Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: This article presents a novel strategy that utilizes the nature-inspired Spotted Hyena Optimizer Algorithm (SHOA) to optimize the placement of solar and wind-based renewable distributed generation (RDG) and distribution static compensators (DSTATCOMs) in radial distribution systems (RDS).
Methods: The proposed technique aims to determine the optimal locations of DSTATCOM and RDGs based on the loss sensitivity factor (LSF), while the appropriate sizes are determined using the newly developed SHOA. To facilitate efficient load flow calculations, a fast and effective backward/forward sweep algorithm (BFSA) is employed.
Results: The primary objective of this method is to minimize overall power losses within the system. The effectiveness of the optimization approach based on SHOA is demonstrated through extensive simulations conducted on a standard IEEE 33-bus test system with diverse load models.
Conclusion: The results of the simulations and comparisons of multiple case studies clearly indicate that the allocation of DSTATCOMs leads to significant reductions in power losses and improvements in voltage profiles.
[1]
A. Attia, "EI-Fergany: Optimal capacitor allocations using evolutionary algorithms", IET Gener. Transm. Distrib., no. Feb, pp. 593-601, 2013.
[2]
T. Yuvaraj, and K. Ravi, "Multi-objective simultaneous DG and DSTATCOM allocation in radial distribution networks using cuckoo searching algorithm", Alex. Eng. J., vol. 57, no. 4, pp. 2729-2742, 2018.
[http://dx.doi.org/10.1016/j.aej.2018.01.001]
[http://dx.doi.org/10.1016/j.aej.2018.01.001]
[3]
T. Yuvaraj, K.R. Devabalaji, and K. Ravi, "Optimal placement and sizing of DSTATCOM using harmony search algorithm", Energy Procedia, vol. 79, pp. 759-765, 2015.
[http://dx.doi.org/10.1016/j.egypro.2015.11.563]
[http://dx.doi.org/10.1016/j.egypro.2015.11.563]
[4]
T. Yuvaraj, K.R. Devabalaji, S. Srinivasan, N. Prabaharan, R. Hariharan, H. Haes Alhelou, and B. Ashokkumar, "Comparative analysis of various compensating devices in energy trading radial distribution system for voltage regulation and loss mitigation using Blockchain technology and Bat Algorithm", Energy Rep., vol. 7, pp. 8312-8321, 2021.
[http://dx.doi.org/10.1016/j.egyr.2021.08.184]
[http://dx.doi.org/10.1016/j.egyr.2021.08.184]
[5]
K.R. Devabalaji, and K. Ravi, "Optimal size and siting of multiple DG and DSTATCOM in radial distribution system using bacterial foraging optimization algorithm", Ain Shams Eng. J., vol. 7, no. 3, pp. 959-971, 2016.
[http://dx.doi.org/10.1016/j.asej.2015.07.002]
[http://dx.doi.org/10.1016/j.asej.2015.07.002]
[6]
M. Krishnamoorthy, A.D.V.R. Periyanayagam, C. Santhan Kumar, B. Praveen Kumar, S. Srinivasan, and P. Kathiravan, "Optimal sizing, selection, and techno-economic analysis of battery storage for PV/BG-based hybrid rural electrification system", J. Inst. Electron. Telecommun. Eng., vol. 68, no. 6, pp. 4061-4076, 2022.
[http://dx.doi.org/10.1080/03772063.2020.1787239]
[http://dx.doi.org/10.1080/03772063.2020.1787239]
[7]
K. Srilakshmi, C.N. Sujatha, P.K. Balachandran, L. Mihet-Popa, and N.U. Kumar, "Optimal design of an artificial intelligence controller for solar-battery integrated UPQC in three phase distribution networks", sustainability, vol. 14. 2022, no. 21, p. 13992.
[http://dx.doi.org/10.3390/su142113992]
[http://dx.doi.org/10.3390/su142113992]
[8]
B. Aljafari, P.K. Balachandran, D. Samithas, and S.B. Thanikanti, "Solar photovoltaic converter controller using opposition-based reinforcement learning with butterfly optimization algorithm under partial shading conditions", Environ. Sci. Pollut. Res. Int., vol. 30, no. 28, pp. 72617-72640, 2023.
[http://dx.doi.org/10.1007/s11356-023-27261-1] [PMID: 37173605]
[http://dx.doi.org/10.1007/s11356-023-27261-1] [PMID: 37173605]
[9]
B. Aljafari, "D. S, B. C, P.K. Balachandran, and T.S. Babu, “Power enhanced solar PV array configuration based on calcudoku puzzle pattern for partial shaded PV system”", Heliyon, vol. 9, no. 5, p. e16041, 2023.
[http://dx.doi.org/10.1016/j.heliyon.2023.e16041] [PMID: 37215765]
[http://dx.doi.org/10.1016/j.heliyon.2023.e16041] [PMID: 37215765]
[10]
T. Yuvaraj, K. Ravi, and K.R. Devabalaji, "DSTATCOM allocation in distribution networks considering load variations using bat algorithm", Ain Shams Eng. J., vol. 8, no. 3, pp. 391-403, 2017.
[http://dx.doi.org/10.1016/j.asej.2015.08.006]
[http://dx.doi.org/10.1016/j.asej.2015.08.006]
[11]
H. Bagheri Tolabi, M.H. Ali, and M. Rizwan, "Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach", IEEE Trans. Sustain. Energy, vol. 6, no. 1, pp. 210-218, 2015.
[http://dx.doi.org/10.1109/TSTE.2014.2364230]
[http://dx.doi.org/10.1109/TSTE.2014.2364230]
[12]
A.R. Gupta, and A. Kumar, "Energy savings using D-STATCOM placement in radial distribution system", Procedia Comput. Sci., vol. 70, pp. 558-564, 2015.
[http://dx.doi.org/10.1016/j.procs.2015.10.100]
[http://dx.doi.org/10.1016/j.procs.2015.10.100]
[13]
S.B. Thanikanti, "P.K. B, D. S, B. Aljafari, and I. Colak, “A dynamic mismatch loss mitigation algorithm with dual input dual output converter for solar PV systems”", Sol. Energy Mater. Sol. Cells, vol. 251, p. 112163, 2023.
[http://dx.doi.org/10.1016/j.solmat.2022.112163]
[http://dx.doi.org/10.1016/j.solmat.2022.112163]
[14]
R. Sirjani, and A. Rezaee Jordehi, "Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review", Renew. Sustain. Energy Rev., vol. 77, pp. 688-694, 2017.
[http://dx.doi.org/10.1016/j.rser.2017.04.035]
[http://dx.doi.org/10.1016/j.rser.2017.04.035]
[15]
S. Rezaeian Marjani, V. Talavat, and S. Galvani, "Optimal allocation of D-STATCOM and reconfiguration in radial distribution network using MOPSO algorithm in TOPSIS framework", Int. Trans. Electr. Energy Syst., vol. 29, no. 2, p. e2723, 2019.
[http://dx.doi.org/10.1002/etep.2723]
[http://dx.doi.org/10.1002/etep.2723]
[16]
O.D. Montoya, H.R. Chamorro, L. Alvarado-Barrios, W. Gil-González, and C. Orozco-Henao, "Genetic-convex model for dynamic reactive power compensation in distribution networks using D-STATCOMs", Appl. Sci., vol. 11, no. 8, p. 3353, 2021.
[http://dx.doi.org/10.3390/app11083353]
[http://dx.doi.org/10.3390/app11083353]
[17]
D. Singh, D. Singh, and K.S. Verma, "Multiobjective optimization for DG planning with load models", IEEE Trans. Power Syst., vol. 24, no. 1, pp. 427-436, 2009.
[http://dx.doi.org/10.1109/TPWRS.2008.2009483]
[http://dx.doi.org/10.1109/TPWRS.2008.2009483]
[18]
D. Yousri, A. Fathy, H. Rezk, T.S. Babu, and M.R. Berber, "A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm", Energy Convers. Manage., vol. 243, p. 114269, 2021.
[http://dx.doi.org/10.1016/j.enconman.2021.114269]
[http://dx.doi.org/10.1016/j.enconman.2021.114269]
[19]
K. Sarika, and S. Noel, "Unbalanced distribution power flow with distributed generation", Proceedings of the IEEE transmission and distribution conference, Dallas, USA, 2006, pp. 301-306.
[20]
K. Prakash, and M. Sydulu, "Particle swarm optimization based capacitor placement on radial distribution systems", Proceedings of IEEE Power Engineering Society General Meeting, Tampa, FL, USA 24-28 June, 2007, pp. 1-5.
[http://dx.doi.org/10.1109/PES.2007.386149]
[http://dx.doi.org/10.1109/PES.2007.386149]
[21]
G. Dhiman, and V. Kumar, "Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications", Adv. Eng. Softw., vol. 114, pp. 48-70, 2017.
[http://dx.doi.org/10.1016/j.advengsoft.2017.05.014]
[http://dx.doi.org/10.1016/j.advengsoft.2017.05.014]
[22]
A. Fabbrini, A. Garulli, and P. Mercorelli, "A trajectory generation algorithm for optimal consumption in electromagnetic actuators", IEEE Trans. Control Syst. Technol., vol. 20, no. 4, pp. 1025-1032, 2012.
[http://dx.doi.org/10.1109/TCST.2011.2159006]
[http://dx.doi.org/10.1109/TCST.2011.2159006]
[23]
A. Ramadevi, K. Srilakshmi, P.K. Balachandran, I. Colak, C. Dhanamjayulu, and B. Khan, "Optimal design and performance investigation of artificial neural network controller for solar- and battery-connected unified power quality conditioner", Int. J. Energy Res., vol. 2023, pp. 1-22, 2023.
[http://dx.doi.org/10.1155/2023/3355124]
[http://dx.doi.org/10.1155/2023/3355124]
[24]
P. Mercorelli, "A switching Kalman Filter for sensorless control of a hybrid hydraulic piezo actuator using MPC for camless internal combustion engines", 2012 IEEE International Conference on Control Applications, Dubrovnik, Croatia, 03-05 Oct, 2012, pp. 980-985.
[http://dx.doi.org/10.1109/CCA.2012.6402717]
[http://dx.doi.org/10.1109/CCA.2012.6402717]
[25]
N.C. Sahoo, and K. Prasad, "A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems", Energy Convers. Manage., vol. 47, no. 18-19, pp. 3288-3306, 2006.
[http://dx.doi.org/10.1016/j.enconman.2006.01.004]
[http://dx.doi.org/10.1016/j.enconman.2006.01.004]
[26]
M.N.I. Jamaludin, M.F.N. Tajuddin, J. Ahmed, A. Azmi, S.A. Azmi, N.H. Ghazali, T.S. Babu, and H.H. Alhelou, "An effective salp swarm based MPPT for photovoltaic systems under dynamic and partial shading conditions", IEEE Access, vol. 9, pp. 34570-34589, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3060431]
[http://dx.doi.org/10.1109/ACCESS.2021.3060431]