Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Advanced Drug Delivery System for Management of Chronic Diabetes Wound Healing

Author(s): Harish Bhardwaj, Sulekha Khute, Ram Sahu and Rajendra Kumar Jangde*

Volume 24, Issue 16, 2023

Published on: 09 November, 2023

Page: [1239 - 1259] Pages: 21

DOI: 10.2174/0113894501260002231101080505

Price: $65

Abstract

The diabetic wound is excessively vulnerable to infection because the diabetic wound suggests delayed and incomplete healing techniques. Presently, wounds and ulcers related to diabetes have additionally increased the medical burden. A diabetic wound can impair mobility, lead to amputations, or even death. In recent times, advanced drug delivery systems have emerged as promising approaches for enhancing the efficacy of wound healing treatments in diabetic patients. This review aims to provide an overview of the current advancements in drug delivery systems in managing chronic diabetic wound healing. This review begins by discussing the pathophysiological features of diabetic wounds, including impaired angiogenesis, elevated reactive oxygen species, and compromised immune response. These factors contribute to delayed wound healing and increased susceptibility to infection. The importance of early intervention and effective wound management strategies is emphasized. Various types of advanced drug delivery systems are then explored, including nanoparticles, hydrogels, transferosomes, liposomes, niosomes, dendrimers, and nanosuspension with incorporated bioactive agents and biological macromolecules are also utilized for chronic diabetes wound management. These systems offer advantages such as sustained release of therapeutic agents, improved targeting and penetration, and enhanced wound closure. Additionally, the review highlights the potential of novel approaches such as antibiotics, minerals, vitamins, growth factors gene therapy, and stem cell-based therapy in diabetic wound healing. The outcome of advanced drug delivery systems holds immense potential in managing chronic diabetic wound healing. They offer innovative approaches for delivering therapeutic agents, improving wound closure, and addressing the specific pathophysiological characteristics of diabetic wounds.

Graphical Abstract

[1]
Motala AA, Mbanya JC, Ramaiya K, Pirie FJ, Ekoru K. Type 2 diabetes mellitus in sub-Saharan Africa: Challenges and opportunities. Nat Rev Endocrinol 2022; 18(4): 219-29.
[http://dx.doi.org/10.1038/s41574-021-00613-y] [PMID: 34983969]
[2]
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials 2020; 10(6): 1234.
[http://dx.doi.org/10.3390/nano10061234] [PMID: 32630377]
[3]
Maffi P, Secchi A. The burden of diabetes: Emerging data. Dev Ophthalmol 2017; 60: 1-5.
[http://dx.doi.org/10.1159/000459641] [PMID: 28427059]
[4]
Ashammakhi N, Darabi MA, Kehr NS, et al. Advances in controlled oxygen generating biomaterials for tissue engineering and regenerative therapy. Biomacromolecules 2020; 21(1): 56-72.
[http://dx.doi.org/10.1021/acs.biomac.9b00546] [PMID: 31271024]
[5]
Yang J, Zeng W, Xu P, et al. Glucose-responsive multifunctional metal–organic drug-loaded hydrogel for diabetic wound healing. Acta Biomater 2022; 140: 206-18.
[http://dx.doi.org/10.1016/j.actbio.2021.11.043] [PMID: 34879294]
[6]
Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals 2020; 13(4): 60.
[http://dx.doi.org/10.3390/ph13040060] [PMID: 32244718]
[7]
Alavi A, Sibbald RG, Mayer D, et al. Diabetic foot ulcers. J Am Acad Dermatol 2014; 70(1): 1.e1-1.e18.
[http://dx.doi.org/10.1016/j.jaad.2013.06.055] [PMID: 24355275]
[8]
Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018; 7(8): 98.
[http://dx.doi.org/10.3390/antiox7080098] [PMID: 30042332]
[9]
Khan A, Shal B, Khan AU, Baig MW, Haq I, Khan S. Withametelin, a steroidal lactone, isolated from datura innoxa attenuates STZ-induced diabetic neuropathic pain in rats through inhibition of NF-kB/MAPK signaling. Food Chem Toxicol 2023; 175: 113742.
[http://dx.doi.org/10.1016/j.fct.2023.113742] [PMID: 36958385]
[10]
Raffetto JD. Pathophysiology of wound healing and alterations in venous leg ulcers-review. Phlebology 2016; 31(1_suppl) (Suppl.): 56-62.
[http://dx.doi.org/10.1177/0268355516632998] [PMID: 26916770]
[11]
Fadini GP, Sartore S, Schiavon M, et al. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia–reperfusion injury in rats. Diabetologia 2006; 49(12): 3075-84.
[http://dx.doi.org/10.1007/s00125-006-0401-6] [PMID: 17072586]
[12]
Gomes A, Teixeira C, Ferraz R, Prudêncio C, Gomes P. Wound-healing peptides for treatment of chronic diabetic foot ulcers and other infected skin injuries. Molecules 2017; 22(10): 1743.
[http://dx.doi.org/10.3390/molecules22101743] [PMID: 29057807]
[13]
Garcia C, Mora M, Borroni D, Gonzalez JM, Romano V, Lossada C. The role of matrix metalloproteinases in corneal infectious ulcers. Surv Ophthalmol 2023; 68(5): 929-39.
[http://dx.doi.org/10.1016/j.survophthal.2023.06.007]
[14]
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev 2019; 99(1): 665-706.
[http://dx.doi.org/10.1152/physrev.00067.2017] [PMID: 30475656]
[15]
Chen K, Li Y, Zhang X, Ullah R, Tong J, Shen Y. The role of the PI3K/AKT signalling pathway in the corneal epithelium: Recent updates. Cell Death Dis 2022; 13(5): 513.
[http://dx.doi.org/10.1038/s41419-022-04963-x] [PMID: 35641491]
[16]
Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc Res Tech 2003; 60(1): 107-14.
[http://dx.doi.org/10.1002/jemt.10249] [PMID: 12500267]
[17]
Berlanga-Acosta J, Fernández-Montequín J, Valdés-Pérez C, et al. diabetic foot ulcers and epidermal growth factor: Revisiting the local delivery route for a successful outcome. BioMed Res Int 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/2923759] [PMID: 28904951]
[18]
Rodríguez-Rodríguez N, Martínez-Jiménez I, García-Ojalvo A, et al. Wound chronicity, impaired immunity and infection in diabetic patients. MEDICC Rev 2021; 24(1): 44-58.
[http://dx.doi.org/10.37757/MR2021.V23.N3.8] [PMID: 34653116]
[19]
Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and chronic wound healing. Int J Mol Sci 2017; 18(7): 1545.
[http://dx.doi.org/10.3390/ijms18071545] [PMID: 28714933]
[20]
Yu X, Fu X, Yang J, et al. Glucose/ROS cascade-responsive ceria nanozymes for diabetic wound healing. Mater Today Bio 2022; 15: 100308.
[http://dx.doi.org/10.1016/j.mtbio.2022.100308] [PMID: 35711291]
[21]
Liu Y, Liu Y, He W, et al. Fibroblasts: Immunomodulatory factors in refractory diabetic wound healing. Front Immunol 2022; 13: 918223.
[http://dx.doi.org/10.3389/fimmu.2022.918223] [PMID: 35990622]
[22]
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, et al. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9: 1002710.
[http://dx.doi.org/10.3389/fmolb.2022.1002710] [PMID: 36188225]
[23]
Du C, Whiddett RO, Buckle I, Chen C, Forbes JM, Fotheringham AK. Advanced Glycation End Products and Inflammation in Type 1 Diabetes Development. Cells 2022; 11(21): 3503.
[http://dx.doi.org/10.3390/cells11213503] [PMID: 36359899]
[24]
Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184: 114-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.019] [PMID: 35398495]
[25]
Li G, Wang Q, Feng J, et al. Recent insights into the role of defensins in diabetic wound healing. Biomed Pharmacother 2022; 155: 113694.
[http://dx.doi.org/10.1016/j.biopha.2022.113694] [PMID: 36099789]
[26]
Bardini G, Rotella CM, Giannini S. Dyslipidemia and diabetes: Reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro- and macrovascular complications. Rev Diabet Stud 2012; 9(2-3): 82-93.
[http://dx.doi.org/10.1900/RDS.2012.9.82] [PMID: 23403704]
[27]
Wei J, Tian J, Tang C, et al. The influence of different types of diabetes on vascular complications. J Diabetes Res 2022; 2022: 1-12.
[http://dx.doi.org/10.1155/2022/3448618] [PMID: 35242879]
[28]
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med 2014; 6(265): 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[29]
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic cardiomyopathy: Current and future therapies. Beyond Glycemic Control. Front Physiol 2018; 9: 1514.
[http://dx.doi.org/10.3389/fphys.2018.01514] [PMID: 30425649]
[30]
Armstrong DG, Orgill DP, Galiano RD, et al. A multi-centre, single-blinded randomised controlled clinical trial evaluating the effect of resorbable glass fibre matrix in the treatment of diabetic foot ulcers. Int Wound J 2022; 19(4): 791-801.
[http://dx.doi.org/10.1111/iwj.13675] [PMID: 34418302]
[31]
Berezin AE, Berezin AA. Extracellular endothelial cell-derived vesicles: Emerging role in cardiac and vascular remodeling in heart failure. Front Cardiovasc Med 2020; 7: 47.
[http://dx.doi.org/10.3389/fcvm.2020.00047] [PMID: 32351973]
[32]
Bi X, Zhou L, Liu Y, Gu J, Mi QS. MicroRNA-146a deficiency delays wound healing in normal and diabetic mice. Adv Wound Care (New Rochelle) 2022; 11(1): 19-27.
[http://dx.doi.org/10.1089/wound.2020.1165] [PMID: 33554730]
[33]
Geraghty T, LaPorta G. Current health and economic burden of chronic diabetic osteomyelitis. Expert Rev Pharmacoecon Outcomes Res 2019; 19(3): 279-86.
[http://dx.doi.org/10.1080/14737167.2019.1567337] [PMID: 30625012]
[34]
Zawani M, Fauzi MB. Injectable hydrogels for chronic skin wound management: A concise review. Biomedicines 2021; 9(5): 527.
[http://dx.doi.org/10.3390/biomedicines9050527] [PMID: 34068490]
[35]
Chen S, Wang H, Su Y, et al. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater 2020; 108: 153-67.
[http://dx.doi.org/10.1016/j.actbio.2020.03.035] [PMID: 32268240]
[36]
Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E, et al. Platelet Rich Plasma: New insights for cutaneous wound healing management. J Funct Biomater 2018; 9(1): 10.
[http://dx.doi.org/10.3390/jfb9010010] [PMID: 29346333]
[37]
Kanchanasamut W, Pensri P. Effects of weight-bearing exercise on a mini-trampoline on foot mobility, plantar pressure and sensation of diabetic neuropathic feet; a preliminary study. Diabet Foot Ankle 2017; 8(1): 1287239.
[http://dx.doi.org/10.1080/2000625X.2017.1287239] [PMID: 28326159]
[38]
Jin HY, Moon SS, Calcutt NA. Lost in translation measuring diabetic neuropathy in humans and animals. Diabetes Metab J 2021; 45(1): 27-42.
[http://dx.doi.org/10.4093/dmj.2020.0216] [PMID: 33307618]
[39]
Daikuara LY, Yue Z, Skropeta D, Wallace GG. in vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering. Acta Biomater 2021; 123: 286-97.
[http://dx.doi.org/10.1016/j.actbio.2021.01.021] [PMID: 33476829]
[40]
Pastar I, Balukoff NC, Marjanovic J, Chen VY, Stone RC, Tomic-Canic M. Molecular pathophysiology of chronic wounds: Current state and future directions. Cold Spring Harb Perspect Biol 2023; 15(4): a041243.
[http://dx.doi.org/10.1101/cshperspect.a041243] [PMID: 36123031]
[41]
Chin CY, Ng PY, Ng SF. Moringa oleifera standardised aqueous leaf extract-loaded hydrocolloid film dressing: in vivo dermal safety and wound healing evaluation in STZ/HFD diabetic rat model. Drug Deliv Transl Res 2019; 9(2): 453-68.
[http://dx.doi.org/10.1007/s13346-018-0510-z] [PMID: 29560587]
[42]
Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(5): e1560.
[http://dx.doi.org/10.1002/wnan.1560] [PMID: 31058443]
[43]
Xu Z, Liu G, Huang J, Wu J. Novel glucose-responsive antioxidant hybrid hydrogel for enhanced diabetic wound repair. ACS Appl Mater Interfaces 2022; 14(6): 7680-9.
[http://dx.doi.org/10.1021/acsami.1c23461] [PMID: 35129966]
[44]
Chu J, Shi P, Yan W, et al. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale 2018; 10(20): 9547-60.
[http://dx.doi.org/10.1039/C8NR02538J] [PMID: 29745944]
[45]
Čoma M, Fröhlichová L, Urban L, et al. Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (inflammation, proliferation and maturation). Int J Mol Sci 2021; 22(2): 897.
[http://dx.doi.org/10.3390/ijms22020897] [PMID: 33477421]
[46]
Shah SA, Sohail M, Khan S, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139: 975-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.007] [PMID: 31386871]
[47]
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized tissues for wound healing: Towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front Bioeng Biotechnol 2022; 10: 821852.
[http://dx.doi.org/10.3389/fbioe.2022.821852] [PMID: 35252131]
[48]
El-Ridy MS, Yehia SA, Elsayed I, Younis MM, Abdel-Rahman RF, El-Gamil MA. Metformin hydrochloride and wound healing: from nanoformulation to pharmacological evaluation. J Liposome Res 2019; 29(4): 343-56.
[http://dx.doi.org/10.1080/08982104.2018.1556291] [PMID: 30526146]
[49]
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its impact on the immune system. Curr Diabetes Rev 2020; 16(5): 442-9.
[http://dx.doi.org/10.2174/18756417MTAxgODQqy] [PMID: 31657690]
[50]
Vijayakumar V, Samal SK, Mohanty S, Nayak SK. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol 2019; 122: 137-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.120] [PMID: 30342131]
[51]
Xiao S, Xiao C, Miao Y, et al. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing. Stem Cell Res Ther 2021; 12(1): 255.
[http://dx.doi.org/10.1186/s13287-021-02333-6] [PMID: 33926555]
[52]
Devalliere J, Dooley K, Hu Y, Kelangi SS, Uygun BE, Yarmush ML. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials 2017; 141: 149-60.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.043] [PMID: 28688286]
[53]
dos Santos J, de Oliveira RS, de Oliveira TV, et al. 3D printing and nanotechnology: A multiscale alliance in personalized medicine. Adv Funct Mater 2021; 31(16): 2009691.
[http://dx.doi.org/10.1002/adfm.202009691]
[54]
Gitarja WS, Jamaluddin A, Wibisono AH, Megawati VN, Fajar K. Wound care management in Indonesia: issues and challenges in diabetic foot ulceration. Wounds Asia 2018; 1(2): 13-7.
[55]
Holl J, Kowalewski C, Zimek Z, et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells 2021; 10(3): 655.
[http://dx.doi.org/10.3390/cells10030655] [PMID: 33804192]
[56]
Andrews KL, Houdek MT, Kiemele LJ. Wound management of chronic diabetic foot ulcers. Prosthet Orthot Int 2015; 39(1): 29-39.
[http://dx.doi.org/10.1177/0309364614534296] [PMID: 25614499]
[57]
Freedman BR, Mooney DJ. Biomaterials to mimic and heal connective tissues. Adv Mater 2019; 31(19): 1806695.
[http://dx.doi.org/10.1002/adma.201806695] [PMID: 30908806]
[58]
Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater 2020; 5(9): 686-705.
[http://dx.doi.org/10.1038/s41578-020-0209-x]
[59]
Gefen A, Brienza DM, Cuddigan J, Haesler E, Kottner J. Our contemporary understanding of the aetiology of pressure ulcers/pressure injuries. Int Wound J 2022; 19(3): 692-704.
[http://dx.doi.org/10.1111/iwj.13667] [PMID: 34382331]
[60]
Prakashan D, Roberts A, Gandhi S. Recent advancement of nanotherapeutics in accelerating chronic wound healing process for surgical wounds and diabetic ulcers. Biotechnol Genet Eng Rev 2023; 14: 1-29.
[http://dx.doi.org/10.1080/02648725.2023.2167432] [PMID: 36641600]
[61]
Bai Q, Han K, Dong K, et al. Potential applications of nanomaterials and technology for diabetic wound healing. Int J Nanomedicine 2020; 15: 9717-43.
[http://dx.doi.org/10.2147/IJN.S276001] [PMID: 33299313]
[62]
Farmoudeh A, Akbari J, Saeedi M, Ghasemi M, Asemi N, Nokhodchi A. Methylene blue-loaded niosome: Preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv Transl Res 2020; 10(5): 1428-41.
[http://dx.doi.org/10.1007/s13346-020-00715-6] [PMID: 32100265]
[63]
Zare H, Rezayi M, Aryan E, et al. Nanotechnology-driven advances in the treatment of diabetic wounds. Biotechnol Appl Biochem 2020; 68(6): bab.2051.
[http://dx.doi.org/10.1002/bab.2051] [PMID: 33044005]
[64]
Lou D, Luo Y, Pang Q, Tan WQ, Ma L. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater 2020; 5(3): 667-79.
[http://dx.doi.org/10.1016/j.bioactmat.2020.04.018] [PMID: 32420517]
[65]
Liou YC, Lin YA, Wang K, et al. Synthesis of novel Spiro-tetrahydroquinoline derivatives and evaluation of their pharmacological effects on wound healing. Int J Mol Sci 2021; 22(12): 6251.
[http://dx.doi.org/10.3390/ijms22126251] [PMID: 34200731]
[66]
Fan L, Xiao C, Guan P, et al. Extracellular matrix-based conductive interpenetrating network hydrogels with enhanced neurovascular regeneration properties for diabetic wounds repair. Adv Healthc Mater 2022; 11(1): 2101556.
[http://dx.doi.org/10.1002/adhm.202101556] [PMID: 34648694]
[67]
Tavakoli M, Labbaf S, Mirhaj M, Salehi S, Seifalian AM, Firuzeh M. Natural polymers in wound healing: From academic studies to commercial products. J Appl Polym Sci 2023; 140(22): e53910.
[http://dx.doi.org/10.1002/app.53910]
[68]
Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic acid: Redefining its role. Cells 2020; 9(7): 1743.
[http://dx.doi.org/10.3390/cells9071743] [PMID: 32708202]
[69]
Li D, Li J, Dong H, et al. Pectin in biomedical and drug delivery applications: A review. Int J Biol Macromol 2021; 185: 49-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.088] [PMID: 34146559]
[70]
Hui Q, Zhang L, Yang X, et al. Higher biostability of rh-aFGF-Carbomer 940 Hydrogel and its effect on wound healing in a diabetic rat model. ACS Biomater Sci Eng 2018; 4(5): acsbiomaterials.8b00011.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00011] [PMID: 33445322]
[71]
Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran S. hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci 2021; 22(2): 684.
[http://dx.doi.org/10.3390/ijms22020684] [PMID: 33445616]
[72]
Voss GT, Gularte MS, Vogt AG, et al. Polysaccharide-based film loaded with vitamin C and propolis: A promising device to accelerate diabetic wound healing. Int J Pharm 2018; 552(1-2): 340-51.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.009] [PMID: 30300708]
[73]
Tan WS, Arulselvan P, Ng SF, Mat Taib CN, Sarian MN, Fakurazi S. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complement Altern Med 2019; 19(1): 20.
[http://dx.doi.org/10.1186/s12906-018-2427-y] [PMID: 30654793]
[74]
Witika BA, Makoni PA, Matafwali SK, et al. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials 2020; 10(9): 1649.
[http://dx.doi.org/10.3390/nano10091649] [PMID: 32842562]
[75]
Ioan DC, Rău I, Albu Kaya MG, et al. Ciprofloxacin-collagen-based materials with potential oral surgical applications. Polymers 2020; 12(9): 1915.
[http://dx.doi.org/10.3390/polym12091915] [PMID: 32854342]
[76]
Chan YH, Ramji DP. Key roles of inflammation in atherosclerosis: mediators involved in orchestrating the inflammatory response and its resolution in the disease along with therapeutic avenues targeting inflammation. Methods Mol Biol 2022; 2419: 21-37.
[http://dx.doi.org/10.1007/978-1-0716-1924-7_2] [PMID: 35237956]
[77]
Hsu YY, Liu KL, Yeh HH, Lin HR, Wu HL, Tsai JC. Sustained release of recombinant thrombomodulin from cross-linked gelatin/hyaluronic acid hydrogels potentiate wound healing in diabetic mice. Eur J Pharm Biopharm 2019; 135: 61-71.
[http://dx.doi.org/10.1016/j.ejpb.2018.12.007] [PMID: 30552972]
[78]
Chaitanya Reddy C, Khilji IA, Gupta A, et al. Valorization of keratin waste biomass and its potential applications. J Water Process Eng 2021; 40: 101707.
[http://dx.doi.org/10.1016/j.jwpe.2020.101707]
[79]
Baptista-Silva S, Borges S, Costa-Pinto AR, et al. In situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomater Sci Eng 2021; 7(4): 1573-86.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01745] [PMID: 33729761]
[80]
Shah SA, Sohail M, Khan SA, Kousar M. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Mater Sci Eng C 2021; 126: 112169.
[http://dx.doi.org/10.1016/j.msec.2021.112169] [PMID: 34082970]
[81]
Angelina AC, Yudiati E, Pringgenies D. Potential of sodium alginate in sargassum sp. in lotion preparation to treat incision wound in mice. bioscientific. Biosaintifika 2021; 13(1): 99-105.
[http://dx.doi.org/10.15294/biosaintifika.v13i1.22539]
[82]
Hauck S, Zager P, Halfter N, et al. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact Mater 2021; 6(12): 4342-59.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.026] [PMID: 33997511]
[83]
Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: From biosynthesis to advanced biomaterial development. Adv Mater 2019; 31(1): 1801651.
[http://dx.doi.org/10.1002/adma.201801651] [PMID: 30126066]
[84]
Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int J Biol Macromol 2020; 164: 963-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.160] [PMID: 32707282]
[85]
Lomova MV, Brichkina AI, Kiryukhin MV, et al. Multilayer capsules of bovine serum albumin and tannic acid for controlled release by enzymatic degradation. ACS Appl Mater Interfaces 2015; 7(22): 11732-40.
[http://dx.doi.org/10.1021/acsami.5b03263] [PMID: 25985934]
[86]
Kouketsu A, Shimizu Y, Nogami S, et al. Wound healing effect of autologous fibrin glue and polyglycolic acid sheets in a rat back skin defect model. Transfus Apheresis Sci 2021; 60(4): 103144.
[http://dx.doi.org/10.1016/j.transci.2021.103144] [PMID: 33893027]
[87]
You C, Li Q, Wang X, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep 2017; 7(1): 10489.
[http://dx.doi.org/10.1038/s41598-017-10481-0] [PMID: 28874692]
[88]
Torkaman S, Rahmani H, Ashori A, Najafi SHM. Modification of chitosan using amino acids for wound healing purposes: A review. Carbohydr Polym 2021; 258: 117675.
[http://dx.doi.org/10.1016/j.carbpol.2021.117675] [PMID: 33593551]
[89]
Juncan AM, Moisă DG, Santini A, et al. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules 2021; 26(15): 4429.
[http://dx.doi.org/10.3390/molecules26154429] [PMID: 34361586]
[90]
Fotso Kamdem A, Parmentier AL, Mauny F, Soriano E. Assessment of care protocol using hyaluronic acid dressing in second-degree skin burns in children. Burns Open 2021; 5(3): 118-24.
[http://dx.doi.org/10.1016/j.burnso.2021.05.001]
[91]
Moslemi M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr Polym 2021; 254: 117324.
[http://dx.doi.org/10.1016/j.carbpol.2020.117324] [PMID: 33357885]
[92]
Morello G, Quarta A, Gaballo A, et al. A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. Carbohydr Polym 2021; 274: 118633.
[http://dx.doi.org/10.1016/j.carbpol.2021.118633] [PMID: 34702456]
[93]
Piao Y, You H, Xu T, et al. Biomedical applications of gelatin methacryloyl hydrogels. Eng Regen 2021; 2: 47-56.
[94]
Sanchez Ramirez DO, Cruz-Maya I, Vineis C, Tonetti C, Varesano A, Guarino V. Design of asymmetric nanofibers-membranes based on polyvinyl alcohol and wool-keratin for wound healing applications. J Funct Biomater 2021; 12(4): 76.
[http://dx.doi.org/10.3390/jfb12040076] [PMID: 34940555]
[95]
Jo YY, Kweon H, Kim DW, et al. Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway. Int J Biol Macromol 2021; 190: 607-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.021] [PMID: 34508721]
[96]
Liao HT, Lai YT, Kuo CY, Chen JP. A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing. Mater Sci Eng C 2021; 120: 111689.
[http://dx.doi.org/10.1016/j.msec.2020.111689] [PMID: 33545851]
[97]
Rangholia N, Leisner TM, Holly SP. Bioactive ether lipids: Primordial modulators of cellular signaling. Metabolites 2021; 11(1): 41.
[http://dx.doi.org/10.3390/metabo11010041] [PMID: 33430006]
[98]
Li J, Huang Y, Song J, et al. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater 2018; 79: 202-15.
[http://dx.doi.org/10.1016/j.actbio.2018.08.029] [PMID: 30165202]
[99]
Zhu J, Jiang G, Hong W, et al. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. Mater Sci Eng C 2020; 117: 111273.
[http://dx.doi.org/10.1016/j.msec.2020.111273] [PMID: 32919637]
[100]
Lin S, Zhang Q, Li S, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway. ACS Appl Mater Interfaces 2020; 12(10): 11397-408.
[http://dx.doi.org/10.1021/acsami.0c00874] [PMID: 32083455]
[101]
Lee CH, Liu KS, Cheng CW, et al. Codelivery of sustainable antimicrobial agents and platelet-derived growth factor via biodegradable nanofibers for repair of diabetic infectious wounds. ACS Infect Dis 2020; 6(10): 2688-97.
[http://dx.doi.org/10.1021/acsinfecdis.0c00321] [PMID: 32902952]
[102]
Wu H, Li F, Shao W, Gao J, Ling D. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent Sci 2019; 5(3): 477-85.
[http://dx.doi.org/10.1021/acscentsci.8b00850] [PMID: 30937375]
[103]
Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol 2018; 28(8): R435-44.
[http://dx.doi.org/10.1016/j.cub.2018.01.059] [PMID: 29689228]
[104]
Li W, Ding Z, Wang D, et al. Ten-gene signature reveals the significance of clinical prognosis and immuno-correlation of osteosarcoma and study on novel skeleton inhibitors regarding MMP9. Cancer Cell Int 2021; 21(1): 377.
[http://dx.doi.org/10.1186/s12935-021-02041-4] [PMID: 34261456]
[105]
Yang H, Lai C, Xuan C, et al. Integrin-binding pro-survival peptide engineered silk fibroin nanosheets for diabetic wound healing and skin regeneration. Chem Eng J 2020; 398: 125617.
[http://dx.doi.org/10.1016/j.cej.2020.125617]
[106]
Mulinti P, Kalita D, Hasan R, Quadir M, Wang Y, Brooks A. Development and processing of novel heparin binding functionalized modified spider silk coating for catheter providing dual antimicrobial and anticoagulant properties. Materialia (Oxf) 2020; 14: 100937.
[http://dx.doi.org/10.1016/j.mtla.2020.100937] [PMID: 34805805]
[107]
Noda T, Hatakeyama M, Kitaoka T. Combination of polysaccharide nanofibers derived from cellulose and chitin promotes the adhesion, migration and proliferation of mouse fibroblast cells. Nanomaterials 2022; 12(3): 402.
[http://dx.doi.org/10.3390/nano12030402] [PMID: 35159746]
[108]
Alven S, Khwaza V, Oyedeji OO, Aderibigbe BA. Polymer-based scaffolds loaded with aloe vera extract for the treatment of wounds. Pharmaceutics 2021; 13(7): 961.
[http://dx.doi.org/10.3390/pharmaceutics13070961] [PMID: 34206744]
[109]
Wang J, Chen XY, Zhao Y, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 2019; 13(10): 11686-97.
[http://dx.doi.org/10.1021/acsnano.9b05608] [PMID: 31490650]
[110]
Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C 2020; 117: 111299.
[http://dx.doi.org/10.1016/j.msec.2020.111299] [PMID: 32919660]
[111]
Shang L, Liu Z, Ma B, et al. Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioact Mater 2021; 6(4): 1175-88.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.010] [PMID: 33163699]
[112]
Shakeel F, Alam P, Anwer MK, Alanazi SA, Alsarra IA, Alqarni MH. Wound healing evaluation of self-nanoemulsifying drug delivery system containing Piper cubeba essential oil. 3 Biotech 2019; 9(3): 82.
[http://dx.doi.org/10.1007/s13205-019-1630-y] [PMID: 30800593]
[113]
Liu J, Chen Z, Wang J, et al. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl Mater Interfaces 2018; 10(19): 16315-26.
[http://dx.doi.org/10.1021/acsami.8b03868] [PMID: 29687718]
[114]
Kazemi M, Mombeiny R, Tavakol S, Keyhanvar P, Mousavizadeh K. A combination therapy of nanoethosomal piroxicam formulation along with iontophoresis as an anti-inflammatory transdermal delivery system for wound healing. Int Wound J 2019; 16(5): 1144-52.
[http://dx.doi.org/10.1111/iwj.13171] [PMID: 31394589]
[115]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[116]
Lan B, Zhang L, Yang L, et al. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnology 2021; 19(1): 130.
[http://dx.doi.org/10.1186/s12951-021-00869-6] [PMID: 33952251]
[117]
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[118]
Eltaweil AS, Fawzy M, Hosny M, Abd El-Monaem EM, Tamer TM, Omer AM. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab J Chem 2022; 15(1): 103517.
[http://dx.doi.org/10.1016/j.arabjc.2021.103517]
[119]
Lingayat J, Zarekar S, Shendge S. Solid lipid nanoparticles: A review. Nano and Nanotech Res 2017; 2: 67-72.
[120]
Ghodrati M, Farahpour MR, Hamishehkar H. Encapsulation of Peppermint essential oil in nanostructured lipid carriers: in-vitro antibacterial activity and accelerative effect on infected wound healing. Colloids Surf A Physicochem Eng Asp 2019; 564: 161-9.
[http://dx.doi.org/10.1016/j.colsurfa.2018.12.043]
[121]
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive review on the applications of exosomes and liposomes in regenerative medicine and tissue engineering. Polymers 2021; 13(15): 2529.
[http://dx.doi.org/10.3390/polym13152529] [PMID: 34372132]
[122]
Pan W, Qi X, Xiang Y, et al. Facile formation of injectable quaternized chitosan/tannic acid hydrogels with antibacterial and ROS scavenging capabilities for diabetic wound healing. Int J Biol Macromol 2022; 195: 190-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.007] [PMID: 34896467]
[123]
Pishavar E, Luo H, Naserifar M, et al. Advanced hydrogels as exosome delivery systems for osteogenic differentiation of MSCs: Application in bone regeneration. Int J Mol Sci 2021; 22(12): 6203.
[http://dx.doi.org/10.3390/ijms22126203] [PMID: 34201385]
[124]
Shamiya Y, Ravi SP, Coyle A, Chakrabarti S, Paul A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov Today 2022; 27(4): 1156-66.
[http://dx.doi.org/10.1016/j.drudis.2021.11.024] [PMID: 34839040]
[125]
Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018; 16(1): 81.
[http://dx.doi.org/10.1186/s12951-018-0403-9]
[126]
Pan NC, Baldo C, Pereira HC, Vignoli JA, Celligoi MA. Perspectives of microbial hyaluronic acid utilization in wound healing. In Microbial Biotech in Food and Health 2021; 227-50.
[http://dx.doi.org/10.1016/B978-0-12-819813-1.00009-8]
[127]
Poteet SJ, Schulz SA, Povoski SP, Chao AH. Negative pressure wound therapy: Device design, indications, and the evidence supporting its use. Expert Rev Med Devices 2021; 18(2): 151-60.
[http://dx.doi.org/10.1080/17434440.2021.1882301] [PMID: 33496626]
[128]
Salvador M, Gutiérrez G, Noriega S, Moyano A, Blanco-López MC, Matos M. Microemulsion synthesis of superparamagnetic nanoparticles for bioapplications. Int J Mol Sci 2021; 22(1): 427.
[http://dx.doi.org/10.3390/ijms22010427] [PMID: 33406682]
[129]
Gourishetti K, Keni R, Nayak PG, et al. Sesamol-Loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats. Int J Nanomedicine 2020; 15: 9265-82.
[http://dx.doi.org/10.2147/IJN.S268941] [PMID: 33262587]
[130]
Chauhan A. Dendrimers for drug delivery. Molecules 2018; 23(4): 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[131]
Kanungo M, Wang Y, Hutchinson N, et al. Development of gelatin-coated microspheres for novel bioink design. Polymers 2021; 13(19): 3339.
[http://dx.doi.org/10.3390/polym13193339] [PMID: 34641153]
[132]
Razzaq A, Khan ZU, Saeed A, et al. Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: in-vitro and in-vivo assessments. Pharmaceutics 2021; 13(3): 349.
[http://dx.doi.org/10.3390/pharmaceutics13030349] [PMID: 33799983]
[133]
Ren X, Han Y, Wang J, et al. An aligned porous electrospun fibrous membrane with controlled drug delivery – An efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater 2018; 70: 140-53.
[http://dx.doi.org/10.1016/j.actbio.2018.02.010] [PMID: 29454159]
[134]
Tao SC, Guo SC, Li M, Ke QF, Guo YP, Zhang CQ. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med 2017; 6(3): 736-47.
[http://dx.doi.org/10.5966/sctm.2016-0275] [PMID: 28297576]
[135]
Fatima F, Aleemuddin M, Ahmed MM, et al. Design and evaluation of solid lipid nanoparticles loaded topical gels: repurpose of fluoxetine in diabetic wound healing. Gels 2022; 9(1): 21.
[http://dx.doi.org/10.3390/gels9010021] [PMID: 36661789]
[136]
Arantes VT, Faraco AAG, Ferreira FB, et al. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids Surf B Biointerfaces 2020; 188: 110749.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110749] [PMID: 31927466]
[137]
El-Salamouni NS, Gowayed MA, Seiffein NL, Abdel- Moneim RA, Kamel MA, Labib GS. Valsartan solid lipid nanoparticles integrated hydrogel: A challenging repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo experimental study. Int J Pharm 2021; 592: 120091.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120091] [PMID: 33197564]
[138]
Sandhu SK, Kumar S, Raut J, et al. Systematic development and characterization of novel, high drug-loaded, photostable, curcumin solid lipid nanoparticle hydrogel for wound healing. Antioxidants 2021; 10(5): 725.
[http://dx.doi.org/10.3390/antiox10050725] [PMID: 34063003]
[139]
Jangde R, Elhassan GO, Khute S, et al. Hesperidin-loaded lipid polymer hybrid nanoparticles for topical delivery of bioactive drugs. Pharmaceuticals 2022; 15(2): 211.
[http://dx.doi.org/10.3390/ph15020211] [PMID: 35215324]
[140]
Lee HJ, Jeong M, Na YG, Kim SJ, Lee HK, Cho CW. An EGF- and curcumin-co-encapsulated nanostructured lipid carrier accelerates chronic-wound healing in diabetic rats. Molecules 2020; 25(20): 4610.
[http://dx.doi.org/10.3390/molecules25204610] [PMID: 33050393]
[141]
Hsueh YS, Shyong YJ, Yu HC, et al. nanostructured lipid carrier gel formulation of recombinant human thrombomodulin improve diabetic wound healing by topical administration. Pharmaceutics 2021; 13(9): 1386.
[http://dx.doi.org/10.3390/pharmaceutics13091386] [PMID: 34575462]
[142]
Albaayit SFA, Abdullah R, Noor MHM. Zerumbone-loaded nanostructured lipid carrier gel enhances wound healing in diabetic rats. BioMed Res Int 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/1129297] [PMID: 36124067]
[143]
Örgül D, Eroğlu H, Tiryaki M, Pınarlı FA, Hekimoglu S. in-vivo evaluation of tissue scaffolds containing simvastatin loaded nanostructured lipid carriers and mesenchymal stem cells in diabetic wound healing. J Drug Deliv Sci Technol 2021; 61: 102140.
[http://dx.doi.org/10.1016/j.jddst.2020.102140]
[144]
Yue Y, Liu X, Pang L, et al. Astragalus Polysaccharides/PVA nanofiber membranes containing astragaloside iv-loaded liposomes and their potential use for wound healing. Evid Based Complement Alternat Med 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/9716271] [PMID: 35600951]
[145]
Eid HM, Ali AA, Ali AMA, et al. Potential use of tailored citicoline chitosan-coated liposomes for effective wound healing in diabetic rat model. Int J Nanomedicine 2022; 17: 555-75.
[http://dx.doi.org/10.2147/IJN.S342504] [PMID: 35153481]
[146]
Wei SC, Nain A, Lin YF, et al. Light triggered programmable states of carbon dot liposomes accelerate chronic wound healing via photocatalytic cascade reaction. Carbon 2023; 201: 952-61.
[http://dx.doi.org/10.1016/j.carbon.2022.10.008]
[147]
Hu K, Xiang L, Chen J, Qu H, Wan Y, Xiang D. PLGA-liposome electrospun fiber delivery of miR-145 and PDGF-BB synergistically promoted wound healing. Chem Eng J 2021; 422: 129951.
[http://dx.doi.org/10.1016/j.cej.2021.129951]
[148]
Jangde R, Singh D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif Cells Nanomed Biotechnol 2016; 44(2): 635-41.
[http://dx.doi.org/10.3109/21691401.2014.975238] [PMID: 25375215]
[149]
Mansouri M, Barzi SM, Zafari M, et al. Electrosprayed cefazolin-loaded niosomes onto electrospun chitosan nanofibrous membrane for wound healing applications. J Biomed Mater Res B Appl Biomater 2022; 110(8): 1814-26.
[http://dx.doi.org/10.1002/jbm.b.35039] [PMID: 35195946]
[150]
Jamaludin R, Mohd Daud N, Raja Sulong RS, et al. Andrographis paniculata-loaded niosome for wound healing application: Characterisation and in vivo analyses. J Drug Deliv Sci Technol 2021; 63: 102427.
[http://dx.doi.org/10.1016/j.jddst.2021.102427]
[151]
Damrongrungruang T, Paphangkorakit J, Limsitthichaikoon S, et al. Anthocyanin complex niosome gel accelerates oral wound healing: in vitro and clinical studies. Nanomedicine 2021; 37: 102423.
[http://dx.doi.org/10.1016/j.nano.2021.102423] [PMID: 34214683]
[152]
Nour S, Imani R, Mehrabani M, et al. Biomimetic hybrid scaffold containing niosomal deferoxamine promotes angiogenesis in full-thickness wounds. Mater Today Chem 2023; 27: 101314.
[http://dx.doi.org/10.1016/j.mtchem.2022.101314]
[153]
Liu J, Qu M, Wang C, et al. A dual-cross-linked hydrogel patch for promoting diabetic wound healing. Small 2022; 18(17): 2106172.
[http://dx.doi.org/10.1002/smll.202106172]
[154]
Shao Z, Yin T, Jiang J, He Y, Xiang T, Zhou S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact Mater 2023; 20: 561-73.
[http://dx.doi.org/10.1016/j.bioactmat.2022.06.018] [PMID: 35846841]
[155]
Hu B, Gao M, Boakye-Yiadom KO, et al. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing. Bioact Mater 2021; 6(12): 4592-606.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.040] [PMID: 34095619]
[156]
Shin DY, Park JU, Choi MH, Kim S, Kim HE, Jeong SH. Polydeoxyribonucleotide-delivering therapeutic hydrogel for diabetic wound healing. Sci Rep 2020; 10(1): 16811.
[http://dx.doi.org/10.1038/s41598-020-74004-0] [PMID: 33033366]
[157]
Shi R, Li H, Jin X, et al. Promoting Re-epithelialization in an oxidative diabetic wound microenvironment using self-assembly of a ROS-responsive polymer and P311 peptide micelles. Acta Biomater 2022; 152: 425-39.
[http://dx.doi.org/10.1016/j.actbio.2022.09.017] [PMID: 36113723]
[158]
Hou Y, Xin M, Li Q, Wu X. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res 2021; 204: 108454.
[http://dx.doi.org/10.1016/j.exer.2021.108454] [PMID: 33497689]
[159]
Zhao Q, Liu J, Liu S, et al. Multipronged micelles-hydrogel for targeted and prolonged drug delivery in chronic wound infections. ACS Appl Mater Interfaces 2022; 14(41): 46224-38.
[http://dx.doi.org/10.1021/acsami.2c12530] [PMID: 36201628]
[160]
El-Gizawy SA, Nouh A, Saber S, Kira AY. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Deliv Sci Technol 2020; 58: 101732.
[http://dx.doi.org/10.1016/j.jddst.2020.101732]
[161]
Umam N, Ahmad M, Kushwaha P. Design and fabrication of Sesamol-loaded transfersomal gel for wound healing: Physicochemical characterization and in-vivo evaluation. Drug Dev Ind Pharm 2023; 49(2): 159-67.
[http://dx.doi.org/10.1080/03639045.2023.2191726] [PMID: 36931230]
[162]
Muktar MZ, Bakar MAA, Amin KAM, et al. In Het Panhuis M. Gellan gum hydrogels filled edible oil microemulsion for biomedical materials: Phase diagram, mechanical behavior, and in vivo studies. Polymers 2021; 13(19): 3281.
[http://dx.doi.org/10.3390/polym13193281] [PMID: 34641095]
[163]
Liu X, Fan H, Meng Z, et al. Combined silver sulfadiazine nanosuspension with thermosensitive hydrogel: An effective antibacterial treatment for wound healing in an animal model. Int J Nanomedicine 2023; 18: 679-91.
[http://dx.doi.org/10.2147/IJN.S395004] [PMID: 36816331]
[164]
Jiang Y, Zhao W, Xu S, et al. Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials 2022; 280: 121323.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121323] [PMID: 34942563]
[165]
Zhang D, Huang Q. Encapsulation of astragaloside with matrix metalloproteinase-2-responsive hyaluronic acid end-conjugated polyamidoamine dendrimers improves wound healing in diabetes. J Biomed Nanotechnol 2020; 16(8): 1229-40.
[http://dx.doi.org/10.1166/jbn.2020.2971] [PMID: 33397553]
[166]
Kulchar RJ, Denzer BR, Chavre BM, Takegami M, Patterson J. A review of the use of microparticles for cartilage tissue engineering. Int J Mol Sci 2021; 22(19): 10292.
[http://dx.doi.org/10.3390/ijms221910292] [PMID: 34638629]
[167]
Turner CT, McInnes SJP, Melville E, Cowin AJ, Voelcker NH. Delivery of flightless i neutralizing antibody from porous silicon nanoparticles improves wound healing in diabetic mice. Adv Healthc Mater 2017; 6(2): 1600707.
[http://dx.doi.org/10.1002/adhm.201600707] [PMID: 27869355]
[168]
Ambika AP, Nair SN. Wound healing activity of plants from the convolvulaceae family. Adv Wound Care 2019; 8(1): 28-37.
[http://dx.doi.org/10.1089/wound.2017.0781] [PMID: 30705787]
[169]
Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021; 15(8): 12687-722.
[http://dx.doi.org/10.1021/acsnano.1c04206] [PMID: 34374515]
[170]
Ghosh S, Nandi S, Basu T. Nano-Antibacterials Using Medicinal Plant Components: An Overview. Front Microbiol 2022; 12: 768739.
[http://dx.doi.org/10.3389/fmicb.2021.768739] [PMID: 35273578]
[171]
Zhao Y, Cai Q, Qi W, et al. BSA-CuS nanoparticles for photothermal therapy of diabetic wound infection in vivo. ChemistrySelect 2018; 3(32): 9510-6.
[http://dx.doi.org/10.1002/slct.201802069]
[172]
Alizadeh-Sani M, Hamishehkar H, Khezerlou A, et al. Kinetics analysis and susceptibility coefficient of the pathogenic bacteria by titanium dioxide and zinc oxide nanoparticles. Adv Pharm Bull 2019; 10(1): 56-64.
[http://dx.doi.org/10.15171/apb.2020.007] [PMID: 32002362]
[173]
Mohapatra S, Kar RK, Biswal PK, Bindhani S. Approaches of 3D printing in current drug delivery. Sensors International 2022; 3: 100146.
[http://dx.doi.org/10.1016/j.sintl.2021.100146]
[174]
Iqubal MK, Saleem S, Iqubal A, et al. Natural, synthetic and their combinatorial nanocarriers based drug delivery system in the treatment paradigm for wound healing via dermal targeting. Curr Pharm Des 2020; 26(36): 4551-68.
[http://dx.doi.org/10.2174/1381612826666200612164511] [PMID: 32532188]
[175]
Jangde RK, Rabsanjani , Khute S. Design and development of ciprofloxacin lipid polymer hybrid nanoparticle by response surface methodology. Research Journal of Pharmacy and Technology 2020; 13(7): 3249-56.
[http://dx.doi.org/10.5958/0974-360X.2020.00576.4]
[176]
Ali MM. Four-layer crepe bandage in treatment of venous ulcer with last layer is adhesive elastic bandage. Clin Surg 2020; 3(2): 1-5.
[177]
Huang X, Liang P, Jiang B, et al. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci 2020; 259: 118246.
[http://dx.doi.org/10.1016/j.lfs.2020.118246] [PMID: 32791151]
[178]
Tejada S, Batle JM, Ferrer MD, et al. Therapeutic effects of hyperbaric oxygen in the process of wound heal. Curr Pharm Des 2019; 25(15): 1682-93.
[http://dx.doi.org/10.2174/1381612825666190703162648]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy