 36839260]
[185]
Horie, T.; Baba, O.; Kuwabara, Y.; Chujo, Y.; Watanabe, S.; Kinoshita, M.; Horiguchi, M.; Nakamura, T.; Chonabayashi, K.; Hishizawa, M.; Hasegawa, K.; Kume, N.; Yokode, M.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc., 2012, 1(6), e003376.
[http://dx.doi.org/10.1161/JAHA.112.003376] [PMID: 23316322]
[186]
Ramírez, C.M.; Rotllan, N.; Vlassov, A.V.; Dávalos, A.; Li, M.; Goedeke, L.; Aranda, J.F.; Cirera-Salinas, D.; Araldi, E.; Salerno, A.; Wanschel, A.; Zavadil, J.; Castrillo, A.; Kim, J.; Suárez, Y.; Fernández-Hernando, C. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res., 2013, 112(12), 1592-1601.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300626] [PMID: 23519695]
[187]
Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; Sethupathy, P.; Barter, P.J.; Remaley, A.T.; Rye, K.A. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun., 2014, 5(1), 3292.
[http://dx.doi.org/10.1038/ncomms4292] [PMID: 24576947]
[188]
Rossi-Herring, G.; Belmonte, T.; Rivas-Urbina, A.; Benítez, S.; Rotllan, N.; Crespo, J.; Llorente-Cortés, V.; Sánchez-Quesada, J.L.; de Gonzalo-Calvo, D. Circulating lipoprotein-carried miRNome analysis reveals novel VLDL-enriched microRNAs that strongly correlate with the HDL-microRNA profile. Biomed. Pharmacother., 2023, 162, 114623.
[http://dx.doi.org/10.1016/j.biopha.2023.114623] [PMID: 37023624]
[189]
Zhang, X.; Price, N.L.; Fernández-Hernando, C. Non-coding RNAs in lipid metabolism. Vascul. Pharmacol., 2019, 114, 93-102.
[http://dx.doi.org/10.1016/j.vph.2018.06.011] [PMID: 29929012]
[190]
Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897.
[http://dx.doi.org/10.1172/JCI63455] [PMID: 22820290]
[191]
Agbu, P.; Carthew, R.W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol., 2021, 22(6), 425-438.
[http://dx.doi.org/10.1038/s41580-021-00354-w] [PMID: 33772227]
[192]
Naeli, P.; Mirzadeh Azad, F.; Malakootian, M.; Seidah, N.G.; Mowla, S.J. Post-transcriptional regulation of PCSK9 by miR-191, miR-222, and miR-224. Front. Genet., 2017, 8, 189.
[http://dx.doi.org/10.3389/fgene.2017.00189] [PMID: 29230236]
[193]
Bai, J.; Na, H.; Hua, X.; Wei, Y.; Ye, T.; Zhang, Y.; Jian, G.; Zeng, W.; Yan, L.; Tang, Q. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget, 2017, 8(4), 6929-6939.
[http://dx.doi.org/10.18632/oncotarget.14322] [PMID: 28036293]
[194]
Salerno, A.G.; van Solingen, C.; Scotti, E.; Wanschel, A.C.B.A.; Afonso, M.S.; Oldebeken, S.R.; Spiro, W.; Tontonoz, P.; Rayner, K.J.; Moore, K.J. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med., 2020, 7, 81.
[http://dx.doi.org/10.3389/fcvm.2020.00081] [PMID: 32528976]
[195]
Chandra, A.; Sharma, K.; Pratap, K.; Singh, V.; Saini, N. Inhibition of microRNA-128-3p attenuates hypercholesterolemia in mouse model. Life Sci., 2021, 264, 118633.
[http://dx.doi.org/10.1016/j.lfs.2020.118633] [PMID: 33190783]
[196]
Wang, N.; He, L. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One, 2020, 15(5), e0225356.
[http://dx.doi.org/10.1371/journal.pone.0225356]
[197]
Shibata, C.; Kishikawa, T.; Otsuka, M.; Ohno, M.; Yoshikawa, T.; Takata, A.; Yoshida, H.; Koike, K. Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression. Biochem. Biophys. Res. Commun., 2013, 438(1), 230-235.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.064] [PMID: 23891753]
[198]
Menon, B.; Gulappa, T.; Menon, K.M.J. miR-122 regulates LH receptor expression by activating sterol response element binding protein in rat ovaries. Endocrinology, 2015, 156(9), 3370-3380.
[http://dx.doi.org/10.1210/en.2015-1121] [PMID: 26125464]
[199]
Irani, S.; Pan, X.; Peck, B.C.E.; Iqbal, J.; Sethupathy, P.; Hussain, M.M. MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice. J. Biol. Chem., 2016, 291(35), 18397-18409.
[http://dx.doi.org/10.1074/jbc.M116.728451] [PMID: 27365390]
[200]
Li, X.; Feng, S.; Luo, Y.; Long, K.; Lin, Z.; Ma, J.; Jiang, A.; Jin, L.; Tang, Q.; Li, M.; Wang, X. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells. In vitro Cell. Dev. Biol. Anim., 2018, 54(2), 99-110.
[http://dx.doi.org/10.1007/s11626-017-0225-3] [PMID: 29322359]
[201]
Ataei, S.; Ganjali, S.; Banach, M.; Karimi, E.; Sahebkar, A. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with PCSK9/LDLR pathway. Arch. Med. Sci., 2022, 19(1), 203-208.
[http://dx.doi.org/10.5114/aoms/152000] [PMID: 36817686]
[202]
van Solingen, C.; Oldebeken, S.R.; Salerno, A.G.; Wanschel, A.C.B.A.; Moore, K.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med., 2021, 8, 667298.
[http://dx.doi.org/10.3389/fcvm.2021.667298] [PMID: 34322524]
[203]
Los, B.; Borges, J.B.; Oliveira, V.F.; Freitas, R.C.C.; Dagli-Hernandez, C.; Bortolin, R.H.; Gonçalves, R.M.; Faludi, A.A.; Rodrigues, A.C.; Bastos, G.M.; Jannes, C.E.; Pereira, A.C.; Hirata, R.D.C.; Hirata, M.H. Functional analysis of PCSK9 3′UTR variants and mRNA–miRNA interactions in patients with familial hypercholesterolemia. Epigenomics, 2021, 13(10), 779-791.
[http://dx.doi.org/10.2217/epi-2020-0462] [PMID: 33899508]
[204]
Gupta, N.; Fisker, N.; Asselin, M.C.; Lindholm, M.; Rosenbohm, C.; Ørum, H.; Elmén, J.; Seidah, N.G.; Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One, 2010, 5(5), e10682.
[http://dx.doi.org/10.1371/journal.pone.0010682] [PMID: 20498851]
[205]
Dong, B.; Li, H.; Singh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem., 2015, 290(7), 4047-4058.
[http://dx.doi.org/10.1074/jbc.M114.597229] [PMID: 25540198]
[206]
Ni, Y.G.; Di Marco, S.; Condra, J.H.; Peterson, L.B.; Wang, W.; Wang, F.; Pandit, S.; Hammond, H.A.; Rosa, R.; Cummings, R.T.; Wood, D.D.; Liu, X.; Bottomley, M.J.; Shen, X.; Cubbon, R.M.; Wang, S.; Johns, D.G.; Volpari, C.; Hamuro, L.; Chin, J.; Huang, L.; Zhao, J.Z.; Vitelli, S.; Haytko, P.; Wisniewski, D.; Mitnaul, L.J.; Sparrow, C.P.; Hubbard, B.; Carfí, A.; Sitlani, A. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res., 2011, 52(1), 78-86.
[http://dx.doi.org/10.1194/jlr.M011445] [PMID: 20959675]
[207]
Banerjee, Y.; Santos, R.D.; Al-Rasadi, K.; Rizzo, M. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis, 2016, 248, 62-75.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.018] [PMID: 26987067]
[208]
Chan, J.C.Y.; Piper, D.E.; Cao, Q.; Liu, D.; King, C.; Wang, W.; Tang, J.; Liu, Q.; Higbee, J.; Xia, Z.; Di, Y.; Shetterly, S.; Arimura, Z.; Salomonis, H.; Romanow, W.G.; Thibault, S.T.; Zhang, R.; Cao, P.; Yang, X.P.; Yu, T.; Lu, M.; Retter, M.W.; Kwon, G.; Henne, K.; Pan, O.; Tsai, M.M.; Fuchslocher, B.; Yang, E.; Zhou, L.; Lee, K.J.; Daris, M.; Sheng, J.; Wang, Y.; Shen, W.D.; Yeh, W.C.; Emery, M.; Walker, N.P.C.; Shan, B.; Schwarz, M.; Jackson, S.M. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci., 2009, 106(24), 9820-9825.
[http://dx.doi.org/10.1073/pnas.0903849106] [PMID: 19443683]
[209]
Stein, E.A.; Mellis, S.; Yancopoulos, G.D.; Stahl, N.; Logan, D.; Smith, W.B.; Lisbon, E.; Gutierrez, M.; Webb, C.; Wu, R.; Du, Y.; Kranz, T.; Gasparino, E.; Swergold, G.D. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med., 2012, 366(12), 1108-1118.
[http://dx.doi.org/10.1056/NEJMoa1105803] [PMID: 22435370]
[210]
Liang, H.; Chaparro-Riggers, J.; Strop, P.; Geng, T.; Sutton, J.E.; Tsai, D.; Bai, L.; Abdiche, Y.; Dilley, J.; Yu, J.; Wu, S.; Chin, S.M.; Lee, N.A.; Rossi, A.; Lin, J.C.; Rajpal, A.; Pons, J.; Shelton, D.L. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther., 2012, 340(2), 228-236.
[http://dx.doi.org/10.1124/jpet.111.187419] [PMID: 22019884]
[211]
Park, S.W.; Moon, Y.A.; Horton, J.D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem., 2004, 279(48), 50630-50638.
[http://dx.doi.org/10.1074/jbc.M410077200] [PMID: 15385538]
[212]
Mayer, G.; Poirier, S.; Seidah, N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem., 2008, 283(46), 31791-31801.
[http://dx.doi.org/10.1074/jbc.M805971200] [PMID: 18799458]
[213]
Gouni-Berthold, I.; Berthold, H.K. Antisense oligonucleotides for the treatment of dyslipidemia. Curr. Pharm. Des., 2011, 17(9), 950-960.
[http://dx.doi.org/10.2174/138161211795428830] [PMID: 21418033]
[214]
Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; Gamba-Vitalo, C.; Hadwiger, P.; Jayaraman, M.; John, M.; Jayaprakash, K.N.; Maier, M.; Nechev, L.; Rajeev, K.G.; Read, T.; Röhl, I.; Soutschek, J.; Tan, P.; Wong, J.; Wang, G.; Zimmermann, T.; de Fougerolles, A.; Vornlocher, H.P.; Langer, R.; Anderson, D.G.; Manoharan, M.; Koteliansky, V.; Horton, J.D.; Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci., 2008, 105(33), 11915-11920.
[http://dx.doi.org/10.1073/pnas.0805434105] [PMID: 18695239]
[215]
Ni, Y.G.; Condra, J.H.; Orsatti, L.; Shen, X.; Di Marco, S.; Pandit, S.; Bottomley, M.J.; Ruggeri, L.; Cummings, R.T.; Cubbon, R.M.; Santoro, J.C.; Ehrhardt, A.; Lewis, D.; Fisher, T.S.; Ha, S.; Njimoluh, L.; Wood, D.D.; Hammond, H.A.; Wisniewski, D.; Volpari, C.; Noto, A.; Lo Surdo, P.; Hubbard, B.; Carfí, A.; Sitlani, A. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem., 2010, 285(17), 12882-12891.
[http://dx.doi.org/10.1074/jbc.M110.113035] [PMID: 20172854]
[216]
Akram, O.N.; Bernier, A.; Petrides, F.; Wong, G.; Lambert, G. Beyond LDL cholesterol, a new role for PCSK9. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1279-1281.
[http://dx.doi.org/10.1161/ATVBAHA.110.209007] [PMID: 20554949]
[217]
Squizzato, A.; Suter, M.B.; Nerone, M.; Giugliano, R.P.; Dentali, F.; Maresca, A.M.; Campiotti, L.; Grandi, A.M.; Guasti, L. PCSK9 inhibitors for treating dyslipidemia in patients at different cardiovascular risk: A systematic review and a meta-analysis. Intern. Emerg. Med., 2017, 12(7), 1043-1053.
[http://dx.doi.org/10.1007/s11739-017-1708-7] [PMID: 28695455]
[218]
Banach, M.; Penson, P.E.; Vrablik, M.; Bunc, M.; Dyrbus, K.; Fedacko, J.; Gaita, D.; Gierlotka, M.; Jarai, Z.; Magda, S.L.; Margetic, E.; Margoczy, R.; Durak-Nalbantic, A.; Ostadal, P.; Pella, D.; Trbusic, M.; Udroiu, C.A.; Vlachopoulos, C.; Vulic, D.; Fras, Z.; Dudek, D.; Reiner, Ž. Optimal use of lipid-lowering therapy after acute coronary syndromes: A Position Paper endorsed by the International Lipid Expert Panel (ILEP). Pharmacol. Res., 2021, 166, 105499.
[http://dx.doi.org/10.1016/j.phrs.2021.105499] [PMID: 33607265]
[219]
Rallidis, L.S.; Skoumas, I.; Liberopoulos, E.N.; Vlachopoulos, C.; Kiouri, E.; Koutagiar, I.; Anastasiou, G.; Kosmas, N.; Elisaf, M.S.; Tousoulis, D.; Iliodromitis, E. PCSK9 inhibitors in clinical practice: Novel directions and new experiences. Hellenic J. Cardiol., 2020, 61(4), 241-245.
[http://dx.doi.org/10.1016/j.hjc.2019.10.003] [PMID: 31783124]
[220]
Han, Y.; Chen, J.; Chopra, V.K.; Zhang, S.; Su, G.; Ma, C.; Huang, Z.; Ma, Y.; Yao, Z.; Yuan, Z.; Zhao, Q.; Kuanprasert, S.; Baccara-Dinet, M.T.; Manvelian, G.; Li, J.; Chen, R. ODYSSEY EAST: Alirocumab efficacy and safety vs ezetimibe in high cardiovascular risk patients with hypercholesterolemia and on maximally tolerated statin in China, India, and Thailand. J. Clin. Lipidol., 2020, 14(1), 98-108.e8.
[http://dx.doi.org/10.1016/j.jacl.2019.10.015] [PMID: 31882376]
[221]
Cho, L.; Dent, R.; Stroes, E.S.G.; Stein, E.A.; Sullivan, D.; Ruzza, A.; Flower, A.; Somaratne, R.; Rosenson, R.S. Persistent safety and efficacy of evolocumab in patients with statin intolerance: A subset analysis of the OSLER open-label extension studies. Cardiovasc. Drugs Ther., 2018, 32(4), 365-372.
[http://dx.doi.org/10.1007/s10557-018-6817-7] [PMID: 30073585]
[222]
Watts, G.F.; Chan, D.C.; Dent, R.; Somaratne, R.; Wasserman, S.M.; Scott, R.; Burrows, S.; R Barrett, P.H. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation, 2017, 135(4), 338-351.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025080] [PMID: 27941065]
[223]
Rane, P. B.; Patel, J.; Harrison, D. J.; Shepherd, J.; Leith, A.; Bailey, H.; Piercy, J. Patient characteristics and real-world treatment patterns among early users of PCSK9 inhibitors. Am. J. Cardiovasc. Drugs., 2018, 18(2), 103-108.
[http://dx.doi.org/10.1007/s40256-017-0246-z]
[224]
Arrieta, A.; Hong, J.C.; Khera, R.; Virani, S.S.; Krumholz, H.M.; Nasir, K. Updated cost-effectiveness assessments of PCSK9 inhibitors from the perspectives of the health system and private payers. JAMA Cardiol., 2017, 2(12), 1369-1374.
[http://dx.doi.org/10.1001/jamacardio.2017.3655] [PMID: 29049467]
[225]
Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548.
[http://dx.doi.org/10.1016/j.jacc.2014.03.019] [PMID: 24694531]
[226]
Koba, S.; Inoue, I.; Cyrille, M.; Lu, C.; Inomata, H.; Shimauchi, J.; Kajinami, K. Evolocumab vs. ezetimibe in statin-intolerant hyperlipidemic Japanese patients: Phase 3 GAUSS-4 trial. J. Atheroscler. Thromb., 2020, 27(5), 471-484.
[http://dx.doi.org/10.5551/jat.50963] [PMID: 31748467]
[227]
Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.; Ceška, R.; Lepor, N.; Ballantyne, C.M.; Gouni-Berthold, I.; Elliott, M.; Brennan, D.M.; Wasserman, S.M.; Somaratne, R.; Scott, R.; Stein, E.A. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance. JAMA, 2016, 315(15), 1580-1590.
[http://dx.doi.org/10.1001/jama.2016.3608] [PMID: 27039291]
[228]
Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769.
[http://dx.doi.org/10.1016/j.jacl.2015.08.006] [PMID: 26687696]
[229]
Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 341-350.
[http://dx.doi.org/10.1016/S0140-6736(14)61374-X] [PMID: 25282520]
[230]
Kastelein, J.J.P.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43), ehv370.
[http://dx.doi.org/10.1093/eurheartj/ehv370] [PMID: 26330422]
[231]
Cupido, A.J.; Reeskamp, L.F.; Kastelein, J.J.P. Novel lipid modifying drugs to lower LDL cholesterol. Curr. Opin. Lipidol., 2017, 28(4), 367-373.
[http://dx.doi.org/10.1097/MOL.0000000000000428] [PMID: 28445176]
[232]
Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; Hutabarat, R.M.; Clausen, V.A.; Karsten, V.; Cehelsky, J.; Nochur, S.V.; Kotelianski, V.; Horton, J.; Mant, T.; Chiesa, J.; Ritter, J.; Munisamy, M.; Vaishnaw, A.K.; Gollob, J.A.; Simon, A. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial. Lancet, 2014, 383(9911), 60-68.
[http://dx.doi.org/10.1016/S0140-6736(13)61914-5] [PMID: 24094767]
[233]
Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567.
[http://dx.doi.org/10.1007/s10557-013-6479-4] [PMID: 23913122]
[234]
Gaudet, D.; Kereiakes, D.J.; McKenney, J.M.; Roth, E.M.; Hanotin, C.; Gipe, D.; Du, Y.; Ferrand, A.C.; Ginsberg, H.N.; Stein, E.A. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol., 2014, 114(5), 711-715.
[http://dx.doi.org/10.1016/j.amjcard.2014.05.060] [PMID: 25060413]
[235]
Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. PCSK9 and diabetes: Is there a link? Drug Discov. Today, 2017, 22(6), 883-895.
[http://dx.doi.org/10.1016/j.drudis.2017.01.006] [PMID: 28111330]
[236]
Roth, E.M.; Taskinen, M.R.; Ginsberg, H.N.; Kastelein, J.J.P.; Colhoun, H.M.; Robinson, J.G.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24week, double-blind, randomized Phase 3 trial. Int. J. Cardiol., 2014, 176(1), 55-61.
[http://dx.doi.org/10.1016/j.ijcard.2014.06.049] [PMID: 25037695]
[237]
Ota, H.; Omori, H.; Kawasaki, M.; Hirakawa, A.; Matsuo, H. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur. Heart J. Cardiovasc. Imaging, 2022, 23(2), 217-228.
[http://dx.doi.org/10.1093/ehjci/jeab034] [PMID: 33637979]
[238]
Wu, Z.; Gao, L.; Lin, Z. Can proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors regress coronary atherosclerotic plaque? A systematic review and meta-analysis. Am. J. Transl. Res., 2023, 15(1), 452-465.
[PMID: 36777825]
[239]
Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; Wasserman, S.M.; Scott, R.; Ungi, I.; Podolec, J.; Ophuis, A.O.; Cornel, J.H.; Borgman, M.; Brennan, D.M.; Nissen, S.E. Effect of evolocumab on progression of coronary disease in statin-treated patients. JAMA, 2016, 316(22), 2373-2384.
[http://dx.doi.org/10.1001/jama.2016.16951] [PMID: 27846344]
[240]
Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Kassahun, H.; Ruzza, A.; Ma, Y.; Somaratne, R.; Raal, F.J. Long-term low-density lipoprotein cholesterol–lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia. JAMA Cardiol., 2017, 2(6), 598-607.
[http://dx.doi.org/10.1001/jamacardio.2017.0747] [PMID: 28291870]
[241]
Durairaj, A.; Sabates, A.; Nieves, J.; Moraes, B.; Baum, S. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and its inhibitors: A review of physiology, biology, and clinical data. Curr. Treat. Options Cardiovasc. Med., 2017, 19(8), 58.
[http://dx.doi.org/10.1007/s11936-017-0556-0] [PMID: 28639183]
[242]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[243]
Turgeon, R.D.; Tsuyuki, R.T.; Gyenes, G.T.; Pearson, G.J. Cardiovascular efficacy and safety of PCSK9 inhibitors: Systematic review and meta-analysis including the ODYSSEY outcomes trial. Can. J. Cardiol., 2018, 34(12), 1600-1605.
[http://dx.doi.org/10.1016/j.cjca.2018.04.002] [PMID: 30527147]
[244]
Tavori, H.; Giunzioni, I.; Fazio, S. PCSK9 inhibition to reduce cardiovascular disease risk. Curr. Opin. Endocrinol. Diabetes Obes., 2015, 22(2), 126-132.
[http://dx.doi.org/10.1097/MED.0000000000000137] [PMID: 25692926]
[245]
Rallidis, L.S.; Fountoulaki, K.; Anastasiou-Nana, M. Managing the underestimated risk of statin-associated myopathy. Int. J. Cardiol., 2012, 159(3), 169-176.
[http://dx.doi.org/10.1016/j.ijcard.2011.07.048] [PMID: 21813193]
[246]
Trpkovic, A.; Stanimirovic, J.; Rizzo, M.; Resanovic, I.; Soskic, S.; Jevremovic, D.; Isenovic, E.R. High-sensitivity C-reactive protein and statin initiation. Angiology, 2015, 66(6), 503-507.
[http://dx.doi.org/10.1177/0003319714543000] [PMID: 25053677]
[247]
Jellinger, P. S.; Handelsman, Y.; Rosenblit, P. D.; Bloomgarden, Z. T.; Fonseca, V. A.; Garber, A. J.; Grunberger, G.; Guerin, C. K.; Bell, D. S. H.; Mechanick, J. I. American association of clinical endocrinologists and american college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract., 2017, 23(S2), 1-87.
[http://dx.doi.org/10.4158/EP171764.APPGL]
[248]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, Ž.; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; Špinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[249]
Avis, H.J.; Hutten, B.A.; Gagné, C.; Langslet, G.; McCrindle, B.W.; Wiegman, A.; Hsia, J.; Kastelein, J.J.P.; Stein, E.A. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J. Am. Coll. Cardiol., 2010, 55(11), 1121-1126.
[http://dx.doi.org/10.1016/j.jacc.2009.10.042] [PMID: 20223367]
[250]
Zhang, X.L.; Zhu, Q.Q.; Zhu, L.; Chen, J.Z.; Chen, Q.H.; Li, G.N.; Xie, J.; Kang, L.N.; Xu, B. Safety and efficacy of anti-PCSK9 antibodies: A meta-analysis of 25 randomized, controlled trials. BMC Med., 2015, 13(1), 123.
[http://dx.doi.org/10.1186/s12916-015-0358-8] [PMID: 26099511]
[251]
Nishikido, T. Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease. Cardiovasc. Diabetol., 2023, 22(1), 20.
[http://dx.doi.org/10.1186/s12933-023-01752-4] [PMID: 36717882]
[252]
Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; Kastelein, J.J.P. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med., 2020, 382(16), 1507-1519.
[http://dx.doi.org/10.1056/NEJMoa1912387] [PMID: 32187462]
[253]
Casula, M.; Olmastroni, E.; Boccalari, M.T.; Tragni, E.; Pirillo, A.; Catapano, A.L. Cardiovascular events with PCSK9 inhibitors: An updated meta-analysis of randomised controlled trials. Pharmacol. Res., 2019, 143, 143-150.
[http://dx.doi.org/10.1016/j.phrs.2019.03.021] [PMID: 30926528]
[254]
Gouni-Berthold, I.; Descamps, O. S.; Fraass, U.; Hartfield, E.; Allcott, K. Systematic review of published phase 3 data on anti-PCSK9 monoclonal antibodies in patients with hypercholesterolaemia. Br. J. Clin. Pharmacol., 2016, 82(6), 1412-1443.
[http://dx.doi.org/10.1111/bcp.13066]
[255]
Karatasakis, A.; Danek, B.A.; Karacsonyi, J.; Rangan, B.V.; Roesle, M.K.; Knickelbine, T.; Miedema, M.D.; Khalili, H.; Ahmad, Z.; Abdullah, S.; Banerjee, S.; Brilakis, E.S. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc., 2017, 6(12), e006910.
[http://dx.doi.org/10.1161/JAHA.117.006910] [PMID: 29223954]
[256]
AlTurki, A.; Marafi, M.; Dawas, A.; Dube, M.P.; Vieira, L.; Sherman, M.H.; Gregoire, J.; Thanassoulis, G.; Tardif, J.C.; Huynh, T. Meta-analysis of randomized controlled trials assessing the impact of proprotein convertase subtilisin/kexin type 9 antibodies on mortality and cardiovascular outcomes. Am. J. Cardiol., 2019, 124(12), 1869-1875.
[http://dx.doi.org/10.1016/j.amjcard.2019.09.011] [PMID: 31679643]
[257]
Choi, H.D.; Kim, J.H. An updated meta-analysis for safety evaluation of alirocumab and evolocumab as PCSK9 inhibitors. Cardiovasc. Ther., 2023, 2023, 1-11.
[http://dx.doi.org/10.1155/2023/7362551] [PMID: 36704607]
[258]
Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Hannam, S.; Aronow, W.S.; Rysz, J.; Banach, M. Statins and dilated cardiomyopathy: Do we have enough data? Expert Opin. Investig. Drugs, 2011, 20(3), 315-323.
[http://dx.doi.org/10.1517/13543784.2011.550570] [PMID: 21210757]
[259]
Wierzbicki, A.S.; Hardman, T.C.; Viljoen, A. Inhibition of pro-protein convertase subtilisin kexin 9 [corrected] (PCSK-9) as a treatment for hyperlipidaemia. Expert Opin. Investig. Drugs, 2012, 21(5), 667-676.
[http://dx.doi.org/10.1517/13543784.2012.679340] [PMID: 22493980]
[260]
Lambert, G.; Charlton, F.; Rye, K.A.; Piper, D.E. Molecular basis of PCSK9 function. Atherosclerosis, 2009, 203(1), 1-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.010] [PMID: 18649882]
[261]
Tibolla, G.; Norata, G.D.; Artali, R.; Meneghetti, F.; Catapano, A.L. Proprotein convertase subtilisin/kexin type 9 (PCSK9): From structure–function relation to therapeutic inhibition. Nutr. Metab. Cardiovasc. Dis., 2011, 21(11), 835-843.
[http://dx.doi.org/10.1016/j.numecd.2011.06.002] [PMID: 21943799]
[262]
Qian, Y.W.; Schmidt, R.J.; Zhang, Y.; Chu, S.; Lin, A.; Wang, H.; Wang, X.; Beyer, T.P.; Bensch, W.R.; Li, W.; Ehsani, M.E.; Lu, D.; Konrad, R.J.; Eacho, P.I.; Moller, D.E.; Karathanasis, S.K.; Cao, G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J. Lipid Res., 2007, 48(7), 1488-1498.
[http://dx.doi.org/10.1194/jlr.M700071-JLR200] [PMID: 17449864]
[263]
Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005.
[http://dx.doi.org/10.1172/JCI29383] [PMID: 17080197]
[264]
Nassoury, N.; Blasiole, D.A.; Tebon Oler, A.; Benjannet, S.; Hamelin, J.; Poupon, V.; McPherson, P.S.; Attie, A.D.; Prat, A.; Seidah, N.G. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic, 2007, 8(6), 718-732.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00562.x] [PMID: 17461796]
[265]
Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[266]
Fisher, T.S.; Surdo, P.L.; Pandit, S.; Mattu, M.; Santoro, J.C.; Wisniewski, D.; Cummings, R.T.; Calzetta, A.; Cubbon, R.M.; Fischer, P.A.; Tarachandani, A.; De Francesco, R.; Wright, S.D.; Sparrow, C.P.; Carfi, A.; Sitlani, A. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J. Biol. Chem., 2007, 282(28), 20502-20512.
[http://dx.doi.org/10.1074/jbc.M701634200] [PMID: 17493938]
[267]
Alborn, W.E.; Cao, G.; Careskey, H.E.; Qian, Y.W.; Subramaniam, D.R.; Davies, J.; Conner, E.M.; Konrad, R.J. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin. Chem., 2007, 53(10), 1814-1819.
[http://dx.doi.org/10.1373/clinchem.2007.091280] [PMID: 17702855]
[268]
Cariou, B.; Le May, C.; Costet, P. Clinical aspects of PCSK9. Atherosclerosis, 2011, 216(2), 258-265.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.018] [PMID: 21596380]
[269]
Sullivan, D.; Olsson, A.G.; Scott, R.; Kim, J.B.; Xue, A.; Gebski, V.; Wasserman, S.M.; Stein, E.A. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: The GAUSS randomized trial. JAMA, 2012, 308(23), 2497-2506.
[http://dx.doi.org/10.1001/jama.2012.25790] [PMID: 23128163]
[270]
Troutt, J.S.; Alborn, W.E.; Cao, G.; Konrad, R.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J. Lipid Res., 2010, 51(2), 345-351.
[http://dx.doi.org/10.1194/jlr.M000620] [PMID: 19738285]
[271]
Chernogubova, E.; Strawbridge, R.; Mahdessian, H.; Mälarstig, A.; Krapivner, S.; Gigante, B.; Hellénius, M.L.; de Faire, U.; Franco-Cereceda, A.; Syvänen, A.C.; Troutt, J.S.; Konrad, R.J.; Eriksson, P.; Hamsten, A.; van ’t Hooft, F.M. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1526-1534.
[http://dx.doi.org/10.1161/ATVBAHA.111.240549] [PMID: 22460556]
[272]
Basak, A.; Palmer-Smith, H.; Mishra, P. Proprotein convertase subtilisin kexin9 (PCSK9): A novel target for cholesterol regulation. Protein Pept. Lett., 2012, 19(6), 575-585.
[http://dx.doi.org/10.2174/092986612800494020] [PMID: 22519528]
[273]
Levenson, A.E.; Shah, A.S.; Khoury, P.R.; Kimball, T.R.; Urbina, E.M.; de Ferranti, S.D.; Maahs, D.M.; Dolan, L.M.; Wadwa, R.P.; Biddinger, S.B. Obesity and type 2 diabetes are associated with elevated PCSK9 levels in young women. Pediatr. Diabetes, 2017, 18(8), 755-760.
[http://dx.doi.org/10.1111/pedi.12490] [PMID: 28093849]
[274]
Xu, L.; Zhao, G.; Zhu, H.; Wang, S. Peroxisome proliferator-activated receptor-γ antagonizes LOX-1-mediated endothelial injury by transcriptional activation of miR-590-5p. PPAR Res., 2019, 2019, 2715176.
[http://dx.doi.org/10.1155/2019/2715176]
[275]
Jiang, H.; Fan, C.; Lu, Y.; Cui, X.; Liu, J. Astragaloside regulates lncRNA LOC100912373 and the miR-17-5p/PDK1 axis to inhibit the proliferation of fibroblast-like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med., 2021, 48(1), 130.
[http://dx.doi.org/10.3892/ijmm.2021.4963] [PMID: 34013364]
[276]
Zhao, J.; Cui, L.; Sun, J.; Xie, Z.; Zhang, L.; Ding, Z.; Quan, X. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell. Signal., 2020, 76, 109781.
[http://dx.doi.org/10.1016/j.cellsig.2020.109781] [PMID: 32947021]
[277]
Ren, K.; Jiang, T.; Zhou, H. F.; Liang, Y.; Zhao, G. J. apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol. Biochem., 2018, 47(5), 2170-2184.
[http://dx.doi.org/10.1159/000491528]
[278]
Yuan, X.; Chen, J.; Dai, M. Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-κB pathway. Int. J. Mol. Med., 2016, 38(6), 1871-1878.
[http://dx.doi.org/10.3892/ijmm.2016.2778] [PMID: 27748840]
[279]
Bai, Y.; Liu, X.; Chen, Q.; Chen, T.; Jiang, N.; Guo, Z. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 upregulating the expression of miR-29a-3p. Sci. Rep., 2021, 11(1), 19637.
[http://dx.doi.org/10.1038/s41598-021-98916-7] [PMID: 34608195]
[280]
Abdollahi, E.; Keyhanfar, F.; Delbandi, A.A.; Falak, R.; Hajimiresmaiel, S.J.; Shafiei, M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol., 2022, 918, 174715.
[http://dx.doi.org/10.1016/j.ejphar.2021.174715] [PMID: 35026193]
[281]
Cao, G.; Xuan, X.; Zhang, R.; Hu, J.; Dong, H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front. Cardiovasc. Med., 2021, 8, 760140.
[http://dx.doi.org/10.3389/fcvm.2021.760140] [PMID: 34805315]
[282]
Wu, Z.; Asokan, A.; Samulski, R. J. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol. Ther., 2006, 14(3), 316-27.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009]
[283]
Grieger, J.C.; Samulski, R.J. Packaging capacity of adeno-associated virus serotypes: Impact of larger genomes on infectivity and postentry steps. J. Virol., 2005, 79(15), 9933-9944.
[http://dx.doi.org/10.1128/JVI.79.15.9933-9944.2005] [PMID: 16014954]
[284]
Dong, J.Y.; Fan, P.D.; Frizzell, R.A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther., 1996, 7(17), 2101-2112.
[http://dx.doi.org/10.1089/hum.1996.7.17-2101] [PMID: 8934224]
[285]
Athanasopoulos, T.; Munye, M.M.; Yáñez-Muñoz, R.J. Nonintegrating gene therapy vectors. Hematol. Oncol. Clin. North Am., 2017, 31(5), 753-770.
[http://dx.doi.org/10.1016/j.hoc.2017.06.007] [PMID: 28895845]
[286]
Zhen, S.; Li, X. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther., 2020, 27(7-8), 515-527.
[http://dx.doi.org/10.1038/s41417-019-0141-7] [PMID: 31676843]
[287]
Qi, Y.; Song, H.; Xiao, H.; Cheng, G.; Yu, B.; Xu, F.J. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small, 2018, 14(42), 1803061.
[http://dx.doi.org/10.1002/smll.201803061] [PMID: 30238691]
[288]
Zhang, X.; Xu, C.; Gao, S.; Li, P.; Kong, Y.; Li, T.; Li, Y.; Xu, F. J. CRISPR/Cas9 delivery mediated with hydroxyl-rich nanosystems for gene editing in aorta. Adv. Sci., 2019, 6(12), 1900386.
[http://dx.doi.org/10.1002/advs.201900386]
[289]
Charbe, N.B.; Lagos, C.F.; Ortiz, C.A.V.; Tambuwala, M.; Palakurthi, S.S.; Zacconi, F.C. PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: A proof-of-concept study. Biomed. Pharmacother., 2022, 153, 113428.
[http://dx.doi.org/10.1016/j.biopha.2022.113428] [PMID: 36076548]
[290]
Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet., 2022, 23(5), 265-280.
[http://dx.doi.org/10.1038/s41576-021-00439-4] [PMID: 34983972]
[291]
Vartak, T.; Kumaresan, S.; Brennan, E. Decoding microRNA drivers in atherosclerosis. Biosci. Rep., 2022, 42(7), BSR20212355.
[http://dx.doi.org/10.1042/BSR20212355]
[292]
Segal, M.; Slack, F.J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov., 2020, 15(9), 987-991.
[http://dx.doi.org/10.1080/17460441.2020.1765770] [PMID: 32421364]
[293]
Dosta, P.; Tamargo, I.; Ramos, V.; Kumar, S.; Kang, D. W.; Borrós, S. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(β-amino ester) nanoparticles conjugated with vcam-1 targeting peptide. Adv. Healthc. Mater., 2021, 10(15), e2001894.
[http://dx.doi.org/10.1002/adhm.202001894]
[294]
Kamaly, N.; Fredman, G.; Subramanian, M.; Gadde, S.; Pesic, A.; Cheung, L.; Fayad, Z.A.; Langer, R.; Tabas, I.; Cameron Farokhzad, O. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl. Acad. Sci., 2013, 110(16), 6506-6511.
[http://dx.doi.org/10.1073/pnas.1303377110] [PMID: 23533277]
[295]
Kamaly, N.; Fredman, G.; Fojas, J.J.R.; Subramanian, M.; Choi, W.I.I.; Zepeda, K.; Vilos, C.; Yu, M.; Gadde, S.; Wu, J.; Milton, J.; Carvalho Leitao, R.; Rosa Fernandes, L.; Hasan, M.; Gao, H.; Nguyen, V.; Harris, J.; Tabas, I.; Farokhzad, O.C. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano, 2016, 10(5), 5280-5292.
[http://dx.doi.org/10.1021/acsnano.6b01114] [PMID: 27100066]
[296]
Fredman, G.; Kamaly, N.; Spolitu, S.; Milton, J.; Ghorpade, D.; Chiasson, R.; Kuriakose, G.; Perretti, M.; Farokhzad, O.; Tabas, I. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med., 2015, 7(275), 275ra20.
[http://dx.doi.org/10.1126/scitranslmed.aaa1065] [PMID: 25695999]
[297]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[298]
Yaman, S.O.; Orem, A.; Yucesan, F.B.; Kural, B.V.; Orem, C. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia. Life Sci., 2021, 264, 118585.
[http://dx.doi.org/10.1016/j.lfs.2020.118585] [PMID: 33058914]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy