Abstract
Tumor angiogenesis imaging should provide non-invasive assays of tumor vascular characteristics to supplement the now conventional diagnostic imaging goals of depicting tumor location, size, and morphology. This article will review the current status of angiogenesis imaging approaches, considering ultrasound, CT, MR, SPECT, PET and optical techniques with attention to their respective capabilities and limitations. As a group, these imaging methods have some potential to depict and quantify tumor microvascular features, including those considered to be functionally associated with tumor angiogenesis. Additionally, new molecule-specific imaging techniques may serve to depict those biochemical pathways and regulatory events that control blood vessel growth and proliferation. Non-invasive monitoring of anti-angiogenic therapies has great appeal and should find wide application for defining tumor microvascular and metabolic changes, because treatment-related changes in tumor morphology tend to occur rather late and are non-specific. Future developments are likely to include "fusion" or "hybrid" imaging methods. Superimposed data from MR imaging with spectroscopy, PET with CT, and PET with MR should be able to integrate advantages of different modalities yielding comprehensive information about tumor structure, function and microenvironment.
Keywords: Macromolecular contrast agents, blood pool agents, Angiogenesis Imaging
Current Pharmaceutical Design
Title: Imaging of Tumor Angiogenesis: Current Approaches and Future Prospects
Volume: 12 Issue: 21
Author(s): Heike E. Daldrup-Link, Gerhard H. Simon and Robert C. Brasch
Affiliation:
Keywords: Macromolecular contrast agents, blood pool agents, Angiogenesis Imaging
Abstract: Tumor angiogenesis imaging should provide non-invasive assays of tumor vascular characteristics to supplement the now conventional diagnostic imaging goals of depicting tumor location, size, and morphology. This article will review the current status of angiogenesis imaging approaches, considering ultrasound, CT, MR, SPECT, PET and optical techniques with attention to their respective capabilities and limitations. As a group, these imaging methods have some potential to depict and quantify tumor microvascular features, including those considered to be functionally associated with tumor angiogenesis. Additionally, new molecule-specific imaging techniques may serve to depict those biochemical pathways and regulatory events that control blood vessel growth and proliferation. Non-invasive monitoring of anti-angiogenic therapies has great appeal and should find wide application for defining tumor microvascular and metabolic changes, because treatment-related changes in tumor morphology tend to occur rather late and are non-specific. Future developments are likely to include "fusion" or "hybrid" imaging methods. Superimposed data from MR imaging with spectroscopy, PET with CT, and PET with MR should be able to integrate advantages of different modalities yielding comprehensive information about tumor structure, function and microenvironment.
Export Options
About this article
Cite this article as:
Daldrup-Link E. Heike, Simon H. Gerhard and Brasch C. Robert, Imaging of Tumor Angiogenesis: Current Approaches and Future Prospects, Current Pharmaceutical Design 2006; 12 (21) . https://dx.doi.org/10.2174/138161206777698774
DOI https://dx.doi.org/10.2174/138161206777698774 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Growth Inhibition of Human Non-Small Lung Cancer Cells H460 By Green Tea and Ginger Polyphenols
Anti-Cancer Agents in Medicinal Chemistry Pathogenic Mechanisms and Therapeutic Strategies in Spinobulbar Muscular Atrophy
CNS & Neurological Disorders - Drug Targets Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers
Current Medicinal Chemistry Targeting the Pleiotrophin/Receptor Protein Tyrosine Phosphatase β /ζ Signaling Pathway to Limit Neurotoxicity Induced by Drug Abuse
Mini-Reviews in Medicinal Chemistry Retinoid Related Molecules an Emerging Class of Apoptotic Agents with Promising Therapeutic Potential in Oncology: Pharmacological Activity and Mechanisms of Action
Current Pharmaceutical Design MicroRNA-208a Potentiates Angiotensin II-triggered Cardiac Myoblasts Apoptosis via Inhibiting Nemo-like Kinase (NLK)
Current Pharmaceutical Design The Effects of Weightlessness on the Human Organism and Mammalian Cells
Current Molecular Medicine The use of Azoles Containing Natural Products in Cancer Prevention and Treatment: An Overview
Anti-Cancer Agents in Medicinal Chemistry Autophagy Regulators as Potential Cancer Therapeutic agents: A Review
Current Topics in Medicinal Chemistry Influence of the Bystander Effect on HSV-tk / GCV Gene Therapy. A Review.
Current Gene Therapy Discovery of Selective Probes and Antagonists for G Protein-Coupled Receptors FPR/FPRL1 and GPR30
Current Topics in Medicinal Chemistry The Microarray Gene Profiling Analysis of Glioblastoma Cancer Cells Reveals Genes Affected by FAK Inhibitor Y15 and Combination of Y15 and Temozolomide
Anti-Cancer Agents in Medicinal Chemistry Hypericin - A New Antiviral and Antitumor Photosensitizer: Mechanism of Action and Interaction with Biological Macromolecules
Current Drug Targets TGF-ß / Smad Signaling in Prostate Cancer
Current Drug Targets In Vivo Anticancer Activity, Toxicology and Histopathological Studies of the Thiolate Gold(I) Complex [Au(Spyrimidine)(PTA-CH<sub>2</sub>Ph)]Br
Anti-Cancer Agents in Medicinal Chemistry AKT-pathway Inhibition in Chronic Lymphocytic Leukemia Reveals Response Relationships Defined by TCL1
Current Cancer Drug Targets Merging Transport Data for Choroid Plexus with Blood-Brain Barrier to Model CNS Homeostasis and Disease More Effectively
CNS & Neurological Disorders - Drug Targets ErbB Antagonists Patenting: “Playing Chess with Cancer”
Recent Patents on Biotechnology Erinacerins, Novel Glioma Inhibitors from <i>Hericium erinaceus</i>, Induce Apoptosis of U87 Cells through Bax/Capase-2 Pathway
Anti-Cancer Agents in Medicinal Chemistry Development of Vascular Endothelial Growth Factor Receptor (VEGFR) Kinase Inhibitors as Anti-Angiogenic Agents in Cancer Therapy
Current Medicinal Chemistry