Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Enhanced Efficacy of Carvedilol by Utilization of Solid Dispersion and Other Novel Strategies: A Review

Author(s): Lakshita Rao, Bigul Yogeshver Bhardwaj, Mahek Chugh, Ashish Sharma, Rashmi Shah, Neha Minocha and Parijat Pandey*

Volume 23, Issue 3, 2023

Published on: 10 November, 2023

Page: [141 - 156] Pages: 16

DOI: 10.2174/011871529X247622231101075854

Price: $65

Abstract

Carvedilol is classified as a second class drug of Biopharmaceutical classification system (BCS), and it is an excellent beta blocker and vasodilating agent. It is used in a diverse range of disease states. Despite having tremendous advantages, the drug cannot be used effectively and productively due to aquaphobicity and poor bioavailability. To overcome this limitation, numerous novel approaches and tactics have been introduced over the past few years, such as Selfmicro emulsifying drug delivery systems (SMEDDS), nanoparticles, solid dispersions and liposomal drug delivery. The present review aims to accentuate the role of solid dispersion in improving the dissolution profile and aqua solubility of carvedilol and also to emphasize other novel formulations of carvedilol proposed to prevail the limitations of carvedilol. Solid dispersion and other novel approaches were found to play a significant role in overcoming the drawbacks of carvedilol, among which solid dispersion is the most feasible and effective approach being used worldwide. Reduced particle size, more wettability, and large surface area are obtained by the implementation of solid dispersion technique, hence improving carvedilol solubility and bioavailability.

Next »
Graphical Abstract

[1]
Zhang, M.; Li, H.; Lang, B.; O’Donnell, K.; Zhang, H.; Wang, Z.; Dong, Y.; Wu, C.; Williams, R.O., III Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur. J. Pharm. Biopharm., 2012, 82(3), 534-544.
[http://dx.doi.org/10.1016/j.ejpb.2012.06.016] [PMID: 22974985]
[2]
Serajuddin, A.T.M. Solid dispersion of poorly water‐soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci., 1999, 88(10), 1058-1066.
[http://dx.doi.org/10.1021/js980403l] [PMID: 10514356]
[3]
Chiou, W.L.; Riegelman, S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci., 1971, 60(9), 1281-1302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
[4]
Betageri, G.V.; Makarla, K.R. Characterization of glyburide-polyethylene glycol solid dispersion. Drug Dev. Ind. Pharm., 1996, 22(7), 731-734.
[http://dx.doi.org/10.3109/03639049609063230]
[5]
Park, J.H.; Chun, M.K.; Cho, H.; Choi, H.K. Solid dispersion as a strategy to improve drug bioavailability. KSBB J., 2011, 26(4), 283-292.
[http://dx.doi.org/10.7841/ksbbj.2011.26.4.283]
[6]
Gurunath, S.; Pradeep Kumar, S.; Basavaraj, N.K.; Patil, P.A. Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. J. Pharm. Res., 2013, 6(4), 476-480.
[http://dx.doi.org/10.1016/j.jopr.2013.04.008]
[7]
Janssens, S.; Van den Mooter, G. Review: Physical chemistry of solid dispersions. J. Pharm. Pharmacol., 2010, 61(12), 1571-1586.
[http://dx.doi.org/10.1211/jpp.61.12.0001] [PMID: 19958579]
[8]
Niraj, J.; Srivastara, V.K.; Singh, H.; Singh, N. Solubility and dissolution enhancement of antihypertensive agent(s) using solid dispersion techniques. Int J Clin Chem Laboratory Med, 2015, 1(1), 23-28.
[9]
Bhowmik, D.; Harish, G.; Duraivel, S.; Kumar, B.P.; Raghuvanshi, V.; Kumar, K.P.S. Solid dispersion - A approach to enhance the dissolution rate of poorly water- soluble drugs. Pharma Innov., 2012, 1(12), 24-38.
[10]
Kumar, S.; Malviya, R.; Sharma, P.K. Solid dispersion: Pharmaceutical technology for the improvement of various physical characteristics of active pharmaceutical ingredient. African J Basic Appl Sci, 2011, 3(4), 116-125.
[11]
Bhusnure, O.G.; Kazi, P.A.; Gnolve, S.B.; Ansari, M.M.A.N.; Kazi, S.N. Solid dispersion: An evergreen method for solubility enhancement of poorly water-soluble drugs. Int. J. Res. Pharm. Chem., 2014, 4(4), 906-918.
[12]
Alam, M.A.; Ali, R.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Solid dispersions: A strategy for poorly aqueous soluble drugs and technology updates. Expert Opin. Drug Deliv., 2012, 9(11), 1419-1440.
[http://dx.doi.org/10.1517/17425247.2012.732064] [PMID: 23043303]
[13]
Lusi, M. Engineering crystal properties through solid solutions. Cryst. Growth Des., 2018, 18(6), 3704-3712.
[http://dx.doi.org/10.1021/acs.cgd.7b01643]
[14]
Tagalpallewar, V.R.; Ughade, M.A.; Indurwade, N.H.; Kubare, P.G.; Chintawar, A.A. Enhancement of solubility of poorly water-soluble drug by solid dispersion technique. Int. J. Pharm. Sci. Res., 2015, 6(2), 352-361.
[15]
Liu, G.; Li, J.; Deng, S. Applications of supercritical anti-solvent process in preparation of solid multicomponent systems. Pharmaceutics, 2021, 13(4), 475-495.
[http://dx.doi.org/10.3390/pharmaceutics13040475] [PMID: 33915815]
[16]
Shejul, M.B.; Godge, R.K.; Kakad, S.B.; Siddheshwar, S.S. Solid dispersion as strategy to improve the solubility of poorly water-soluble drugs and their utilization and consideration during formulation development. J. Drug Deliv. Ther., 2019, 9(3-s), 874-880.
[17]
Gilhotra, R.M.; Vijay, J.; Sahadevan, J.T. A basic insight into the stability and manufacturing aspects of solid dispersions. Chronicles of Young Scientists, 2012, 3(2), 95-105.
[http://dx.doi.org/10.4103/2229-5186.98668]
[18]
Pawar, A.R.; Agale, K.B.; Unde, O.V.; Shete, N.A.; Deshmukh, V.K.; Mehetra, J.S. enhancement of aqueous solubility and dissolution profile of atorvastatin calcium: In vitro evaluation of solid dispersion. J Pharm Res Reports, 2021, 7(4), 1-7.
[19]
Karolewicz, B.; Górniak, A.; Probst, S.; Owczarek, A.; Pluta, J. Zurawska-Płaksej, E. Solid dispersions in pharmaceutical technology. Part I. Classification and methods to obtain solid dispersions. Polim. Med., 2012, 42(1), 17-27.
[PMID: 22783729]
[20]
Goyani, S.M.; Shah, P.; Vyas, B.; Shah, D.R. A review on solid dispersion for improvement of solubility in pharmaceutical dosage form. Int J Pharm Res Develop, 2012, 4(02), 77-87.
[21]
Srinarong, P.; de Waard, H.; Frijlink, H.W.; Hinrichs, W.L.J. Improved dissolution behavior of lipophilic drugs by solid dispersions: the production process as starting point for formulation considerations. Expert Opin. Drug Deliv., 2011, 8(9), 1121-1140.
[http://dx.doi.org/10.1517/17425247.2011.598147] [PMID: 21722000]
[22]
Sonpal, R.N.; Lalwani, A.N.; Darji, V.C.; Patel, K.R. Solid dispersion: an efficient tool for increasing bioavailability of poorly soluble drugs. Int. J. Pharm. Sci. Rev. Res., 2011, 8(1), 37-52.
[23]
Giri, T.K.; Kumar, K.; Alexander, A. Ajazuddin; Badwaik, H.; Tripathi, D.K. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. Bull. Fac. Pharm. Cairo Univ., 2012, 50(2), 147-159.
[http://dx.doi.org/10.1016/j.bfopcu.2012.07.002]
[24]
Ahuja, N.; Kishore, K.; Garg, A.; Purohit, S. Solid dispersions - Preparation methods, pharmaceutical applications and evaluation techniques: A review. Int. J. Pharma Sci., 2012, 1(2), 103-114.
[25]
Sharma, P.; Kapoor, A.; Bhargava, S. A review on solubility enhancement by implementing solid dispersion technique for poorly water-soluble drug. Res. J. Pharm. Biol. Chem. Sci., 2012, 3(1), 847-859.
[26]
Patidar, K.; Soni, M.; Sharma, D.K.; Jain, S.K. Solid dispersion: Approaches, technology involved unmet need & challenges. Drug Invention Today, 2010, 2(7), 349-357.
[27]
Yuvaraja, K.; Khanam, J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J. Pharm. Biomed. Anal., 2014, 96, 10-20.
[http://dx.doi.org/10.1016/j.jpba.2014.03.019] [PMID: 24705456]
[28]
Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today, 2007, 12(23-24), 1068-1075.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[29]
Sharma, A.; Jain, C.P. Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res. Pharm. Sci., 2010, 5(1), 49-56.
[PMID: 21589768]
[30]
Planinšek, O. Kovačič B.; Vrečer, F. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int. J. Pharm., 2011, 406(1-2), 41-48.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.035] [PMID: 21219991]
[31]
Mandić J.; Luštrik, M.; Vrečer, F.; Gašperlin, M.; Zvonar Pobirk, A. Solidification of carvedilol loaded SMEDDS by swirling fluidized bed pellet coating. Int. J. Pharm., 2019, 566, 89-100.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.055] [PMID: 31129345]
[32]
Ruffolo, R.R., Jr; Gellai, M.; Hieble, J.P.; Willette, R.N.; Nichols, A.J. The pharmacology of carvedilol. Eur. J. Clin. Pharmacol., 1990, 38(S2)(Suppl. 2), S82-S88.
[http://dx.doi.org/10.1007/BF01409471] [PMID: 1974511]
[33]
van Zwieten, P.A. Pharmacodynamic profile of carvedilol. Cardiology, 1993, 82(3), 19-23.
[http://dx.doi.org/10.1159/000175939] [PMID: 8106159]
[34]
Čižmáriková, R.; Habala, L.; Valentová, J.; Markuliak, M. Survey of pharmacological activity and pharmacokinetics of selected β- adrenergic blockers in regard to their stereochemistry. Appl. Sci. (Basel), 2019, 9(4), 625-645.
[http://dx.doi.org/10.3390/app9040625]
[35]
Potluri, R.H.K.; Bandari, S.; Jukanti, R.; Veerareddy, P.R. Solubility enhancement and physicochemical characterization of carvedilol solid dispersion with Gelucire 50/13. Arch. Pharm. Res., 2011, 34(1), 51-57.
[http://dx.doi.org/10.1007/s12272-011-0106-3] [PMID: 21468915]
[36]
Packer, M.; Lukas, M.A.; Tenero, D.M.; Baidoo, C.A.; Greenberg, B.H.; Group, S. Pharmacokinetic profile of controlled-release carvedilol in patients with left ventricular dysfunction associated with chronic heart failure or after myocardial infarction. Am. J. Cardiol., 2006, 98(7), 39-45.
[http://dx.doi.org/10.1016/j.amjcard.2006.07.018] [PMID: 17023231]
[37]
Weber, M.A.; Sica, D.A.; Tarka, E.A.; Iyengar, M.; Fleck, R.; Bakris, G.L. Controlled-release carvedilol in the treatment of essential hypertension. Am. J. Cardiol., 2006, 98(7), 32-38.
[http://dx.doi.org/10.1016/j.amjcard.2006.07.017] [PMID: 17023230]
[38]
Colucci, W.S.; Packer, M.; Bristow, M.R.; Gilbert, E.M.; Cohn, J.N.; Fowler, M.B.; Krueger, S.K.; Hershberger, R.; Uretsky, B.F.; Bowers, J.A.; Sackner-Bernstein, J.D.; Young, S.T.; Holcslaw, T.L.; Lukas, M.A. Carvedilol inhibits clinical progression in patients with mild symptoms of heart failure. Circulation, 1996, 94(11), 2800-2806.
[http://dx.doi.org/10.1161/01.CIR.94.11.2800] [PMID: 8941105]
[39]
Elgendy, I.Y.; Mahtta, D.; Pepine, C.J. Medical therapy for heart failure caused by ischemic heart disease. Circ. Res., 2019, 124(11), 1520-1535.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313568] [PMID: 31120824]
[40]
Packer, M.; Fowler, M.B.; Roecker, E.B.; Coats, A.J.S.; Katus, H.A.; Krum, H.; Mohacsi, P.; Rouleau, J.L.; Tendera, M.; Staiger, C.; Holcslaw, T.L.; Amann-Zalan, I.; DeMets, D.L. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: Results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation, 2002, 106(17), 2194-2199.
[http://dx.doi.org/10.1161/01.CIR.0000035653.72855.BF] [PMID: 12390947]
[41]
Halder, S.; Tabata, A.; Seto, Y.; Sato, H.; Onoue, S. Amorphous solid dispersions of carvedilol along with pH‐modifiers improved pharmacokinetic properties under hypochlorhydoria. Biopharm. Drug Dispos., 2018, 39(4), 232-242.
[http://dx.doi.org/10.1002/bdd.2129] [PMID: 29607517]
[42]
Book, W.M. Carvedilol: A nonselective beta blocking agent with antioxidant properties. Congest. Heart Fail, 2002, 8(3), 173-190. 190.
[http://dx.doi.org/10.1111/j.1527-5299.2002.00718.x] [PMID: 12045386]
[43]
Bertera, F.; Di Verniero, C.A.; Mayer, M.A.; Chiappetta, D.; Buontempo, F.; Polizio, A.H.; Taira, C.A.; Höcht, C. Pharmacokinetic and pharmacodynamic properties of carvedilol in fructose hypertensive rats. Xenobiotica, 2012, 42(2), 206-219.
[http://dx.doi.org/10.3109/00498254.2011.604746] [PMID: 21892881]
[44]
Guglin, M.; Krischer, J.; Tamura, R.; Fink, A.; Bello-Matricaria, L.; McCaskill-Stevens, W.; Munster, P.N. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J. Am. Coll. Cardiol., 2019, 73(22), 2859-2868.
[http://dx.doi.org/10.1016/j.jacc.2019.03.495] [PMID: 31171092]
[45]
Ågesen, F.N.; Weeke, P.E.; Tfelt-Hansen, P.; Tfelt-Hansen, J. Pharmacokinetic variability of beta‐adrenergic blocking agents used in cardiology. Pharmacol. Res. Perspect., 2019, 7(4), e00496.
[http://dx.doi.org/10.1002/prp2.496] [PMID: 31338197]
[46]
Al-Ghamdi, H. Carvedilol in the treatment of portal hypertension. Saudi J. Gastroenterol., 2011, 17(2), 155-158.
[http://dx.doi.org/10.4103/1319-3767.77251] [PMID: 21372358]
[47]
Stafylas, P.C.; Sarafidis, P.A. Carvedilol in hypertension treatment. Vasc. Health Risk Manag., 2008, 4(1), 23-30.
[http://dx.doi.org/10.2147/vhrm.2008.04.01.23] [PMID: 18629377]
[48]
Yaghooti, H.; Ayashi, S.; Assareh, A.R.; Jalali, M.T.; Olapour, S. Role of antioxidant property of carvedilol in mild to moderate hypertensive patients: A prospective open-label study. Indian J. Pharmacol., 2016, 48(4), 372-376.
[http://dx.doi.org/10.4103/0253-7613.186206] [PMID: 27756946]
[49]
Watanabe, H.; Ozasa, N.; Morimoto, T.; Shiomi, H.; Bingyuan, B.; Suwa, S.; Nakagawa, Y.; Izumi, C.; Kadota, K.; Ikeguchi, S.; Hibi, K.; Furukawa, Y.; Kaji, S.; Suzuki, T.; Akao, M.; Inada, T.; Hayashi, Y.; Nanasato, M.; Okutsu, M.; Kametani, R.; Sone, T.; Sugimura, Y.; Kawai, K.; Abe, M.; Kaneko, H.; Nakamura, S.; Kimura, T. Long-term use of carvedilol in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. PLoS One, 2018, 13(8), e0199347.
[http://dx.doi.org/10.1371/journal.pone.0199347] [PMID: 30153268]
[50]
Meng, D.; Li, Z.; Wang, G.; Ling, L.; Wu, Y.; Zhang, C. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed. Pharmacother., 2018, 108, 1617-1627.
[http://dx.doi.org/10.1016/j.biopha.2018.10.005] [PMID: 30372864]
[51]
Avila, M.S.; Ayub-Ferreira, S.M.; de Barros Wanderley, M.R., Jr das Dores Cruz, F.; Gonçalves Brandão, S.M.; Rigaud, V.O.C.; Higuchi-dos-Santos, M.H.; Hajjar, L.A.; Kalil Filho, R.; Hoff, P.M.; Sahade, M.; Ferrari, M.S.M.; de Paula Costa, R.L.; Mano, M.S.; Bittencourt Viana Cruz, C.B.; Abduch, M.C.; Lofrano Alves, M.S.; Guimaraes, G.V.; Issa, V.S.; Bittencourt, M.S.; Bocchi, E.A. Carvedilol for prevention of chemotherapy-related cardiotoxicity. J. Am. Coll. Cardiol., 2018, 71(20), 2281-2290.
[http://dx.doi.org/10.1016/j.jacc.2018.02.049] [PMID: 29540327]
[52]
Abuosa, A.M.; Elshiekh, A.H.; Qureshi, K.; Abrar, M.B.; Kholeif, M.A.; Kinsara, A.J.; Andejani, A.; Ahmed, A.H.; Cleland, J.G.F. Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin. Indian Heart J., 2018, 70(Suppl 3)(3), S96-S100.
[http://dx.doi.org/10.1016/j.ihj.2018.06.011] [PMID: 30595329]
[53]
Fülöp, G.; Balogh, A.; Farkas, B.; Farkas, A.; Szabó, B.; Démuth, B.; Borbás, E.; Nagy, Z.K.; Marosi, G. Homogenization of amorphous solid dispersions prepared by electrospinning in low-dose tablet formulation. Pharmaceutics, 2018, 10(3), 114.
[http://dx.doi.org/10.3390/pharmaceutics10030114] [PMID: 30072667]
[54]
Loftsson, T.; Vogensen, S.B.; Desbos, C.; Jansook, P. Carvedilol: solubilization and cyclodextrin complexation: A technical note. AAPS PharmSciTech, 2008, 9(2), 425-430.
[http://dx.doi.org/10.1208/s12249-008-9055-7] [PMID: 18431667]
[55]
Lee, S.N.; Poudel, B.K.; Tran, T.H.; Marasini, N.; Pradhan, R.; Lee, Y.I.; Lee, D.W.; Woo, J.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. A novel surface-attached carvedilol solid dispersion with enhanced solubility and dissolution. Arch. Pharm. Res., 2013, 36(1), 79-85.
[http://dx.doi.org/10.1007/s12272-013-0008-7] [PMID: 23328872]
[56]
Dunn, C.J.; Lea, A.P.; Wagstaff, A.J. Carvedilol. Drugs, 1997, 54(1), 161-185.
[http://dx.doi.org/10.2165/00003495-199754010-00015] [PMID: 9211087]
[57]
Avachat, A.M.; Patel, K.B.; Rokade, M.S.; Dash, R.R. Formulation and characterization of an expandable, gastroretentive system of carvedilol phosphate by 32 factorial design. PDA J. Pharm. Sci. Technol., 2011, 65(1), 12-19.
[PMID: 21414936]
[58]
Albers, S.; Meibohm, B.; Mir, T.S.; Läer, S. Population pharmacokinetics and dose simulation of carvedilol in paediatric patients with congestive heart failure. Br. J. Clin. Pharmacol., 2008, 65(4), 511-522.
[http://dx.doi.org/10.1111/j.1365-2125.2007.03046.x] [PMID: 17995971]
[59]
Srikanth Meka, V.; Wee Liang, V.A.P.H.; Dharmalingham, S.R.; Sheshala, R.; Gorajana, A.; Gorajana, A. Preparation and in vitro characterization of non-effervescent floating drug delivery system of poorly soluble drug, carvedilol phosphate. Acta Pharm., 2014, 64(4), 485-494.
[http://dx.doi.org/10.2478/acph-2014-0038] [PMID: 25531788]
[60]
Wen, X.; Tan, F.; Jing, Z.; Liu, Z. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J. Pharm. Biomed. Anal., 2004, 34(3), 517-523.
[http://dx.doi.org/10.1016/S0731-7085(03)00576-4] [PMID: 15127807]
[61]
Shewale, B.D.; Sapkal, N.P.; Raut, N.A.; Gaikwad, N.J.; Fursule, R.A. Effect of hydroxylpropyl-β-cyclodextrin on solubility of carvedilol. Indian J. Pharm. Sci., 2008, 70(2), 255-257.
[http://dx.doi.org/10.4103/0250-474X.41470] [PMID: 20046727]
[62]
Hirlekar, R.; Kadam, V. Preparation and characterization of inclusion complexes of carvedilol with methyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 2009, 63(3-4), 219-224.
[http://dx.doi.org/10.1007/s10847-008-9506-5]
[63]
Nokhodchi, A.; Javadzadeh, Y.; Siahi-Shadbad, M.R.; Barzegar-Jalali, M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J. Pharm. Pharm. Sci., 2005, 8(1), 18-25.
[PMID: 15946594]
[64]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci., 2003, 18(2), 113-120.
[http://dx.doi.org/10.1016/S0928-0987(02)00251-8] [PMID: 12594003]
[65]
Qiu, X.L.; Fan, Z.R.; Liu, Y.Y.; Wang, D.F.; Wang, S.X.; Li, C.X. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with heparin phospholipid complex. Int. J. Mol. Sci., 2021, 22(8), 4077-4090.
[http://dx.doi.org/10.3390/ijms22084077] [PMID: 33920853]
[66]
Rigaud, S.; Mathiron, D.; Moufawad, T.; Landy, D.; Djedaini-Pilard, F.; Marçon, F. Cyclodextrin complexation as a way of increasing the aqueous solubility and stability of carvedilol. Pharmaceutics, 2021, 13(11), 1746-1764.
[http://dx.doi.org/10.3390/pharmaceutics13111746] [PMID: 34834163]
[67]
Kim, D.; Kim, Y.; Tin, Y.Y.; Soe, M.T.P.; Ko, B.; Park, S.; Lee, J. Recent technologies for amorphization of poorly water-soluble drugs. Pharmaceutics, 2021, 13(8), 1318-1338.
[http://dx.doi.org/10.3390/pharmaceutics13081318] [PMID: 34452279]
[68]
Jakubowska, E.; Milanowski, B.; Lulek, J. A Systematic approach to the development of cilostazol nanosuspension by liquid antisolvent precipitation (LASP) and its combination with ultrasound. Int. J. Mol. Sci., 2021, 22(22), 12406-12445.
[http://dx.doi.org/10.3390/ijms222212406] [PMID: 34830298]
[69]
Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat. Nanotechnol., 2020, 14(4), 276-293.
[http://dx.doi.org/10.2174/1872210514666200604145755] [PMID: 32496999]
[70]
Pandey, P.; Purohit, D.; Dureja, H. Nanosponges - A promising novel drug delivery system. Recent Pat. Nanotechnol., 2018, 12(3), 180-191.
[http://dx.doi.org/10.2174/1872210512666180925102842] [PMID: 30251614]
[71]
Pandey, P.; Dureja, H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Pat. Nanotechnol., 2018, 12(2), 155-169.
[http://dx.doi.org/10.2174/1872210512666180327120648] [PMID: 29589551]
[72]
Siwach, R.; Pandey, P.; Chawla, V.; Dureja, H. Role of nanotechnology in diabetic management. Recent Pat. Nanotechnol., 2019, 13(1), 28-37.
[http://dx.doi.org/10.2174/1872210513666190104122032] [PMID: 30608045]
[73]
Purohit, D.; Manchanda, D.; Makhija, M.; Rathi, J.; Verma, R.; Kaushik, D.; Pandey, P. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat. Nanotechnol., 2021, 15(1), 15-34.
[http://dx.doi.org/10.2174/1872210514666200909154409] [PMID: 32912128]
[74]
Liu, Y.; Tee, J.; Chiu, G. Dendrimers in oral drug delivery application: Current explorations, toxicity issues and strategies for improvement. Curr. Pharm. Des., 2015, 21(19), 2629-2642.
[http://dx.doi.org/10.2174/1381612821666150416102058] [PMID: 25876918]
[75]
Arzani, G.; Haeri, A.; Daeihamed, M.; Bakhtiari-Kaboutaraki, H.; Dadashzadeh, S. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomedicine, 2015, 10, 4797-4813.
[PMID: 26251598]
[76]
Li, J.; Jiang, Q.; Deng, P.; Chen, Q.; Yu, M.; Shang, J.; Li, W. The formation of a host-guest inclusion complex system between β-cyclodextrin and baicalin and its dissolution characteristics. J. Pharm. Pharmacol., 2017, 69(6), 663-674.
[http://dx.doi.org/10.1111/jphp.12708] [PMID: 28299800]
[77]
Daeihamed, M.; Haeri, A.; Ostad, S.N.; Akhlaghi, M.F.; Dadashzadeh, S. Doxorubicin-loaded liposomes: Enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine, 2017, 12(10), 1187-1202.
[http://dx.doi.org/10.2217/nnm-2017-0007] [PMID: 28447868]
[78]
Daeihamed, M.; Dadashzadeh, S.; Haeri, A.; Akhlaghi, M.F. Potential of liposomes for enhancement of oral drug absorption. Curr. Drug Deliv., 2017, 14(2), 289-303.
[PMID: 26768542]
[79]
Ghassemi, S.; Haeri, A.; Shahhosseini, S.; Dadashzadeh, S. Labrasol-enriched nanoliposomal formulation: Novel approach to improve oral absorption of water- insoluble drug carvedilol. AAPS PharmSciTech, 2018, 19(7), 2961-2970.
[http://dx.doi.org/10.1208/s12249-018-1118-9] [PMID: 30030724]
[80]
Fonarow, G.C. Role of carvedilol controlled-release in cardiovascular disease. Expert Rev. Cardiovasc. Ther., 2009, 7(5), 483-498.
[http://dx.doi.org/10.1586/erc.09.15] [PMID: 19419256]
[81]
Mahmoud, E.A.; Bendas, E.R.; Mohamed, M.I. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech, 2009, 10(1), 183-192.
[http://dx.doi.org/10.1208/s12249-009-9192-7] [PMID: 19238556]
[82]
Buontempo, F.; Bernabeu, E.; Glisoni, R.J.; Quiroga, E.; Bregni, C.; Chiappetta, D.A. Carvedilol stability in paediatric oral liquid formulations. Farm. Hosp., 2010, 34(6), 293-297.
[http://dx.doi.org/10.1016/j.farma.2010.01.002] [PMID: 20418137]
[83]
Aboud, H.M.; Ali, A.A.; El-Menshawe, S.F.; Elbary, A.A. Nanotransfersomes of carvedilol for intranasal delivery: Formulation, characterization and in vivo evaluation. Drug Deliv., 2016, 23(7), 2471-2481.
[http://dx.doi.org/10.3109/10717544.2015.1013587] [PMID: 25715807]
[84]
Krstić M.; Radojević M.; Stojanović D.; Radojević V.; Uskoković P.; Ibrić S. Formulation and characterization of nanofibers and films with carvedilol prepared by electrospinning and solution casting method. Eur. J. Pharm. Sci., 2017, 101, 160-166.
[http://dx.doi.org/10.1016/j.ejps.2017.02.006] [PMID: 28185991]
[85]
Chaves, P.S.; Ourique, A.F.; Frank, L.A.; Pohlmann, A.R.; Guterres, S.S.; Beck, R.C.R. Carvedilol-loaded nanocapsules: Mucoadhesive properties and permeability across the sublingual mucosa. Eur. J. Pharm. Biopharm., 2017, 114, 88-95.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.007] [PMID: 28119104]
[86]
Medarević D.; Djuriš, J.; Ibrić S.; Mitrić M.; Kachrimanis, K. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int. J. Pharm., 2018, 540(1-2), 150-161.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.011] [PMID: 29438724]
[87]
Kajdič S.; Vrečer, F.; Kocbek, P. Preparation of poloxamer-based nanofibers for enhanced dissolution of carvedilol. Eur. J. Pharm. Sci., 2018, 117, 331-340.
[http://dx.doi.org/10.1016/j.ejps.2018.03.006] [PMID: 29514051]
[88]
Chen, J.; Pan, H.; Yang, Y.; Xiong, S.; Duan, H.; Yang, X.; Pan, W. Self-assembled liposome from multi-layered fibrous mucoadhesive membrane for buccal delivery of drugs having high first-pass metabolism. Int. J. Pharm., 2018, 547(1-2), 303-314.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.062] [PMID: 29803794]
[89]
Ibrahim, T.M.; Abdallah, M.H.; El-Megrab, N.A.; El-Nahas, H.M. Upgrading of dissolution and anti-hypertensive effect of Carvedilol via two combined approaches: Self-emulsification and liquisolid techniques. Drug Dev. Ind. Pharm., 2018, 44(6), 873-885.
[http://dx.doi.org/10.1080/03639045.2017.1417421] [PMID: 29254384]
[90]
Silva, L.A.D.; Almeida, S.L.; Alonso, E.C.P.; Rocha, P.B.R.; Martins, F.T.; Freitas, L.A.P.; Taveira, S.F.; Cunha-Filho, M.S.S.; Marreto, R.N. Preparation of a solid self-microemulsifying drug delivery system by hot-melt extrusion. Int. J. Pharm., 2018, 541(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.020] [PMID: 29458210]
[91]
Taveira, S.F.; Varela-Garcia, A.; dos Santos Souza, B.; Marreto, R.N.; Martin-Pastor, M.; Concheiro, A.; Alvarez-Lorenzo, C. Cyclodextrin-based poly(pseudo)rotaxanes for transdermal delivery of carvedilol. Carbohydr. Polym., 2018, 200, 278-288.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.017] [PMID: 30177168]
[92]
Zaid Alkilani, A.; Hamed, R.; Al-Marabeh, S.; Kamal, A.; Abu-Huwaij, R.; Hamad, I. Nanoemulsion-based film formulation for transdermal delivery of carvedilol. J. Drug Deliv. Sci. Technol., 2018, 46, 122-128.
[http://dx.doi.org/10.1016/j.jddst.2018.05.015]
[93]
Alskär, L.C.; Parrow, A.; Keemink, J.; Johansson, P.; Abrahamsson, B.; Bergström, C.A.S. Effect of lipids on absorption of carvedilol in dogs: Is coadministration of lipids as efficient as a lipid-based formulation? J. Control. Release, 2019, 304, 90-100.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.038] [PMID: 31047962]
[94]
Bolourchian, N.; Talamkhani, Z.; Nokhodchi, A. Preparation and physicochemical characterization of binary and ternary ground mixtures of carvedilol with PVP and SLS aimed to improve the drug dissolution. Pharm. Dev. Technol., 2019, 24(9), 1115-1124.
[http://dx.doi.org/10.1080/10837450.2019.1641516] [PMID: 31282827]
[95]
Djuris, J.; Milovanovic, S.; Medarevic, D.; Dobricic, V. Dapčević A.; Ibric, S. Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. Int. J. Pharm., 2019, 554, 190-200.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.015] [PMID: 30414899]
[96]
Ibrahim, T.M.; Abdallah, M.H.; El-Megrab, N.A.; El-Nahas, H.M. Transdermal ethosomal gel nanocarriers; a promising strategy for enhancement of anti-hypertensive effect of carvedilol. J. Liposome Res., 2019, 29(3), 215-228.
[http://dx.doi.org/10.1080/08982104.2018.1529793] [PMID: 30272506]
[97]
Selselehjonban, S.; Garjani, A.; Osouli-Bostanabad, K.; Tanhaei, A.; Emami, S.; Adibkia, K.; Barzegar-Jalali, M. Physicochemical and pharmacological evaluation of carvedilol-eudragit® RS100 electrosprayed nanostructures. Iran. J. Basic Med. Sci., 2019, 22(5), 547-556.
[PMID: 31217936]
[98]
Sharma, M.; Sharma, R.; Jain, D.K.; Saraf, A. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: Optimization and pharmacokinetic study. Int. J. Biol. Macromol., 2019, 135, 246-260.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.162] [PMID: 31128197]
[99]
Zhang, Q.; Guo, K.; Wang, X.; Huang, B.; Lin, Z.; Cai, Z. Optimization of lipid materials in the formulation of S-carvedilol self-microemulsifying drug-delivery systems. Drug Dev. Ind. Pharm., 2020, 46(9), 1507-1516.
[http://dx.doi.org/10.1080/03639045.2020.1810265] [PMID: 32806972]
[100]
Chen, M.; Shamim, M.A.; Shahid, A.; Yeung, S.; Andresen, B.T.; Wang, J.; Nekkanti, V.; Meyskens, F.L., Jr; Kelly, K.M.; Huang, Y. Topical delivery of carvedilol loaded nano- transfersomes for skin cancer chemoprevention. Pharmaceutics, 2020, 12(12), 1151-1166.
[http://dx.doi.org/10.3390/pharmaceutics12121151] [PMID: 33260886]
[101]
Mandić J.; Kosmač I.; Kovačević M.; Hodnik, B.; Hodnik, Ž.; Vrečer, F.; Gašperlin, M.; Perissutti, B.; Zvonar Pobirk, A. Evaluation of solid carvedilol-loaded SMEDDS produced by the spray drying method and a study of related substances. Int. J. Pharm., 2021, 605, 120783.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120783] [PMID: 34111547]
[102]
Abdelmonem, R.; Elhabal, S.F.; Abdelmalak, N.S.; El-Nabarawi, M.A.; Teaima, M.H. Formulation and characterization of acetazolamide/carvedilol niosomal gel for glaucoma treatment: In vitro, and in vivo study. Pharmaceutics, 2021, 13(2), 221-240.
[http://dx.doi.org/10.3390/pharmaceutics13020221] [PMID: 33562785]
[103]
Sallam, N.M.; Sanad, R.A.B.; Ahmed, M.M.; Khafagy, E.L.S.; Ghorab, M.; Gad, S. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv. Transl. Res., 2021, 11(3), 1009-1036.
[http://dx.doi.org/10.1007/s13346-020-00814-4] [PMID: 32607938]
[104]
Mo, L.; Lu, G.; Ou, X.; Ouyang, D. Formulation and development of novel control release transdermal patches of carvedilol to improve bioavailability for the treatment of heart failure. Saudi J. Biol. Sci., 2022, 29(1), 266-272.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.088] [PMID: 35002418]
[105]
Mohammady, M.; Hadidi, M.; Iman Ghetmiri, S.; Yousefi, G. Design of ultra-fine carvedilol nanococrystals: Development of a safe and stable injectable formulation. Eur. J. Pharm. Biopharm., 2021, 168, 139-151.
[http://dx.doi.org/10.1016/j.ejpb.2021.08.015] [PMID: 34481906]
[106]
Mankar, S.D.; Rachh, P.R. Solubility enhancement of poor water-soluble drugs by solid dispersion. J. Drug Deliv., 2018, 8, 44-49.
[107]
Kovačič B.; Vrečer, F.; Planinšek, O. Solid dispersions of carvedilol with porous silica. Chem. Pharm. Bull. (Tokyo), 2011, 59(4), 427-433.
[http://dx.doi.org/10.1248/cpb.59.427] [PMID: 21467668]
[108]
Shete, A.S.; Yadav, A.V.; Murthy, S.M. Chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. Daru, 2012, 20(1), 93-102.
[http://dx.doi.org/10.1186/2008-2231-20-93] [PMID: 23351907]
[109]
Zoghbi, A.; Geng, T.; Wang, B. Dual activity of hydroxypropyl-β-cyclodextrin and water-soluble carriers on the solubility of carvedilol. AAPS PharmSciTech, 2017, 18(8), 2927-2935.
[http://dx.doi.org/10.1208/s12249-017-0769-2] [PMID: 28432614]
[110]
Genina, N.; Hadi, B.; Löbmann, K. Hot melt extrusion as solvent-free technique for a continuous manufacturing of drug-loaded mesoporous silica. J. Pharm. Sci., 2018, 107(1), 149-155.
[http://dx.doi.org/10.1016/j.xphs.2017.05.039] [PMID: 28603020]
[111]
Mishra, J.; Bohr, A.; Rades, T.; Grohganz, H.; Löbmann, K. Whey proteins as stabilizers in amorphous solid dispersions. Eur. J. Pharm. Sci., 2019, 128, 144-151.
[http://dx.doi.org/10.1016/j.ejps.2018.12.002] [PMID: 30528387]
[112]
Vasoya, J.M.; Desai, H.H.; Gumaste, S.G.; Tillotson, J.; Kelemen, D.; Dalrymple, D.M.; Serajuddin, A.T.M. Development of solid dispersion by hot melt extrusion using mixtures of polyoxylglycerides with polymers as carriers for increasing dissolution rate of a poorly soluble drug model. J. Pharm. Sci., 2019, 108(2), 888-896.
[http://dx.doi.org/10.1016/j.xphs.2018.09.019] [PMID: 30257196]
[113]
Halder, S.; Ahmed, F.; Shuma, M.L.; Azad, M.A.K.; Kabir, E.R. Impact of drying on dissolution behavior of carvedilol-loaded sustained release solid dispersion: Development and characterization. Heliyon, 2020, 6(9), e05026.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05026] [PMID: 33005811]
[114]
Krstić M.; Manić L.; Martić N.; Vasiljević D.; Mračević S.Đ.; Vukmirović S.; Rašković A. Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. Eur. J. Pharm. Sci., 2020, 150, 105343.
[http://dx.doi.org/10.1016/j.ejps.2020.105343] [PMID: 32376386]
[115]
Andersen, C; Fischer, G; Bar-Shalom, D; Slot, L Lademann, A-M Controlled release carvedilol compositions US8449914B2, 2013.
[116]
Cavanagh, T; Barman, SP Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof. US8765725B2, 2014.
[117]
Liepold, B; Breitenbach, J; Mägerlein, M; Henzel, C; Kessler, TK Pharmaceutical dosage form comprising polymeric carrier composition. US9402909B2, 2016.
[118]
Yun, AJ Methods and compositions for treating a disease condition in a subject. US9833618B2, 2017.
[119]
Venkatesh, G; Boltri, L; Colombo, I; Lai, J-W; Fabiani, F; Mapelli, M Drug delivery systems comprising solid solutions of weakly basic drugs. US10864166B2, 2020.
[120]
Chen, F-J; Patel, MV; Fikstad, DT; Zhang, H; Gilyar, C Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs. US20200282061A1, 2020.
[121]
Glick, G. Methods of treatment. US10980756B1, 2021.
[122]
de Bruinl, G; de Bruin, L Coats, A Biomarker identification for imminent and/or impending heart failure. WO2021245459A1, 2021.
[123]
Hazen, SL; Nemet, I; Saha, P Disease detection and treatment based on phenylacetyl glutamine levels. WO2021158720A1, 2021.
[124]
Parmenter, ME; Sullivan, GM Cyclobenzaprine treatment for sexual dysfunction. WO2021207561A1, 2021.
[125]
Dooley, TP Methods and pharmaceutical compositions for preventing relapse in a person with an addiction using beta adrenergic receptor antagonist and muscarinic receptor antagonist combinations. US20210236507A1, 2021.
[126]
Coats, A. Devices and methods for treating cancer and cardiac wasting. WO2021140421A1, 2021.
[127]
Alexander, RV; Conklin, JD Cardiovascular biomarkers for systemic lupus erythematosus. WO2021202457A1, 2021.
[128]
Ix, J; Shlipak, M Biomarker panel for monitoring kidney health. US20210220438A1, 2021.
[129]
Xu, D; Chana, A; Batra, A; Chen, NN Modified release pharmaceutical formulation comprising hydroxypropyl cellulose. WO2021222369A1, 2021.
[130]
Davis, PF; Mackay, SM; Paterson, EF; Tan, ST; Tan, EW Methods and compositions for the treatment of hemangioma. WO2021154102A1,, 2021.
[131]
Zablow, SB Bioactive vitamin combinations. US20210338678A1, 2021.
[132]
Johnson, MA; de Havenon, A; Hoareau, G; Neff, L; Williams, T; McWade, M; Poisner, D Blood pressure regulation system for the treatment of neurologic injuries. US20210275783A1, 2021.
[133]
Endres, T; Moers, C; Schmied, F-P; Schattka, JH; Nollenberger, K Novel methacrylate copolymer and compositions comprising it. EP3916029A1, 2021.
[134]
Orend, G. Compounds binding tenascin-c (tnc) for use in the treatment of diseases. EP3912994A1, 2021.
[135]
Pamnani, RD; Sinha, SR; Jarr, KJ; Kaur, N Dosing methods for treating inflammatory bowel conditions. US20210361602A1, 2021.
[136]
Schmied, F-P; Bernhardt, A; Engel, A; Moers, C Endres, T Solid self- nanoemulsifying drug delivery system (s-snedds). EP3915543A1, 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy