Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Bioinformatics-based Analysis of the Variability of MPOX Virus Proteins

Author(s): Carlos Polanco*, Alberto Huberman, Enrique Hernandez Lemus, Vladimir N. Uversky, Martha Rios Castro, Mireya Martinez Garcia, Gilberto Vargas-Alarcon, Thomas Buhse, Claudia Pimentel Hernández, Cecilia Zazueta, Francisco J. Roldan Gomez and Erika Jeannette López Oliva

Volume 21, Issue 15, 2024

Published on: 08 November, 2023

Page: [3169 - 3185] Pages: 17

DOI: 10.2174/0115701808260478231023080842

Price: $65

Abstract

Background: Previously restricted to remote areas of Central and Western Africa, the MPOX virus-based disease, also known as monkeypox, has now spread to more than 90 countries and has become endemic. As a consequence, the MPOX virus has become a global public health concern.

Objective: The objective of this study was to conduct a computational-multiparametric study (at the genomic and proteomic levels) of the biological sequences that express the MPOX virus envelopes in order to fathom the physicochemical regularities of these proteins.

Methods: Using computer programs, we determined the polarity index method (PIM) profile and protein intrinsic disorder predisposition (PIDP) for each studied protein.

Results: The UniProt database was able to identify sequences similar to those of the MPOX virus expressed thanks to the computational regularities found in the virus' envelope sequences.

Conclusion: The polarity index method and protein intrinsic disorder predisposition profiles could aid in elucidating the sequence-level structural regularities of the MPOX virus envelopes.

[1]
Di Gennaro, F.; Veronese, N.; Marotta, C.; Shin, J.I.; Koyanagi, A.; Silenzi, A.; Antunes, M.; Saracino, A.; Bavaro, D.F.; Soysal, P.; Segala, F.D.; Butler, L.; Milano, E.; Barbagallo, M.; Barnett, Y.; Parris, C.; Nicastri, E.; Pizzol, D.; Smith, L. Human MPOX: A comprehensive narrative review and analysis of the public health implications. Microorganisms, 2022, 10(8), 1633.
[2]
Al-Musa, A.; Chou, J.; LaBere, B. The resurgence of a neglected orthopoxvirus: Immunologic and clinical aspects of monkeypox virus infections over the past six decades. Clin. Immunol., 2022, 243, 109108.
[http://dx.doi.org/10.1016/j.clim.2022.109108] [PMID: 36067982]
[3]
Yon, H.; Shin, H.; Shin, J.I.; Shin, J.U.; Shin, Y.H.; Lee, J.; Rhee, S.Y.; Koyanagi, A.; Jacob, L.; Smith, L.; Lee, S.W.; Rahmati, M.; Ahmad, S.; Cho, W.; Yon, D.K. Clinical manifestations of human Mpox infection: A systematic review and meta‐analysis. Rev. Med. Virol., 2023, 33(4), e2446.
[http://dx.doi.org/10.1002/rmv.2446] [PMID: 37056203]
[4]
Jezek, Z.; Szczeniowski, M.; Paluku, K.M.; Mutombo, M. Human monkeypox: clinical features of 282 patients. J. Infect. Dis., 1987, 156(2), 293-298.
[http://dx.doi.org/10.1093/infdis/156.2.293] [PMID: 3036967]
[5]
Ministry of Health (Mexico). Monkeypox. 2022. Available from: https://viruela.salud.gob.mx/ (2022, November 22).
[6]
Polanco, C.; Castañón-González, J.A.; Uversky, V.N.; Buhse, T.; Samaniego Mendoza, J.L.; Calva, J.J. Electronegativity and intrinsic disorder of preeclampsia-related proteins. Acta Biochim. Pol., 2017, 64(1), 99-111.
[PMID: 27824362]
[7]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(90001), 115D-119.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[8]
Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; Vieira, L.; Borrego, M.J.; Núncio, S.; de Carvalho, I.L.; Pelerito, A.; Cordeiro, R.; Gomes, J.P. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med., 2022, 28(8), 1569-1572.
[http://dx.doi.org/10.1038/s41591-022-01907-y] [PMID: 35750157]
[9]
Zhou, J.; Oldfield, C.J.; Yan, W.; Shen, B.; Dunker, A.K. Identification of intrinsic disorder in complexes from the protein data bank. ACS Omega, 2020, 5(29), 17883-17891.
[http://dx.doi.org/10.1021/acsomega.9b03927] [PMID: 32743159]
[10]
Gautam, A.; Singh, H.; Tyagi, A.; Chaudhary, K.; Kumar, R.; Kapoor, P.; Raghava, G.P.S. CPPsite: A curated database of cell penetrating peptides. Database, 2012, 2012(0), bas015.
[http://dx.doi.org/10.1093/database/bas015] [PMID: 22403286]
[11]
Polanco, C.; Uversky, V. N.; Huberman, A.; Vargas-Alarcón, G.; Castañón González, J. A.; Buhse, T.; Hernández Lemus, E.; Rios Castro, M.; López Oliva, E. J.; Sols Nájera, S. E. Bioinformaticsbased characterization of the sequence variability of zika virus polyprotein and envelope protein (E). Evolution. bioinform., 2022, 18, 1-18.
[12]
Protein F15 [Monkeypox virus] - Protein - NCBI. (n.d.). Available from: https://www.ncbi.nlm.nih.gov/protein/2299362556
[13]
Mészáros, B.; Erdős, G.; Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res., 2018, 46(W1), W329-W337.
[http://dx.doi.org/10.1093/nar/gky384] [PMID: 29860432]
[14]
Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Dunker, A.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 2005, 61(S7)(7), 176-182.
[http://dx.doi.org/10.1002/prot.20735] [PMID: 16187360]
[15]
Peng, K.; Radivojac, P.; Vucetic, S.; Dunker, A.K.; Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinfor., 2006, 7(1), 208.
[http://dx.doi.org/10.1186/1471-2105-7-208] [PMID: 16618368]
[16]
Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence complexity of disordered protein. Proteins, 2001, 42(1), 38-48.
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3] [PMID: 11093259]
[17]
Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(4), 996-1010.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.011] [PMID: 20100603]
[18]
Dayhoff, G.W., 2nd; Uversky, V.N. Rapid prediction and analysis of protein intrinsic disorder. Protein Sci., 2022, 31(31), e4496.
[http://dx.doi.org/10.1002/pro.4496]
[19]
Rajagopalan, K.; Mooney, S.M.; Parekh, N.; Getzenberg, R.H.; Kulkarni, P. A majority of the cancer/testis antigens are intrinsically disordered proteins. J. Cell. Biochem., 2011, 112(11), 3256-3267.
[http://dx.doi.org/10.1002/jcb.23252] [PMID: 21748782]
[20]
Uversky, V.N. In intrinsically disordered proteins.Methods in Molecular Biology; Kragelund, B.B.; Skriver, K., Eds.; Humana: New York, NY, 2020, pp. 895-945.
[21]
Uversky, V.N. Protein intrinsic disorder and structure-function continuum. Prog. Mol. Biol. Transl. Sci., 2019, 166, 1-17.
[http://dx.doi.org/10.1016/bs.pmbts.2019.05.003] [PMID: 31521229]
[22]
Monzon, A.M.; Hatos, A.; Necci, M.; Piovesan, D.; Tosatto, S.C.E. Exploring protein intrinsic disorder with MobiDB. Methods Mol. Biol., 2020, 2141, 127-143.
[http://dx.doi.org/10.1007/978-1-0716-0524-0_6] [PMID: 32696355]
[23]
Oldfield, C.J.; Cheng, Y.; Cortese, M.S.; Brown, C.J.; Uversky, V.N.; Dunker, A.K. Comparing and combining predictors of mostly disordered proteins. Biochemistry, 2005, 44(6), 1989-2000.
[http://dx.doi.org/10.1021/bi047993o] [PMID: 15697224]
[24]
Mohan, A.; Sullivan, W.J., Jr; Radivojac, P.; Dunker, A.K.; Uversky, V.N. Intrinsic disorder in pathogenic and non-pathogenic microbes: Discovering and analyzing the unfoldomes of early-branching eukaryotes. Mol. Biosyst., 2008, 4(4), 328-340.
[http://dx.doi.org/10.1039/b719168e] [PMID: 18354786]
[25]
Huang, F.; Oldfield, C.; Meng, J.; Hsu, W.L.; Xue, B.; Uversky, V.N.; Romero, P.; Dunker, A.K. Subclassifying disordered proteins by the CH-CDF plot method. Pac. Symp. Biocomput., 2012, 128-139.
[PMID: 22174269]
[26]
Monkeypox virus genome assembly ViralProj15142., https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_000857045.1 n.d.
[27]
Pseudomonas aeruginosa UCBPP-PA14 genome assembly ASM1462v1. (n.d.). Available from: https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_000014625.1/
[28]
Monkeypox virus genome assembly ASM1462154v1. (n.d.). Available from: https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_014621545.1/
[29]
30. IEDB.org: Free epitope database and prediction resource. (n.d.). Available from: http://www.iedb.org
[30]
Heraud, J.M.; Edghill-Smith, Y.; Ayala, V.; Kalisz, I.; Parrino, J.; Kalyanaraman, V.S.; Manischewitz, J.; King, L.R.; Hryniewicz, A.; Trindade, C.J.; Hassett, M.; Tsai, W.P.; Venzon, D.; Nalca, A.; Vaccari, M.; Silvera, P.; Bray, M.; Graham, B.S.; Golding, H.; Hooper, J.W.; Franchini, G. Subunit recombinant vaccine protects against monkeypox. J. Immunol., 2006, 177(4), 2552-2564.
[http://dx.doi.org/10.4049/jimmunol.177.4.2552] [PMID: 16888017]
[31]
Kugelman, J.R.; Johnston, S.C.; Mulembakani, P.M.; Kisalu, N.; Lee, M.S.; Koroleva, G. Genomic variability of MPOX virus among humans, Democratic Republic of the Congo. Emerg. Infect. Dis., 2014, 20(2), 232-239.
[32]
Mohammed, A.; Uversky, V.; Mohammed, V.N. Uversky intrinsic disorder as a natural preservative: High levels of intrinsic disorder in proteins found in the 2600-year-old human brain. Biology, 2022, 11(12), 1704-1726.
[http://dx.doi.org/10.3390/biology11121704] [PMID: 36552214]
[33]
Bahar, M.W.; Graham, S.C.; Chen, R.A.J.; Cooray, S.; Smith, G.L.; Stuart, D.I.; Grimes, J.M. How vaccinia virus has evolved to subvert the host immune response. J. Struct. Biol., 2011, 175(2), 127-134.
[http://dx.doi.org/10.1016/j.jsb.2011.03.010] [PMID: 21419849]
[34]
Jones, T.C.; Schneider, J.; Muehlemann, B.; Veith, T.; Beheim-Schwarzbach, J.; Tesch, J.; Drosten, C. Genetic variability, including gene duplication and deletion, in early sequences from the 2022 European MPOX outbreak. bioRxiv, 2022.
[35]
Giorgi, F.M.; Pozzobon, D.; Di Meglio, A.; Mercatelli, D. Genomic characterization of the recent MPOX outbreak bioRxiv, 2022.
[36]
Gener, A.R. Just Saiyan: Tail-trimming human mpox virus assemblies emphasizes resolvable regions in inverted terminal repeats to improve the resolution of reference and production genomes for genomic surveillance. medRxiv, 2022.
[http://dx.doi.org/10.1101/2022.09.06.22279633]
[37]
Xue, B.; Williams, R.W.; Oldfield, C.J.; Goh, G.K.; Dunker, A.K.; Uversky, V.N. Viral disorder or disordered viruses: Do viral proteins possess unique features? Protein Pept. Lett., 2010, 17(8), 932-951.
[http://dx.doi.org/10.2174/092986610791498984] [PMID: 20450483]
[38]
Xue, B.; Blocquel, D.; Habchi, J.; Uversky, A.V.; Kurgan, L.; Uversky, V.N.; Longhi, S. Structural disorder in viral proteins. Chem. Rev., 2014, 114(13), 6880-6911.
[http://dx.doi.org/10.1021/cr4005692] [PMID: 24823319]
[39]
Xue, B.; Mizianty, M.J.; Kurgan, L.; Uversky, V.N. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell. Mol. Life Sci., 2012, 69(8), 1211-1259.
[http://dx.doi.org/10.1007/s00018-011-0859-3] [PMID: 22033837]
[40]
Singh, A.; Kumar, A.; Yadav, R.; Uversky, V.N.; Giri, R. Deciphering the dark proteome of Chikungunya virus. Sci. Rep., 2018, 8(1), 5822.
[http://dx.doi.org/10.1038/s41598-018-23969-0] [PMID: 29643398]
[41]
Kumar, D.; Singh, A.; Kumar, P.; Uversky, V.N.; Rao, C.D.; Giri, R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int. J. Biol. Macromol., 2020, 144, 892-908.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.166] [PMID: 31739058]
[42]
Meng, F.; Badierah, R.A.; Almehdar, H.A.; Redwan, E.M.; Kurgan, L.; Uversky, V.N. Unstructural biology of the dengue virus proteins. FEBS J., 2015, 282(17), 3368-3394.
[http://dx.doi.org/10.1111/febs.13349] [PMID: 26096987]
[43]
Redwan, E.M.; AlJaddawi, A.A.; Uversky, V.N. Structural disorder in the proteome and interactome of Alkhurma virus (ALKV). Cell. Mol. Life Sci., 2019, 76(3), 577-608.
[http://dx.doi.org/10.1007/s00018-018-2968-8] [PMID: 30443749]
[44]
Xue, B.; Dunker, A.K.; Uversky, V.N. Orderly order in protein intrinsic disorder distribution: Disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn., 2012, 30(2), 137-149.
[http://dx.doi.org/10.1080/07391102.2012.675145] [PMID: 22702725]
[45]
Campbell, J.A.; Trossman, D.S.; Yokoyama, W.M.; Carayannopoulos, L.N. Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D. J. Exp. Med., 2007, 204(6), 1311-1317.
[http://dx.doi.org/10.1084/jem.20062026] [PMID: 17548517]
[46]
Babkin, I.V.; Babkina, I.N.; Tikunova, N.V. An update of orthopoxvirus molecular evolution. Viruses, 2022, 14(2), 388.
[http://dx.doi.org/10.3390/v14020388] [PMID: 35215981]
[47]
Zhu, M.; Ji, J.; Shi, D.; Lu, X.; Wang, B.; Wu, N.; Wu, J.; Yao, H.; Li, L. Unusual global outbreak of monkeypox: What should we do? Front. Med., 2022, 16(4), 507-517.
[http://dx.doi.org/10.1007/s11684-022-0952-z] [PMID: 35943705]
[48]
Zheng, L.; Meng, J.; Lin, M.; Lv, R.; Cheng, H.; Zou, L.; Sun, J.; Li, L.X.; Ren, R.; Wang, S. Structure prediction of the entire proteome of monkeypox variants. Acta Materia Medica, 2022, 1(2), 260-264.
[49]
Sklenovská, N.; Van Ranst, M. Emergence of MPOX as the most important orthopoxvirus infection in humans. Front. Public Health, 2018, 6, 241.
[http://dx.doi.org/10.3389/fpubh.2018.00241] [PMID: 30234087]
[50]
MxcCollum, A. M.; Damon, I. K. Human MPOX. Nephrol. Dial. Transplant., 2014, 58(2), 260-267.
[PMID: 24203811]
[51]
Cassimatis, D.C.; Atwood, J.E.; Engler, R.M.; Linz, P.E.; Grabenstein, J.D.; Vernalis, M.N. Smallpox vaccination and myopericarditis: A clinical review. J. Am. Coll. Cardiol., 2004, 43(9), 1503-1510.
[http://dx.doi.org/10.1016/j.jacc.2003.11.053] [PMID: 15120802]
[52]
Tan, D.H.S.; Jaeranny, S.; Li, M.; Sukhdeo, S.S.; Monge, J.C.; Callejas, M.F.; Hasso, M.; Fattouh, R.; Lalonde, S.D.; Lam, J.; Mishra, S. Atypical clinical presentation of MPOX complicated by myopericarditis. Open. Forum. Infect. Dis., 2022, 9(8), ofac394.
[53]
Pinho, A.I.; Braga, M.; Vasconcelos, M.; Oliveira, C.; Santos, L.D.; Guimarães, A.R.; Martins, A.; Chen-Xu, J.; Silva, S.; Macedo, F. Acute Myocarditis. JACC. Case Rep., 2022, 4(21), 1424-1428.
[http://dx.doi.org/10.1016/j.jaccas.2022.08.033] [PMID: 36249878]
[54]
Kozlov, M. MPOX outbreaks: 4 questions Researchers have. Nature, 2022, 606(7913), 238-239.
[55]
Moore, M.J.; Rathish, B.; Zahra, F. Mpox (Monkeypox).StatPearls; StatPearls Publishing, 2023.
[56]
Rehm, K.E.; Connor, R.F.; Jones, G.J.B.; Yimbu, K.; Roper, R.L. Vaccinia virus A35R inhibits MHC class II antigen presentation. Virology, 2010, 397(1), 176-186.
[http://dx.doi.org/10.1016/j.virol.2009.11.008] [PMID: 19954808]
[57]
Perdiguero, B.; Esteban, M. The interferon system and vaccinia virus evasion mechanisms. J. Interferon Cytokine Res., 2009, 29(9), 581-598.
[http://dx.doi.org/10.1089/jir.2009.0073] [PMID: 19708815]
[58]
Bowie, A.; Kiss-Toth, E.; Symons, J.A.; Smith, G.L.; Dower, S.K.; O’Neill, L.A.J. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc. Natl. Acad. Sci., 2000, 97(18), 10162-10167.
[http://dx.doi.org/10.1073/pnas.160027697] [PMID: 10920188]
[59]
Li, Y.; Zhao, H.; Wilkins, K.; Hughes, C.; Damon, I.K. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J. Virol. Methods, 2010, 169(1), 223-227.
[http://dx.doi.org/10.1016/j.jviromet.2010.07.012] [PMID: 20643162]
[60]
Li, D.; Liu, Y.; Li, K.; Zhang, L. Targeting F13 from monkeypox virus and variola virus by tecovirimat: Molecular simulation analysis. J. Infect., 2022, 85(4), e99-e101.
[http://dx.doi.org/10.1016/j.jinf.2022.07.001] [PMID: 35810941]

© 2025 Bentham Science Publishers | Privacy Policy