Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Eco-friendly Synthesis of Copper Nanoparticles: An Overview of the Epoch-making Role of Natural Resources, Applications, and Recent Developments

Author(s): Sameea Ahmed Khan* and Rajesh Sharma

Volume 11, Issue 3, 2024

Published on: 10 November, 2023

Page: [286 - 295] Pages: 10

DOI: 10.2174/0122133461279579231103055412

Price: $65

Abstract

Green synthesized metal nanoparticles offer a broad spectrum of applications. They also offer unmatched significance because they are eco-friendly, cost-effective, and less toxic to human beings. Copper nanoparticles, when synthesized using green protocols, exhibit enriched properties and are substantially used in the preparation of nanofluids, medicine, conductive agents, etc. In this review, we have highlighted how the side effects of synthetic compounds have paved the way to look for greener alternatives in the field of nanomedicine. Green fabrication, characterization, and activities of copper nanoparticles using different biological sources have been extensively studied and reported. The biological sources have been broadly classified into two categories, plant-based and microbial-based. Natural resources are a reservoir of flavonoids, polyphenols, saponins, etc. They act as reducing and stabilizing agents for nanoparticles. Bio-synthesized metal nanoparticles have presented themselves as anti-microbial agents, bioreductors, cytotoxic agents, bioremediators, etc. This review has described the effective utilization of natural resources for synthesizing copper nanoparticles. It also emphasizes the recent developments in this field covering the diverse applications of the same.

Graphical Abstract

[1]
Aazadfar, P.; Solati, E.; Dorranian, D. Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions. Opt. Mater., 2018, 78, 388-395.
[http://dx.doi.org/10.1016/j.optmat.2018.02.050]
[2]
Zhang, Q. L.; Yang, Z. M.; Ding, B. J.; Lan, X. Z.; Guo, Y. J. Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Trans. Nonferrous Met. Soc. China., 2010, 20(Supplement 1), s240-s244.
[http://dx.doi.org/10.1016/S1003-6326(10)60047-7]
[3]
Yallappa, S.; Manjanna, J.; Sindhe, M.A.; Satyanarayan, N.D.; Pramod, S.N.; Nagaraja, K. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 110, 108-115.
[http://dx.doi.org/10.1016/j.saa.2013.03.005] [PMID: 23562740]
[4]
Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater. Lett., 2014, 115, 13-17.
[http://dx.doi.org/10.1016/j.matlet.2013.10.011]
[5]
Giannousi, K.; Avramidis, I.; Dendrinou-Samara, C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv., 2013, 3(44), 21743.
[http://dx.doi.org/10.1039/c3ra42118j]
[6]
Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films, 2010, 518(12), 3127-3150.
[http://dx.doi.org/10.1016/j.tsf.2010.01.018]
[7]
Meng, Y.; Huang, J.; Li, J.; Jian, Y.; Yang, S.; Li, H. Enzyme-mimicking single atoms enable selectivity control in visible-light-driven oxidation/ammoxidation to afford bio-based nitriles. Green Chem., 2023, 25(11), 4453-4462.
[http://dx.doi.org/10.1039/D3GC00968H]
[8]
Nasrollahzadeh, M.; Mahmoudi-Gom Yek, S.; Motahharifar, N.; Ghafori G, M. Recent developments in the plant-mediated green synthesis of Ag-based nanoparticles for environmental and catalytic applications. Chem. Rec., 2019, 19(12), 2436-2479.
[http://dx.doi.org/10.1002/tcr.201800202] [PMID: 31021524]
[9]
An, K.; Somorjai, G.A.; Nanocatalysis, I. Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett., 2015, 145(1), 233-248.
[http://dx.doi.org/10.1007/s10562-014-1399-x]
[10]
Xu, F.; Li, Z.; Zhang, L.L.; Liu, S.; Li, H.; Liao, Y.; Yang, S. Synthesis of renewable isoindolines from bio-based furfurals. Green Chem., 2023, 25(8), 3297-3305.
[http://dx.doi.org/10.1039/D2GC04786A]
[11]
Samuel, M.S.; Ravikumar, M.; John J, A.; Selvarajan, E.; Patel, H.; Chander, P.S.; Soundarya, J.; Vuppala, S.; Balaji, R.; Chandrasekar, N. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts, 2022, 12(5), 459.
[http://dx.doi.org/10.3390/catal12050459]
[12]
Chan, G.H.; Zhao, J.; Hicks, E.M.; Schatz, G.C.; Van Duyne, R.P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett., 2007, 7(7), 1947-1952.
[http://dx.doi.org/10.1021/nl070648a]
[13]
Hajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[14]
Hassanien, R.; Husein, D.Z.; Al-Hakkani, M.F. Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon, 2018, 4(12), e01077.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01077] [PMID: 30603710]
[15]
Li, P.; Liang, J.; Su, D.; Huang, Y.; Pan, J.; Peng, M.; Li, G.; Shan, Y. Green and efficient biosynthesis of pectin-based copper nanoparticles and their antimicrobial activities. Bioprocess Biosyst. Eng., 2020, 43(11), 2017-2026.
[http://dx.doi.org/10.1007/s00449-020-02390-w] [PMID: 32572568]
[16]
Kasana, R.C.; Panwar, N.R.; Kaul, R.K.; Kumar, P. Biosynthesis and effects of copper nanoparticles on plants. Environ. Chem. Lett., 2017, 15(2), 233-240.
[http://dx.doi.org/10.1007/s10311-017-0615-5]
[17]
Buvaneswari, K.; Revathy, R. Biosynthesis of copper oxide nanoparticles and its antimicrobial activities. J. Nanosci. Technol., 2018, 4(4), 450-451.
[http://dx.doi.org/10.30799/jnst.141.18040413]
[18]
Akhter, G.; Khan, A.; Ali, S.G.; Khan, T.A.; Siddiqi, K.S.; Khan, H.M. Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant. SN Applied Sciences, 2020, 2(7), 1268.
[http://dx.doi.org/10.1007/s42452-020-3068-6]
[19]
Lv, Q.; Zhang, B.; Xing, X.; Zhao, Y.; Cai, R.; Wang, W.; Gu, Q. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. J. Hazard. Mater., 2018, 347, 141-149.
[http://dx.doi.org/10.1016/j.jhazmat.2017.12.070] [PMID: 29304452]
[20]
Tahvilian, R.; Zangeneh, M.M.; Falahi, H.; Sadrjavadi, K.; Jalalvand, A.R.; Zangeneh, A. Green synthesis and chemical characterization of copper nanoparticles using Allium saralicum leaves and assessment of their cytotoxicity, antioxidant, antimicrobial, and cutaneous wound healing properties. Appl. Organomet. Chem., 2019, 33(12), e5234.
[http://dx.doi.org/10.1002/aoc.5234]
[21]
Chandraker, S.K.; Lal, M.; Ghosh, M.K.; Tiwari, V.; Ghorai, T.K.; Shukla, R. Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalytic and antibacterial activities. Nano Express, 2020, 1(1), 010033.
[http://dx.doi.org/10.1088/2632-959X/ab8e99]
[22]
Issaabadi, Z.; Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J. Clean. Prod., 2017, 142, 3584-3591.
[http://dx.doi.org/10.1016/j.jclepro.2016.10.109]
[23]
Chompunut, L.; Wanaporn, T.; Anupong, W.; Narayanan, M.; Alshiekheid, M.; Sabour, A.; Karuppusamy, I.; Lan Chi, N.T.; Shanmuganathan, R. Synthesis of copper nanoparticles from the aqueous extract of Cynodon dactylon and evaluation of its antimicrobial and photocatalytic properties. Food Chem. Toxicol., 2022, 166, 113245.
[http://dx.doi.org/10.1016/j.fct.2022.113245] [PMID: 35728723]
[24]
Nasrollahzadeh, M.; Ghorbannezhad, F.; Issaabadi, Z.; Sajadi, S.M. Recent developments in the biosynthesis of cu-based recyclable nanocatalysts using plant extracts and their application in the chemical reactions. Chem. Rec., 2019, 19(2-3), 601-643.
[http://dx.doi.org/10.1002/tcr.201800069] [PMID: 30230690]
[25]
Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 2020, 6(7), e04508.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04508] [PMID: 32715145]
[26]
Martins, T.A.G.; Falconi, I.B.A.; Pavoski, G.; de Moraes, V.T.; Galluzzi, B M.P.; Espinosa, D.C.R. Green synthesis, characterization, and application of copper nanoparticles obtained from printed circuit boards to degrade mining surfactant by Fenton process. J. Environ. Chem. Eng., 2021, 9(6), 106576.
[http://dx.doi.org/10.1016/j.jece.2021.106576]
[27]
Bondarenko, O.; Ivask, A.; Käkinen, A.; Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut., 2012, 169, 81-89.
[http://dx.doi.org/10.1016/j.envpol.2012.05.009] [PMID: 22694973]
[28]
Abu-Oqail, A.; Wagih, A.; Fathy, A.; Elkady, O.; Kabeel, A.M. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites. Ceram. Int., 2019, 45(5), 5866-5875.
[http://dx.doi.org/10.1016/j.ceramint.2018.12.053]
[29]
Han, T.; Li, J.; Zhao, N.; He, C. Microstructure and properties of copper coated graphene nanoplates reinforced Al matrix composites developed by low temperature ball milling. Carbon, 2020, 159, 311-323.
[http://dx.doi.org/10.1016/j.carbon.2019.12.029]
[30]
Fernández-Arias, M.; Boutinguiza, M.; Del Val, J.; Covarrubias, C.; Bastias, F.; Gómez, L.; Maureira, M.; Arias-González, F.; Riveiro, A.; Pou, J. Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications. Appl. Surf. Sci., 2020, 507, 145032.
[http://dx.doi.org/10.1016/j.apsusc.2019.145032]
[31]
Sugashima, K.; Suzuki, K.; Suzuki, T.; Nakayama, T.; Suematsu, H.; Niihara, K. Synthesis of zirconium carbide nanosized powders by pursed wire discharge in oleic acid. J. Korean Phys. Soc., 2016, 68(2), 345-350.
[http://dx.doi.org/10.3938/jkps.68.345]
[32]
Sabbah, I.A.; Zaky, M.F.; Hendawy, M.E.; Negm, N.A. Synthesis, characterization and antimicrobial activity of colloidal copper nanoparticles stabilized by cationic thiol polyurethane surfactants. J. Polym. Res., 2018, 25(12), 252.
[http://dx.doi.org/10.1007/s10965-018-1649-5]
[33]
Viet, P.V.; Nguyen, H.T.; Cao, T.M.; Hieu, L.V. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J. Nanomater., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/1957612]
[34]
Dighore, N.; Jadhav, S.; Gaikwad, S.; Rajbhoj, A. Copper oxide nanoparticles synthesis by electrochemical method. Medziagotyra, 2016, 22(2), 170-173.
[http://dx.doi.org/10.5755/j01.ms.22.2.7501]
[35]
Das, S.; Srivastava, V.C. Synthesis and characterization of ZnO/CuO nanocomposite by electrochemical method. Mater. Sci. Semicond. Process., 2017, 57, 173-177.
[http://dx.doi.org/10.1016/j.mssp.2016.10.031]
[36]
Mercy, R A.; Selva, R G.; Caroling, G. Biosynthesis, characterization, antimicrobial activity of copper nanoparticles using fresh aqueous Ananas comosus L. (Pineapple) extract. Int. J. Pharm. Tech. Res., 2015, 8(4), 750-769.
[37]
Tiwari, M.; Narayanan, K.; Thakar, M.B.; Jagani, H.V.; Venkata Rao, J. Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnol., 2014, 8(4), 230-237.
[http://dx.doi.org/10.1049/iet-nbt.2013.0052] [PMID: 25429502]
[38]
Kolahalam, L.A.; Prasad, K.R.S.; Krishna, P.M.; Supraja, N.; Shanmugan, S. The exploration of bio-inspired copper oxide nanoparticles: Synthesis, characterization and in-vitro biological investigations. Heliyon, 2022, 8(6), e09726.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09726] [PMID: 35770152]
[39]
Paiva-Santos, A.C.; Herdade, A.M.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Paranhos, A.; Veiga, F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int. J. Pharm., 2021, 597, 120311.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120311] [PMID: 33539998]
[40]
Grigore, M.; Biscu, E.; Holban, A.; Gestal, M.; Grumezescu, A. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 2016, 9(4), 75.
[http://dx.doi.org/10.3390/ph9040075] [PMID: 27916867]
[41]
Harishchandra, B.D.; Pappuswamy, M.; Pu, A.; Shama, G.; A, P.; Arumugam, V.A.; Periyaswamy, T.; Sundaram, R. Copper nanoparticles: A review on synthesis, characterization and applications. Asian Pacific J. Cancer Biol., 2020, 5(4), 201-210.
[http://dx.doi.org/10.31557/apjcb.2020.5.4.201-210]
[42]
Chaerun, S.K.; Prabowo, B.A.; Winarko, R. Bionanotechnology: The formation of copper nanoparticles assisted by biological agents and their applications as antimicrobial and antiviral agents. Environ. Nanotechnol. Monit. Manag., 2022, 18, 100703.
[http://dx.doi.org/10.1016/j.enmm.2022.100703]
[43]
Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S. Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 2012, 7(5), 1230005.
[http://dx.doi.org/10.1142/S1793292012300058]
[44]
Khan, A.; Rashid, A.; Younas, R.; Chong, R. A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett., 2016, 6(1), 21-26.
[http://dx.doi.org/10.1007/s40089-015-0163-6]
[45]
Sastry, A.B.S.; Karthik, A R.B.; Sree Rama, L C.; Murty, B.S. Large-scale green synthesis of Cu nanoparticles. Environ. Chem. Lett., 2013, 11(2), 183-187.
[http://dx.doi.org/10.1007/s10311-012-0395-x]
[46]
Shanan, Z.J.; Hadi, S.M.; Shanshool, S.K. Structural analysis of chemical and green synthesis of CuO nanoparticles and their effect on biofilm formation. Baghdad Sci. J., 2018, 15(2), 0211.
[http://dx.doi.org/10.21123/bsj.2018.15.2.0211]
[47]
Al-Jumaili, B.E.B.; Talib, Z.A.; Zakaria, A.; Ramizy, A.; Ahmed, N.M.; Paiman, S.B.; Ying, J.L.; Muhd, I.B.; Baqiah, H. Impact of ablation time on Cu oxide nanoparticle green synthesis via pulsed laser ablation in liquid media. Appl. Phys., A Mater. Sci. Process., 2018, 124(9), 577.
[http://dx.doi.org/10.1007/s00339-018-1995-5]
[48]
Abd-Elkareem, J. I.; Bassuony, H. M.; Mohammed, S. M.; Fahmy, H. M.; Abd-Elkader, N. R. Eco-friendly methods of copper nanoparticles synthesis. J. Bionanosci., 2016, 10(1), 15-37.
[http://dx.doi.org/10.1166/jbns.2016.1350]
[49]
Varkey, J.T.; Ajil, P.A.; Antony, A. Green chemical synthesis of copper nanoparticles-a comparative study with chemical reduction and electrolytic methods. Asian J. Chem., 2017, 29(7), 1591-1594.
[http://dx.doi.org/10.14233/ajchem.2017.20602]
[50]
Iliger, K.S.; Sofi, T.A.; Bhat, N.A.; Ahanger, F.A.; Sekhar, J.C.; Elhendi, A.Z.; Al-Huqail, A.A.; Khan, F. Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J. Biol. Sci., 2021, 28(2), 1477-1486.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.003] [PMID: 33613075]
[51]
Zhang, D.; Ma, X.; Gu, Y.; Huang, H.; Zhang, G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem., 2020, 8, 799.
[http://dx.doi.org/10.3389/fchem.2020.00799] [PMID: 33195027]
[52]
Krishnasamy, R.; Obbineni, J.M. Methods for green synthesis of metallic nanoparticles using plant extracts and their biological applications-a review. J. Biomimetics, Biomaterials and Biomed. Eng., 2022, 56, 75-151.
[http://dx.doi.org/10.4028/p-8bf786]
[53]
Yadi, M.; Mostafavi, E.; Saleh, B.; Davaran, S.; Aliyeva, I.; Khalilov, R.; Nikzamir, M.; Nikzamir, N.; Akbarzadeh, A.; Panahi, Y.; Milani, M. Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), 336-343.
[http://dx.doi.org/10.1080/21691401.2018.1492931] [PMID: 30043657]
[54]
Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci., 2015, 16(1), 2099-2116.
[http://dx.doi.org/10.3390/ijms16012099] [PMID: 25607734]
[55]
Tantubay, S.; Mukhopadhyay, S.K.; Kalita, H.; Konar, S.; Dey, S.; Pathak, A.; Pramanik, P. Carboxymethylated chitosan-stabilized copper nanoparticles: A promise to contribute a potent antifungal and antibacterial agent. J. Nanopart. Res., 2015, 17(6), 243.
[http://dx.doi.org/10.1007/s11051-015-3047-9]
[56]
Jayarambabu, N.; Akshaykranth, A.; Venkatappa Rao, T.; Venkateswara, RK.; Rakesh, K R. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater. Lett., 2020, 259, 126813.
[http://dx.doi.org/10.1016/j.matlet.2019.126813]
[57]
Sahayaraj, K.; Rajesh, S. Bionanoparticles: Synthesis and antimicrobial applications. Science against microbial pathogens: communicating current research and technological advances, 2011, 23, 228-244.
[58]
Černík, M.; Thekkae P, V.V. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed., 2013, 8, 889-898.
[http://dx.doi.org/10.2147/IJN.S40599] [PMID: 23467397]
[59]
Pérez-Beltrán, C.H.; García-Guzmán, J.J.; Ferreira, B.; Estévez-Hernández, O.; López-Iglesias, D.; Cubillana-Aguilera, L.; Link, W.; Stănică, N.; Rosa da Costa, A.M.; Palacios-Santander, J.M. One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation. Mater. Sci. Eng. C, 2021, 123, 112023.
[http://dx.doi.org/10.1016/j.msec.2021.112023] [PMID: 33812640]
[60]
Jain, A.S.; Pawar, P.S.; Sarkar, A.; Junnuthula, V.; Dyawanapelly, S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int. J. Mol. Sci., 2021, 22(21), 11993.
[http://dx.doi.org/10.3390/ijms222111993] [PMID: 34769419]
[61]
Ahmed, R.H.; Mustafa, D.E. Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. Int. Nano Lett., 2020, 10(1), 1-14.
[http://dx.doi.org/10.1007/s40089-019-00291-9]
[62]
Hafeez, M.; Shaheen, R.; Akram, B.; Zain-ul-Abdin; Haq, S.; Mahsud, S.; Ali, S.; Khan, R.T. Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express, 2020, 7(2), 025019.
[http://dx.doi.org/10.1088/2053-1591/ab70dd]
[63]
Rao, M.D.; Pennathur, G. Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater. Res. Bull., 2017, 85, 64-73.
[http://dx.doi.org/10.1016/j.materresbull.2016.08.049]
[64]
Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; Ali, S. Green nanotechnology: A review on green synthesis of silver nanoparticles-an ecofriendly approach. Int. J. Nanomed., 2019, 14, 5087-5107.
[http://dx.doi.org/10.2147/IJN.S200254] [PMID: 31371949]
[65]
Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng., 2002, 78(5), 583-588.
[http://dx.doi.org/10.1002/bit.10233] [PMID: 12115128]
[66]
Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy, 2006, 83(1-4), 132-140.
[http://dx.doi.org/10.1016/j.hydromet.2006.03.019]
[67]
Jha, A.K.; Prasad, K.; Prasad, K. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J., 2009, 43(3), 303-306.
[http://dx.doi.org/10.1016/j.bej.2008.10.016] [PMID: 19844916]
[68]
Rajeshkumar, S.; Menon, S.; Venkat, K S.; Tambuwala, M.M.; Bakshi, H.A.; Mehta, M.; Satija, S.; Gupta, G.; Chellappan, D.K.; Thangavelu, L.; Dua, K. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J. Photochem. Photobiol. B, 2019, 197, 111531.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111531] [PMID: 31212244]
[69]
Selvi, P.; Murugesh, S.; Yuvarajan, R.Y.; Rajasekar, A.R. Screening the therapeutic potential of methanolic stem extract of Cissus arnottiana. Biomed. Pharmacol. J., 2021, 14(3), 1405-1413.
[http://dx.doi.org/10.13005/bpj/2243]
[70]
Kulkarni, V.; Suryawanshi, S.; Kulkarni, P. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus Sp. Plant leaves. Curr. Sci., 2015, 109(2), 255-257.
[71]
Ajilore, B.S.; Oluwadairo, T.O.; Olorunnisola, O.S.; Fadahunsi, O.S.; Adegbola, P.I. GC–MS analysis, toxicological and oral glucose tolerance assessments of methanolic leaf extract of Eucalyptus globulus. Future J. Pharm. Sci., 2021, 7(1), 162.
[http://dx.doi.org/10.1186/s43094-021-00312-5]
[72]
Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.; Boukhchina, S. Chemical composition and antibacterial activities of Seven eucalyptus species essential oils leaves. Biol. Res., 2015, 48(1), 7.
[http://dx.doi.org/10.1186/0717-6287-48-7] [PMID: 25654423]
[73]
Mittal, J.; Sharma, M. M. Enhanced production of berberine in in vitro regenerated cell of Tinospora cordifolia and its analysis through LCMS QToF. 3 Biotech, 2017, 7(1), 25.
[http://dx.doi.org/10.1007/s13205-016-0592-6]
[74]
Sharma, P.; Pant, S.; Dave, V.; Tak, K.; Sadhu, V.; Reddy, K.R. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Methods, 2019, 160, 107-116.
[http://dx.doi.org/10.1016/j.mimet.2019.03.007] [PMID: 30871999]
[75]
Nagar, N.; Devra, V. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys., 2018, 213, 44-51.
[http://dx.doi.org/10.1016/j.matchemphys.2018.04.007]
[76]
Vergallo, C.; Panzarini, E.; Dini, L. High performance liquid chromatographic profiling of antioxidant and antidiabetic flavonoids purified from Azadirachta indica (neem) leaf ethanolic extract. Pure Appl. Chem., 2019, 91(10), 1631-1640.
[http://dx.doi.org/10.1515/pac-2018-1221]
[77]
Hasheminya, S. M.; Dehghannya, J. Green synthesis and characterization of copper nanoparticles using Eryngium caucasicum trautv aqueous extracts and its antioxidant and antimicrobial properties. An Int. J., 2019, 38(8), 1019-1026.
[http://dx.doi.org/10.1080/02726351.2019.1658664]
[78]
Nasrollahzadeh, M.; Momeni, S.S.; Sajadi, S.M. Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J. Colloid Interface Sci., 2017, 506, 471-477.
[http://dx.doi.org/10.1016/j.jcis.2017.07.072] [PMID: 28755642]
[79]
Mukhopadhyay, R.; Kazi, J.; Debnath, M.C. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed. Pharmacother., 2018, 97, 1373-1385.
[http://dx.doi.org/10.1016/j.biopha.2017.10.167] [PMID: 29156527]
[80]
Agarwal, A.; Prajapati, R.; Raza, S.K.; Thakur, L.K. GC-MS analysis and antibacterial activity of aerial parts of Quisqualis indica plant extracts. Indian J. Pharm. Edu. Res., 2017, 51(2), 329-336.
[http://dx.doi.org/10.5530/ijper.51.2.39]
[81]
Mali, S.C.; Dhaka, A.; Githala, C.K.; Trivedi, R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol. Rep., 2020, 27, e00518.
[http://dx.doi.org/10.1016/j.btre.2020.e00518] [PMID: 32923378]
[82]
Humphreys, S Z.; Martínez, Á A.F.; Hernández, O M.M.; Elizalde, P E.A.; Palma, T L.; Baldenegro, P L.A.; Padilla, V F.; Luna-Bárcenas, G.; España Sánchez, B.L. Green synthesis of copper nanoparticles and their formulation into face masks: An antibacterial study. Polym. Compos., 2023, 44(2), 907-916.
[http://dx.doi.org/10.1002/pc.27142]
[83]
Das, P.E.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Narasimhan, S.; Poltronieri, P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules, 2020, 25(3), 555.
[http://dx.doi.org/10.3390/molecules25030555] [PMID: 32012912]
[84]
Amaliyah, S.; Pangesti, D.P.; Masruri, M.; Sabarudin, A.; Sumitro, S.B. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 2020, 6(8), e04636.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04636] [PMID: 32793839]
[85]
Khani, R.; Roostaei, B.; Bagherzade, G.; Moudi, M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq., 2018, 255, 541-549.
[http://dx.doi.org/10.1016/j.molliq.2018.02.010]
[86]
Jahan, I.; Erci, F.; Isildak, I. Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials. J. Drug Deliv. Sci. Technol., 2021, 61, 102172.
[http://dx.doi.org/10.1016/j.jddst.2020.102172]
[87]
Shubhashree, K.R.; Reddy, R.; Gangula, A.K.; Nagananda, G.S.; Badiya, P.K.; Ramamurthy, S.S.; Aramwit, P.; Reddy, N. Green synthesis of copper nanoparticles using aqueous extracts from Hyptis suaveolens (L.). Mater. Chem. Phys., 2022, 280, 125795.
[http://dx.doi.org/10.1016/j.matchemphys.2022.125795]
[88]
Wang, G.; Zhao, K.; Gao, C.; Wang, J.; Mei, Y.; Zheng, X.; Zhu, P. Green synthesis of copper nanoparticles using green coffee bean and their applications for efficient reduction of organic dyes. J. Environ. Chem. Eng., 2021, 9(4), 105331.
[http://dx.doi.org/10.1016/j.jece.2021.105331]
[89]
Khatami, M.; Ebrahimi, K.; Galehdar, N.; Moradi, M.N.; Moayyedkazemi, A. Green synthesis and characterization of copper nanoparticles and their effects on liver function and hematological parameters in mice. Turkish J. Pharm. Sci., 2020, 17(4), 412-416.
[http://dx.doi.org/10.4274/tjps.galenos.2019.28000] [PMID: 32939137]
[90]
Chung, I.M.; Abdul Rahuman, A.; Marimuthu, S.; Vishnu, K A.; Anbarasan, K.; Padmini, P.; Rajakumar, G. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med., 2017, 14(1), 18-24.
[http://dx.doi.org/10.3892/etm.2017.4466] [PMID: 28672888]
[91]
Długosz, O.; Chwastowski, J.; Banach, M. Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem. Pap., 2020, 74(1), 239-252.
[http://dx.doi.org/10.1007/s11696-019-00873-z]
[92]
Davarnejad, R.; Azizi, A.; Asadi, S.; Mohammadi, M. Green synthesis of copper nanoparticles using Centaurea cyanus plant extract: A cationic dye adsorption application. Iran. J. Chem. Chem. Eng., 2022, 41(1), 14.
[http://dx.doi.org/10.30492/ijcce.2020.120707.3944]
[93]
Rajesh, K.M.; Ajitha, B.; Reddy, Y.A.K.; Suneetha, Y.; Reddy, P.S. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik, 2018, 154, 593-600.
[http://dx.doi.org/10.1016/j.ijleo.2017.10.074]
[94]
Mandava, K.; Kadimcharla, K.; Keesara, N.R.; Fatima, S.N.; Bommena, P.; Batchu, U. R. Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Indian J. Pharm. Sci., 2017, 79(5), 695-700.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000281]
[95]
Noor, S.; Shah, Z.; Javed, A.; Ali, A.; Hussain, S.B.; Zafar, S.; Ali, H.; Muhammad, S.A. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. J. Microbiol. Methods, 2020, 174, 105966.
[http://dx.doi.org/10.1016/j.mimet.2020.105966] [PMID: 32474053]
[96]
Tiwari, M.; Jain, P.; Chandrashekhar, HR.; Narayanan, K.; Bhat, K.U.; Udupa, N.; Rao, J.V. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem., 2016, 51(10), 1348-1356.
[http://dx.doi.org/10.1016/j.procbio.2016.08.008]
[97]
Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci., 2014, 4(5), 571-576.
[http://dx.doi.org/10.1007/s13204-013-0233-x]
[98]
Sayara, T.; Sánchez, A. Bioremediation of PAH-Contaminated Soils: Process enhancement through composting/compost; Applied Sciences: Switzerland, 2020.
[http://dx.doi.org/10.3390/app10113684]
[99]
Varshney, R.; Bhadauria, S.; Gaur, M.S.; Pasricha, R. Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed. Eng., 2011, 3(2), 115-119.
[http://dx.doi.org/10.5101/nbe.v3i2.p115-119]
[100]
Saitawadekar, A.; Kakde, U.B. Green synthesis of copper nanoparticles using Aspergillus flavus. J. Crit. Rev., 2020, 7(16), 1083-1090.
[http://dx.doi.org/10.31838/jcr.07.16.138]
[101]
Aboeita, N.M.; Fahmy, S.A.; El-Sayed, M.M.H.; Azzazy, H.M.E.S.; Shoeib, T. Enhanced anticancer activity of nedaplatin loaded onto copper nanoparticles synthesized using red algae. Pharmaceutics, 2022, 14(2), 418.
[http://dx.doi.org/10.3390/pharmaceutics14020418] [PMID: 35214150]
[102]
Salvadori, M.R.; Ando, R.A.; Oller Do Nascimento, C.A.; Corrêa, B. Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2014, 49(11), 1286-1295.
[http://dx.doi.org/10.1080/10934529.2014.910067] [PMID: 24967562]
[103]
Salvadori, M.R.; Ando, R.A.; Oller do Nascimento, C.A.; Corrêa, B. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 2014, 9(1), e87968.
[http://dx.doi.org/10.1371/journal.pone.0087968] [PMID: 24489975]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy