Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Integrated Network Pharmacology and In-silico Approaches to Decipher the Pharmacological Mechanism of Dioscorea septemloba Thunb in Treating Gout and Its Complications

In Press, (this is not the final "Version of Record"). Available online 10 November, 2023
Author(s): Wen-Bin Liu*, Jie Dai, Xuan Chen, Ning Du and Jian Hu*
Published on: 10 November, 2023

DOI: 10.2174/0113862073258523231025095117

Price: $95

Abstract

Background: Dioscorea septemloba Thunb. (DST) has demonstrated therapeutic potential in the treatment of gout and its associated complications. However, the underlying mechanisms of DST’s pharmacological activity remain unclear. This study aims to investigate the pharmacological substances and network regulatory mechanisms of DST in treating gout and its complications using network pharmacology.

Methods: According to ultra-high performance liquid chromatography coupled with hybrid quadrupole-Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) data and Lipinski’s rule of five, 24 bioactive phytochemicals from DST were identified. The targets of gout were retrieved from Gene Expression Omnibus (GEO), GeneCards, and DisGeNET databases, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG pathway) enrichment analysis. The Cytoscape network analysis was used to identify the primary pathological pathways and key targets. Finally, LeDock was used for molecular docking to verify the active components of DST and their core target proteins.

Results: DST contains several core active ingredients, such as tetrahydroimidazo[1,2-a]pyridine- 2,5-dione, diosgenin, beta-sitosterol, dioscorol B, montroumarin and 9,10-dihydro-5,7- dimethoxy-3,4-phenanthrenediol. Moreover, these active components were found to strongly bind to the key targets for treating gout and its complications, including HSP90AA1, STAT3, PTGS2, PPARG, MTOR, HIF1A, MMP9, ESR1, and TLR4. As a result, DST alleviates gout and its complications by inhibiting xanthine dehydrogenase (XDH) to reduce uric acid levels and regulating the HIF-1α, EZH2/STAT3, and COX-2/PPAR-γ pathways to reduce inflammation. Additionally, it also plays an analgesic role by regulating the neuroactive ligand-receptor interaction pathway and calcium ion signaling pathway.

Conclusion: This study has provided insights into the underlying mechanisms of DST in the treatment of gout and its complications, which could serve as a scientific foundation for its clinical translation.


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy