Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Amelioration of 5-Fluorouracil Induced Nephrotoxicity by Acacia catechu through Overcoming Oxidative Damage and Inflammation in Wistar Rats

Author(s): Gayatri Jaising Gadekar, Pranali Anandrao Bhandare and Deepti Dinesh Bandawane*

Volume 23, Issue 3, 2023

Published on: 08 November, 2023

Page: [189 - 201] Pages: 13

DOI: 10.2174/011871529X274030231102065433

Price: $65

Abstract

Aim: The research intended to explore the possible nephroprotective potential of the ethyl acetate fraction derived from Acacia catechu leaves against nephrotoxicity brought about by 5-fluorouracil (5-FU) in Wistar rats.

Background: While possessing strong anticancer properties, 5-FU is hindered in its therapeutic application due to significant organ toxicity linked to elevated oxidative stress and inflammation.

Objective: The study is undertaken to conduct an analysis of the ethyl acetate fraction of A. catechu leaves both in terms of quality and quantity, examining its impact on different biochemical and histopathological parameters within the context of 5-FU-induced renal damage in rats and elucidation of the mechanism behind the observed outcomes.

Methodology: Intraperitoneal injection of 5-FU at a dosage of 20 mg/kg/day over 5 days was given to induce nephrotoxicity in rats. The evaluation of nephrotoxicity involved quantifying serum creatinine, urea, uric acid, and electrolyte concentrations. Furthermore, superoxide dismutase, catalase antioxidant enzymes, and TNF-α concentration in serum were also measured.

Results: 5-FU injection led to the initiation of oxidative stress within the kidneys, leading to modifications in renal biomarkers (including serum creatinine, urea, uric acid, and Na+, K+ levels), and a reduction in antioxidant enzymes namely superoxide dismutase and catalase. Notably, the presence of the inflammatory cytokine TNF-α was significantly elevated due to 5-FU. Microscopic examination of renal tissue revealed tubular degeneration and congestion. However, treatment involving the ethyl acetate fraction derived from A. catechu leaves effectively and dose-dependently reversed the changes observed in renal biomarkers, renal antioxidant enzymes, inflammatory mediators, and histopathological features, bringing them closer to normal conditions. The observed recuperative impact was mainly attributed to the antioxidant and antiinflammatory properties of the fraction.

Conclusion: The ethyl acetate fraction of A. catechu leaves exhibited a mitigating influence on the renal impairment caused by 5-FU, showcasing its potential as a nephroprotective agent capable of preventing and ameliorating 5-FU-induced nephrotoxicity.

Graphical Abstract

[1]
You, W.; Henneberg, M. Cancer incidence increasing globally: The role of relaxed natural selection. Evol. Appl., 2018, 11(2), 140-152.
[http://dx.doi.org/10.1111/eva.12523] [PMID: 29387151]
[2]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global cancer Observatory: cancer today. international agency for research on cancer: Lyon, France; , 2020.
[3]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[4]
Derissen, E.J.B.; Beijnen, J.H. Intracellular pharmacokinetics of pyrimidine analogues used in oncology and the correlation with drug action. Clin. Pharmacokinet., 2020, 59(12), 1521-1550.
[http://dx.doi.org/10.1007/s40262-020-00934-7] [PMID: 33064276]
[5]
Mišík, M.; Filipic, M.; Nersesyan, A.; Kundi, M.; Isidori, M.; Knasmueller, S. Environmental risk assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate). Water Res., 2019, 164, 114953.
[http://dx.doi.org/10.1016/j.watres.2019.114953] [PMID: 31404901]
[6]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[7]
Cameron, D.A.; Gabra, H.; Leonard, R.C.F. Continuous 5-fluorouracil in the treatment of breast cancer. Br. J. Cancer, 1994, 70(1), 120-124.
[http://dx.doi.org/10.1038/bjc.1994.259] [PMID: 8018521]
[8]
Weppelmann, B.; Wheeler, R.H.; Peters, G.E.; Kim, R.Y.; Spencer, S.A.; Meredith, R.F.; Salter, M.M. Treatment of recurrent head and neck cancer with 5-fluorouracil, hydroxyurea, and reirradiation. Int. J. Radiat. Oncol. Biol. Phys., 1992, 22(5), 1051-1056.
[http://dx.doi.org/10.1016/0360-3016(92)90807-T] [PMID: 1555952]
[9]
Ren, C.; Han, C.; Zhang, J.; He, P.; Wang, D.; Wang, B.; Zhao, P.; Zhao, X. Detection of apoptotic circulating tumor cells in advanced pancreatic cancer following 5-fluorouracil chemotherapy. Cancer Biol. Ther., 2011, 12(8), 700-706.
[http://dx.doi.org/10.4161/cbt.12.8.15960] [PMID: 21811100]
[10]
Lei, X.; Lv, X.; Liu, M.; Yang, Z.; Ji, M.; Guo, X.; Dong, W. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun., 2012, 417(2), 864-868.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.063] [PMID: 22206670]
[11]
Attenello, F.; Raza, S.M.; Dimeco, F.; Olivi, A. Chemotherapy for brain tumors with polymer drug delivery. Handb. Clin. Neurol., 2012, 104, 339-353.
[http://dx.doi.org/10.1016/B978-0-444-52138-5.00022-0] [PMID: 22230452]
[12]
Alter, P.; Herzum, M.; Soufi, M.; Schaefer, J.; Maisch, B. Cardiotoxicity of 5-Fluorouracil. Cardiovasc. Hematol. Agents Med. Chem., 2006, 4(1), 1-5.
[http://dx.doi.org/10.2174/187152506775268785] [PMID: 16529545]
[13]
Alessandrino, F.; Qin, L.; Cruz, G.; Sahu, S.; Rosenthal, M.H.; Meyerhardt, J.A.; Shinagare, A.B. 5-Fluorouracil induced liver toxicity in patients with colorectal cancer: Role of computed tomography texture analysis as a potential biomarker. Abdom. Radiol. (N.Y.), 2019, 44(9), 3099-3106.
[http://dx.doi.org/10.1007/s00261-019-02110-3] [PMID: 31250179]
[14]
Zhang, Y.; Yin, N.; Liang, S.; Shen, S.; Li, D.; Faiola, F. 5-fluorouracil-induced neurotoxicity in rat cerebellum granule cells involves oxidative stress and activation of caspase-3 pathway. Int. J. Clin. Exp. Med., 2019, 12(3), 2334-2343.
[15]
Liu, J.H.; Hsieh, C.H.; Liu, C.Y.; Chang, C.W.; Chen, Y.J.; Tsai, T.H. Anti-inflammatory effects of radix aucklandiae herbal preparation ameliorate intestinal mucositis induced by 5-fluorouracil in mice. J. Ethnopharmacol., 2021, 271, 113912.
[http://dx.doi.org/10.1016/j.jep.2021.113912] [PMID: 33567307]
[16]
Adikwu, E.; Ebinyo, N.; Amgbare, B. Protective activity of selenium against 5-fluorouracil-induced nephrotoxicity in rats. Cancer Transl. Med., 2019, 5(3), 50-55.
[http://dx.doi.org/10.4103/ctm.ctm_26_19]
[17]
Sakai, H.; Sagara, A.; Matsumoto, K.; Hasegawa, S.; Sato, K.; Nishizaki, M.; Shoji, T.; Horie, S.; Nakagawa, T.; Tokuyama, S.; Narita, M. 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS One, 2013, 8(1), e54788.
[http://dx.doi.org/10.1371/journal.pone.0054788] [PMID: 23382968]
[18]
Ishibashi, M.; Ishii, M.; Yamamoto, S.; Mori, Y.; Shimizu, S. Possible involvement of TRPM2 activation in 5-fluorouracil-induced myelosuppression in mice. Eur. J. Pharmacol., 2021, 891, 173671.
[http://dx.doi.org/10.1016/j.ejphar.2020.173671] [PMID: 33131720]
[19]
Tienda-Vázquez, M.A.; Morreeuw, Z.P.; Sosa-Hernández, J.E.; Cardador-Martínez, A.; Sabath, E.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Nephroprotective plants: A review on the use in pre-renal and post-renal diseases. Plants, 2022, 11(6), 818.
[http://dx.doi.org/10.3390/plants11060818] [PMID: 35336700]
[20]
Brutcher, E.; Christensen, D.; Hennessey Smith, M.; Koutlas, J.B.; Sellers, J.B.; Timmons, T.; Thompson, J. 5-fluorouracil and capecitabine: Assessment and treatment of uncommon early-onset severe toxicities associated with administration. Clin. J. Oncol. Nurs., 2018, 22(6), 627-634.
[PMID: 30451997]
[21]
Ma, W.W.; Saif, M.W.; El-Rayes, B.F.; Fakih, M.G.; Cartwright, T.H.; Posey, J.A.; King, T.R.; von Borstel, R.W.; Bamat, M.K. Emergency use of uridine triacetate for the prevention and treatment of life‐threatening 5‐fluorouracil and capecitabine toxicity. Cancer, 2017, 123(2), 345-356.
[http://dx.doi.org/10.1002/cncr.30321] [PMID: 27622829]
[22]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[23]
Sujana, D.; Saptarini, N.M.; Sumiwi, S.A.; Levita, J. Nephroprotective activity of medicinal plants: A review on in silico-, in vitro-, and in vivo-based studies. J. Appl. Pharm. Sci., 2021, 11(10), 113-127.
[http://dx.doi.org/10.7324/JAPS.2021.1101016]
[24]
Rahman, S.; Husen, A. Potential role of medicinal plants in the cure of liver and kidney diseases; Non-Timber Forest Prod; Food, Healthcare Ind. Appl, 2021, pp. 229-254.
[http://dx.doi.org/10.1007/978-3-030-73077-2_10]
[25]
Adhikari, B.; Aryal, B.; Bhattarai, B.R. A comprehensive review on the chemical composition and pharmacological activities of acacia catechu (lf). Willd. J. Chem., 2021, 2021, 1-1.
[26]
Lakshmi, T.; Rajeshkumar, S.; Roy, A.; Gurunadhan, D. RV, G. Antibacterial activity of taxifolin isolated from acacia catechu leaf extract--an invitro study. Indian J. Public Health Res. Dev., 2019, 10(11)
[27]
Mandal, N.; Ghate, N.B.; Hazra, B.; Sarkar, R. Heartwood extract of Acacia catechu induces apoptosis in human breast carcinoma by altering bax/bcl-2 ratio. Pharmacogn. Mag., 2014, 10(37), 27-33.
[http://dx.doi.org/10.4103/0973-1296.126654] [PMID: 24695415]
[28]
Jarald, E.E.; Joshi, B.; Jain, C. Biochemical study on the hypoglycaemic effects of extract and fraction of Acacia catechu willd in alloxan-induced diabetic rats. Diabetes Metab. J., 2009, 17, 63-69.
[29]
Micucci, M.; Gotti, R.; Corazza, I.; Tocci, G.; Chiarini, A.; De Giorgio, M.; Camarda, L.; Frosini, M.; Marzetti, C.; Cevenini, M.; Budriesi, R. Newer insights into the antidiarrheal effects of Acacia catechu Willd. Extract in Guinea pig. J. Med. Food, 2017, 20(6), 592-600.
[http://dx.doi.org/10.1089/jmf.2016.0154] [PMID: 28422543]
[30]
Stohs, S.J.; Bagchi, D. Antioxidant, anti‐inflammatory, and chemoprotective properties of Acacia catechu heartwood extracts. Phytother. Res., 2015, 29(6), 818-824.
[http://dx.doi.org/10.1002/ptr.5335] [PMID: 25802170]
[31]
Jayasekhar, P.; Mohanan, P.V.; Rathinam, K. Hepatoprotective activity of ethyl acetate extract of Acacia catechu. Indian J. Pharmacol., 1997, 29(6), 426.
[32]
D’souza, P; Holla, R; Swamy, G Amelioration of diabetic nephropathy in streptozotocin-induced diabetic rats by Acacia catechu leaves extract. J. health Allied Sci. NU., 2019, 9(3), 119-120.
[33]
Satpudke, S.; Pansare, T.; Khandekar, S. Review on khadira (Acacia catechu Willd.) with special reference to Prameha (Diabetes). Int. J. Herb. Med., 2020, 8, 1-5.
[34]
Bandawane, D.; Juvekar, A.; Juvekar, M. Antidiabetic and antihyperlipidemic effect of Astonia scholaris Linn. bark in streptozotocin induced diabetic rats. Ind. J. Pharm. Edu. Res., 2011, 45(2), 114-120.
[35]
Patel, A.N.; Bandawane, D.D.; Mhetre, N.K. Pomegranate (Punica granatum Linn.) leaves attenuate disturbed glucose homeostasis and hyperglycemia mediated hyperlipidemia and oxidative stress in streptozotocin induced diabetic rats. Eur. J. Integr. Med., 2014, 6(3), 307-321.
[http://dx.doi.org/10.1016/j.eujim.2014.03.009]
[36]
Khandelwal, K.R. Phytochemistry evaluation.Practical pharmacognosy techniques and experiments, 12th ed; Nirali Prakashan: Pune, India, 2004.
[37]
Kulshreshtha, A.; Saxena, J. Qualitative and quantitative estimation of phyto constituents in different solvent extracts of leaf of Tabernaemontana divaricata. J. Pharmacogn. Phytochem., 2022, 11(4), 45-50.
[http://dx.doi.org/10.22271/phyto.2022.v11.i4a.14446]
[38]
Baraskar, S.; Saxena, J. Screening of phytochemicals and in vitro antimicrobial activity hydroalcoholic extract of gardenia resinifera. Eur. Chem. Bull., 2023, 12, 1757-1762.
[39]
Dinakaran, S.K.; Chelle, S.; Avasarala, H. Profiling and determination of phenolic compounds in poly herbal formulations and their comparative evaluation. J. Tradit. Complement. Med., 2019, 9(4), 319-327.
[http://dx.doi.org/10.1016/j.jtcme.2017.12.001] [PMID: 31453128]
[40]
Khare, B.; Dubey, N.; Sharma, A. Antiulcer activity of controlled release formulation containing aqueous extract of acacia catechu wild on rodent models. Int. J. Curr. Pharm. Res., 2018, 10(5), 25-31.
[http://dx.doi.org/10.22159/ijcpr.2018v10i5.29689]
[41]
Pujari, R.R.; Bandawane, D.D. Comparative studies on protective efficacy of gentisic acid and 2-pyrocatechuic acid against 5-fluorouracil induced nephrotoxicity in wistar rats. Indian J. Exp. Biol., 2022, 60(04), 241-247.
[42]
Bhandare, P.A.; Gadekar, G.J.; Bandawane, D.D. Drug induced nephrotoxicity: A mechanistic approach. Int. j. pharm. res. 2023. Appl., 2023, 8(1), 2356-2363.
[43]
El-Sayyad, H.I.; Ismail, M.F.; Shalaby, F.M.; Abou-El-Magd, R.F.; Gaur, R.L.; Fernando, A.; Raj, M.H.G.; Ouhtit, A. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int. J. Biol. Sci., 2009, 5(5), 466-473.
[http://dx.doi.org/10.7150/ijbs.5.466] [PMID: 19584954]
[44]
Badawoud, M.H.; Elshal, E.B.; Zaki, A.I.; Amin, H.A. The possible protective effect of L-arginine against 5-fluorouracil-induced nephrotoxicity in male albino rats. Folia Morphol., 2017, 76(4), 608-619.
[http://dx.doi.org/10.5603/FM.a2017.0037] [PMID: 28553862]
[45]
Safarpour, S.; Safarpour, S.; Pirzadeh, M.; Moghadamnia, A.A.; Ebrahimpour, A.; Shirafkan, F.; Mansoori, R.; Kazemi, S.; Hosseini, M. Colchicine ameliorates 5-fluorouracil-induced cardiotoxicity in rats. Oxid. Med. Cell. Longev., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/6194532] [PMID: 35126817]
[46]
Negi, B.S.; Dave, B.P. In vitro antimicrobial activity of Acacia catechu and its phytochemical analysis. Indian J. Microbiol., 2010, 50(4), 369-374.
[http://dx.doi.org/10.1007/s12088-011-0061-1] [PMID: 22282602]
[47]
Guleria, S.; Tiku, A.K.; Singh, G.; Vyas, D.; Bhardwaj, A. Antioxidant activity and protective effect against plasmid DNA strand scission of leaf, bark, and heartwood extracts from acacia catechu. J. Food Sci., 2011, 76(7), C959-C964.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02284.x] [PMID: 21806606]
[48]
Rombolà, L.; Scuteri, D.; Marilisa, S.; Watanabe, C.; Morrone, L.A.; Bagetta, G.; Corasaniti, M.T. Pharmacokinetic interactions between herbal medicines and drugs: Their mechanisms and clinical relevance. Life (Basel), 2020, 10(7), 106.
[http://dx.doi.org/10.3390/life10070106] [PMID: 32635538]
[49]
Khan, Z.; Pandey, M. Role of kidney biomarkers of chronic kidney disease: An update. Saudi J. Biol. Sci., 2014, 21(4), 294-299.
[http://dx.doi.org/10.1016/j.sjbs.2014.07.003] [PMID: 25183938]
[50]
Famurewa, A.C.; Asogwa, N.T.; Aja, P.M.; Akunna, G.G.; Awoke, J.N.; Ekeleme-Egedigwe, C.A.; Maduagwuna, E.K.; Folawiyo, A.M.; Besong, E.E.; Ekpono, E.U.; Nwoha, P.A. Moringa oleifera seed oil modulates redox imbalance and iNOS/NF-κB/caspase-3 signaling pathway to exert antioxidant, anti-inflammatory and antiapoptotic mechanisms against anticancer drug 5-fluorouracil-induced nephrotoxicity in rats. S. Afr. J. Bot., 2019, 127, 96-103.
[http://dx.doi.org/10.1016/j.sajb.2019.08.038]
[51]
Lacour, S.; Gautier, J.C.; Pallardy, M.; Roberts, R. Cytokines as potential biomarkers of liver toxicity. Cancer Biomark., 2005, 1(1), 29-39.
[http://dx.doi.org/10.3233/CBM-2005-1105] [PMID: 17192030]
[52]
Chang, C.T.; Ho, T.Y.; Lin, H.; Liang, J.A.; Huang, H.C.; Li, C.C.; Lo, H.Y.; Wu, S.L.; Huang, Y.F.; Hsiang, C.Y. 5-Fluorouracil induced intestinal mucositis via nuclear factor-κB activation by transcriptomic analysis and in vivo bioluminescence imaging. PLoS One, 2012, 7(3), e31808.
[http://dx.doi.org/10.1371/journal.pone.0031808] [PMID: 22412841]
[53]
Price, C.P.; Finney, H. Developments in the assessment of glomerular filtration rate. Clin. Chim. Acta, 2000, 297(1-2), 55-66.
[http://dx.doi.org/10.1016/S0009-8981(00)00233-3] [PMID: 10841908]
[54]
Stevens, L.A.; Levey, A.S. Measured GFR as a confirmatory test for estimated GFR. J. Am. Soc. Nephrol., 2009, 20(11), 2305-2313.
[http://dx.doi.org/10.1681/ASN.2009020171] [PMID: 19833901]
[55]
Salazar, J.H. Overview of urea and creatinine. Lab. Med., 2014, 45(1), e19-e20.
[http://dx.doi.org/10.1309/LM920SBNZPJRJGUT]
[56]
Najim, S.M.; Ulaiwy, A.A.; Numan, T.I.; Hamad, N.M.; Khudhair, R.A. Nephroprotective effects of artichoke extract against 5-Fluorouracil induced nephrotoxicity in wistar rats: A comparative study with Telmisartan. Int. J. Pharm. Sci. Rev. Res., 2018, 48(1), 70-74.
[57]
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.109] [PMID: 26316329]
[58]
Tsai, C.W.; Lin, S.Y.; Kuo, C.C.; Huang, C.C. Serum uric acid and progression of kidney disease: A longitudinal analysis and mini-review. PLoS One, 2017, 12(1), e0170393.
[http://dx.doi.org/10.1371/journal.pone.0170393] [PMID: 28107415]
[59]
Luo, J.; Brunelli, S.M.; Jensen, D.E.; Yang, A. Association between serum potassium and outcomes in patients with reduced kidney function. Clin. J. Am. Soc. Nephrol., 2016, 11(1), 90-100.
[http://dx.doi.org/10.2215/CJN.01730215] [PMID: 26500246]
[60]
Sarafidis, P.A.; Blacklock, R.; Wood, E.; Rumjon, A.; Simmonds, S.; Fletcher-Rogers, J.; Ariyanayagam, R.; Al-Yassin, A.; Sharpe, C.; Vinen, K. Prevalence and factors associated with hyperkalemia in predialysis patients followed in a low-clearance clinic. Clin. J. Am. Soc. Nephrol., 2012, 7(8), 1234-1241.
[http://dx.doi.org/10.2215/CJN.01150112] [PMID: 22595825]
[61]
Nath, K.A.; Norby, S.M. Reactive oxygen species and acute renal failure. Am. J. Med., 2000, 109(8), 665-678.
[http://dx.doi.org/10.1016/S0002-9343(00)00612-4] [PMID: 11099687]
[62]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[63]
Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. (Qassim), 2018, 12(3), 88-93.
[PMID: 29896077]
[64]
Yasui, K.; Baba, A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm. Res., 2006, 55(9), 359-363.
[http://dx.doi.org/10.1007/s00011-006-5195-y] [PMID: 17122956]
[65]
Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid. Med. Cell. Longev., 2019, 2019, 1-19.
[http://dx.doi.org/10.1155/2019/9613090] [PMID: 31827713]
[66]
Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 1979, 59(3), 527-605.
[http://dx.doi.org/10.1152/physrev.1979.59.3.527] [PMID: 37532]
[67]
Oshino, N.; Oshino, R.; Chance, B. The characteristics of the ‘peroxidatic’ reaction of catalase in ethanol oxidation. Biochem. J., 1973, 131(3), 555-563.
[http://dx.doi.org/10.1042/bj1310555] [PMID: 4720713]
[68]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J., 2015, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[69]
Pujari, R.R.; Bandawane, D.D. Hepatoprotective activity of gentisic acid on 5-fluorouracil-induced hepatotoxicity in wistar rats. Turkish Journal of Pharmaceutical Sciences, 2021, 18(3), 332-338.
[http://dx.doi.org/10.4274/tjps.galenos.2020.95870] [PMID: 34157823]
[70]
Jang, D.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci., 2021, 22(5), 2719.
[http://dx.doi.org/10.3390/ijms22052719] [PMID: 33800290]
[71]
Khalaf, H.M.; Hafez, S.M.N.A.; Abdalla, A.M.; Welson, N.N.; Abdelzaher, W.Y.; Abdelbaky, F.A.F. Role of platelet-activating factor and HO-1 in mediating the protective effect of rupatadine against 5-fluorouracil-induced hepatotoxicity in rats. Environ. Sci. Pollut. Res. Int., 2022, 29(26), 40190-40203.
[http://dx.doi.org/10.1007/s11356-022-18899-4] [PMID: 35119631]
[72]
Rashid, S.; Ali, N.; Nafees, S.; Ahmad, S.T.; Hasan, S.K.; Sultana, S. Abrogation of 5-flourouracil induced renal toxicity by bee propolis via targeting oxidative stress and inflammation in Wistar rats. J. Pharm. Res., 2013, 7(2), 189-194.
[http://dx.doi.org/10.1016/j.jopr.2013.03.003]
[73]
Gelen, V.; Şengül, E.; Yıldırım, S.; Atila, G. The protective effects of naringin against 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Iran. J. Basic Med. Sci., 2018, 21(4), 404-410.
[PMID: 29796225]
[74]
Wang, Q.; Leong, W.F.; Elias, R.J.; Tikekar, R.V. UV-C irradiated gallic acid exhibits enhanced antimicrobial activity via generation of reactive oxidative species and quinone. Food Chem., 2019, 287, 303-312.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.041] [PMID: 30857704]
[75]
BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med., 2017, 17(1), 47.
[http://dx.doi.org/10.1186/s12906-017-1555-0] [PMID: 28088220]
[76]
Sun, J.; Li, Y.; Ding, Y.; Wang, J.; Geng, J.; Yang, H.; Ren, J.; Tang, J.; Gao, J. Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo. Brain Res., 2014, 1589, 126-139.
[http://dx.doi.org/10.1016/j.brainres.2014.09.039] [PMID: 25251593]
[77]
Pandurangan, A.K.; Mohebali, N.; Esa, N.M.; Looi, C.Y.; Ismail, S.; Saadatdoust, Z. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. Int. Immunopharmacol., 2015, 28(2), 1034-1043.
[http://dx.doi.org/10.1016/j.intimp.2015.08.019] [PMID: 26319951]
[78]
Huang, D.W.; Chang, W.C.; Wu, J.S.B.; Shih, R.W.; Shen, S.C. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res., 2016, 36(2), 150-160.
[http://dx.doi.org/10.1016/j.nutres.2015.10.001] [PMID: 26547672]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy