Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Exploring the Interplay between Nutrients, Bacteriophages, and Bacterial Lipases in Host- and Bacteria-mediated Pathogenesis

Author(s): Darab Ghadimi*, Regina Fölster-Holst, Michael Ebsen, Christoph Röcken, Christof Dörfer, Jumpei Uchiyama, Shigenobu Matsuzaki and Wilhelm Bockelmann

Volume 24, Issue 8, 2024

Published on: 08 November, 2023

Page: [930 - 945] Pages: 16

DOI: 10.2174/0118715303257321231024094904

Price: $65

Abstract

Background and Aims: Pathogenic bacteria and host cells counteract or neutralize each other's effect in two fundamental ways: Direct invasion and secretion of various substances. Among these, lipases secreted by pathogenic bacteria and host cell lysozyme are key actors. Secreted lipases from pathogenic bacterial are suggested as a key player in the pathogen-host interaction. Among the gut microbial energy sources, glucose and fats have been referred to as one of the best inducers and substrates for bacterial lipases. Enrichment of bacterial growth medium with extra glucose or oil has been shown to induce lipase production in pathogenic bacteria. More recently, research has focused on the role of human gut phage alterations in the onset of dysbiosis because the bacteria-phage interactions can be dramatically affected by the nutrient milieu of the gut. However, the reciprocal role of bacterial lipases and phages in this context has not been well studied and there is no data available about how high glucose or fat availability might modulate the cellular milieu of the pathogenic bacteria-phage-eukaryotic host cell interface. The purpose of this study was to evaluate the immunologic outcome of pathogenic bacteria- phage interaction under normal, high glucose, and high butter oil conditions to understand how nutrient availability affects lipase activity in pathogenic bacteria and, ultimately, the eukaryotic host cell responses to pathogenic bacteria-phage interaction.

Materials and Methods: 10 groups of co-cultured T84 and HepG2 cells were treated with Pseudomonas aeruginosa strain PAO1 (P.a PAO1) in the presence and absence of its KPP22 phage and incubated in three different growth media (DMEM, DMEM + glucose and DMEM + butter oil). Structural and physiological (barrier function and cell viability), inflammatory (IL-6 and IL-8), metabolic (glucose and triglycerides), and enzymatic (lipases and lysozyme) parameters were determined.

Results: Excess glucose or butter oil enhanced additively extracellular lipase activity of P.a PAO1. Excess glucose or butter oil treatments also magnified P. a PAO1- induced secretion of inflammatory signal molecules (IL-1β, IL-6) from co-cultured cells, concomitant with the enhancement of intracellular triglycerides in co-cultured HepG2 cells, these effects being abolished by phage KPP22.

Conclusion: The results of the present study imply that KPP22 phage influences the interplay between food substances, gut bacterial lipases, and the gut cellular milieu. This can be applied in two-way interaction: by affecting the microbial uptake of excess free simple sugars and fats from the gut milieu leading to decreased bacterial lipases and by modulating the immune system of the intestinal -liver axis cells. Further studies are needed to see if the biological consequences of these effects also occur in vivo.

Graphical Abstract

[1]
Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 2020, 19(1), 169.
[http://dx.doi.org/10.1186/s12934-020-01428-8] [PMID: 32847584]
[2]
Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol., 2004, 64(6), 763-781.
[http://dx.doi.org/10.1007/s00253-004-1568-8] [PMID: 14966663]
[3]
Tardelli, M.; Bruschi, F.V.; Trauner, M. The role of metabolic lipases in the pathogenesis and management of liver disease. Hepatology, 2020, 72(3), 1117-1126.
[http://dx.doi.org/10.1002/hep.31250] [PMID: 32236963]
[4]
Kitadokoro, K.; Tanaka, M.; Hikima, T.; Okuno, Y.; Yamamoto, M.; Kamitani, S. Crystal structure of pathogenic Staphylococcus aureus lipase complex with the anti-obesity drug orlistat. Sci. Rep., 2020, 10(1), 5469.
[http://dx.doi.org/10.1038/s41598-020-62427-8] [PMID: 32214208]
[5]
Meyers, S.; Cuppett, S.L.; Hutkins, R.W. Lipase production by lactic acid bacteria and activity on butter oil. Food Microbiol., 1996, 13(5), 383-389.
[http://dx.doi.org/10.1006/fmic.1996.0044]
[6]
Gilbert, E.J. Pseudomonas lipases: Biochemical properties and molecular cloning. Enzyme Microb. Technol., 1993, 15(8), 634-645.
[http://dx.doi.org/10.1016/0141-0229(93)90062-7] [PMID: 7763958]
[7]
El-Sawah, M.M.A.; Sherief, A.A.; Bayoumy, S.M. Enzymatic properties of lipase and characteristics production by Lactobacillus delbrueckii subsp.bulgaricus. Antonie van Leeuwenhoek, 1995, 67(4), 357-362.
[http://dx.doi.org/10.1007/BF00872935] [PMID: 7574552]
[8]
Saravanan, A.N.; Suchitra, N.; Dhandayuthapani, K. Role of saturated fatty acids in lipase production-using Pseudomonas Aeruginosa. J. Food Biochem., 2007, 31(6), 748-756.
[http://dx.doi.org/10.1111/j.1745-4514.2007.00140.x]
[9]
De Filippis, A.; Ullah, H.; Baldi, A.; Dacrema, M.; Esposito, C.; Garzarella, E.U.; Santarcangelo, C.; Tantipongpiradet, A.; Daglia, M. Gastrointestinal disorders and metabolic syndrome: Dysbiosis as a key link and common bioactive dietary components useful for their treatment. Int. J. Mol. Sci., 2020, 21(14), 4929.
[http://dx.doi.org/10.3390/ijms21144929] [PMID: 32668581]
[10]
König, B.; Jaeger, K.E.; Sage, A.E.; Vasil, M.L.; König, W. Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes. Infect. Immun., 1996, 64(8), 3252-3258.
[http://dx.doi.org/10.1128/iai.64.8.3252-3258.1996] [PMID: 8757861]
[11]
Zhang, Z.; Zhang, X. Evolution of subfamily I.1 lipases in Pseudomonas aeruginosa. Curr. Microbiol., 2021, 78(9), 3494-3504.
[http://dx.doi.org/10.1007/s00284-021-02589-4] [PMID: 34279672]
[12]
Hitch, T.C.A.; Masson, J.M.; Streidl, T.; Fisch¨oder, T.; Elling, L.; Clavel, T. Diversity and function of microbial lipases within the mammalian gut. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2020.09.08.287425]
[13]
Chen, X.; Alonzo, F., III Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proc. Natl. Acad. Sci. USA, 2019, 116(9), 3764-3773.
[http://dx.doi.org/10.1073/pnas.1817248116] [PMID: 30755523]
[14]
Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun., 2020, 6(1), 100.
[http://dx.doi.org/10.1057/s41599-020-0478-4]
[15]
Ganeshan; Hosseinidoust, Z. Phage therapy with a focus on the human microbiota. Antibiotics, 2019, 8(3), 131.
[http://dx.doi.org/10.3390/antibiotics8030131] [PMID: 31461990]
[16]
Sausset, R.; Petit, M.A.; Gaboriau-Routhiau, V.; De Paepe, M. New insights into intestinal phages. Mucosal Immunol., 2020, 13(2), 205-215.
[http://dx.doi.org/10.1038/s41385-019-0250-5] [PMID: 31907364]
[17]
Ghadimi, D; Ebsen, M; Röcken, C; Fölster-Holst, R; Groessner-Schreiber, B; Dörfer, C; Bockelmann, W Oral mucosal in vitro cell culture model to study the effect of fructilactobacillus phage on the interplay between food components and oral microbiota. Endocr Metab Immune Disord Drug Targets., 2023, 23(3), 356-374.
[http://dx.doi.org/10.2174/1871530322666220408215101]
[18]
Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Żaczek, M.; Borysowski, J.; Górski, A. The Presence of bacteriophages in the human body: Good, bad or neutral? Microorganisms, 2020, 8(12), 2012.
[http://dx.doi.org/10.3390/microorganisms8122012] [PMID: 33339331]
[19]
Zhu, X.; Zhang, W.; Wu, C.; Wang, S.; Smith, F.G.; Jin, S.; Zhang, P. The novel role of metabolism-associated molecular patterns in sepsis. Front. Cell. Infect. Microbiol., 2022, 12, 915099.
[http://dx.doi.org/10.3389/fcimb.2022.915099] [PMID: 35719361]
[20]
Ghadimi, D.; Fölster-Holst, R.; Röcken, C.; Kaatsch, H.J.; Ebsen, M.; Tournebize, R.; Bockelmann, W. Endogenous ethanol-producing bacteria interference in pathogen-host crosstalk. Endocr. Metab. Immone. Drug Targets, 2023, 23(11), 1430-1441.
[21]
Uchiyama, J.; Suzuki, M.; Nishifuji, K.; Kato, S.; Miyata, R.; Nasukawa, T.; Yamaguchi, K.; Takemura-Uchiyama, I.; Ujihara, T.; Shimakura, H.; Murakami, H.; Okamoto, N.; Sakaguchi, Y.; Shibayama, K.; Sakaguchi, M.; Matsuzaki, S. Analyses of short-term antagonistic evolution of Pseudomonas Aeruginosa Strain PAO1 and Phage KPP22 (Myoviridae Family, PB1-Like Virus Genus). Appl. Environ. Microbiol., 2016, 82(15), 4482-4491.
[http://dx.doi.org/10.1128/AEM.00090-16] [PMID: 27208109]
[22]
Klockgether, J.; Munder, A.; Neugebauer, J.; Davenport, C.F.; Stanke, F.; Larbig, K.D.; Heeb, S.; Schöck, U.; Pohl, T.M.; Wiehlmann, L.; Tümmler, B. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J. Bacteriol., 2010, 192(4), 1113-1121.
[http://dx.doi.org/10.1128/JB.01515-09] [PMID: 20023018]
[23]
Nelson, R.K.; Poroyko, V.; Morowitz, M.J.; Liu, D.; Alverdy, J.C. Effect of dietary monosaccharides on Pseudomonas aeruginosa virulence. Surg. Infect., 2013, 14(1), 35-42.
[http://dx.doi.org/10.1089/sur.2011.063] [PMID: 23451729]
[24]
Grbavčić, S.; Bezbradica, D.; Izrael-Živković, L.; Avramović, N.; Milosavić, N.; Karadžić, I.; Knežević-Jugović, Z. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: Compatibility study with detergent ingredients and washing performance. Bioresour. Technol., 2011, 102(24), 11226-11233.
[http://dx.doi.org/10.1016/j.biortech.2011.09.076] [PMID: 22004595]
[25]
Ruchi, G.; Anshu, G.; Khare, S.K. Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresour. Technol., 2008, 99(11), 4796-4802.
[http://dx.doi.org/10.1016/j.biortech.2007.09.053] [PMID: 17976982]
[26]
Bonilla, N.; Rojas, M.I.; Netto Flores Cruz, G.; Hung, S.H.; Rohwer, F.; Barr, J.J. Phage on tap–a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ, 2016, 4, e2261.
[http://dx.doi.org/10.7717/peerj.2261] [PMID: 27547567]
[27]
Luong, T.; Salabarria, A.C.; Edwards, R.A.; Roach, D.R. Standardized bacteriophage purification for personalized phage therapy. Nat. Protoc., 2020, 15(9), 2867-2890.
[http://dx.doi.org/10.1038/s41596-020-0346-0] [PMID: 32709990]
[28]
Ghadimi, D.; Vrese, M.; Heller, K.J.; Schrezenmeir, J. Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integritiy of polarized intestinal epithelial cells. Inflamm. Bowel Dis., 2010, 16(3), 410-427.
[http://dx.doi.org/10.1002/ibd.21057] [PMID: 19714766]
[29]
Devriese, S.; Van den Bossche, L.; Van Welden, S.; Holvoet, T.; Pinheiro, I.; Hindryckx, P.; De Vos, M.; Laukens, D. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochem. Cell Biol., 2017, 148(1), 85-93.
[http://dx.doi.org/10.1007/s00418-017-1539-7] [PMID: 28265783]
[30]
Steenson, S.; Shojaee-Moradie, F.; Lovegrove, J.A.; Umpleby, A.M.; Jackson, K.G.; Fielding, B.A. Dose dependent effects of fructose and glucose on de novo palmitate and glycerol synthesis in an enterocyte cell model. Mol. Nutr. Food Res., 2022, 66(1), 2100456.
[http://dx.doi.org/10.1002/mnfr.202100456] [PMID: 34787358]
[31]
Kiarely Souza, E.; Pereira-Dutra, F.S.; Rajão, M.A.; Ferraro-Moreira, F.; Goltara-Gomes, T.C.; Cunha-Fernandes, T.; Santos, J.C.; Prestes, E.B.; Andrade, W.A.; Zamboni, D.S.; Bozza, M.T.; Bozza, P.T. Lipid droplet accumulation occurs early following Salmonella infection and contributes to intracellular bacterial survival and replication. Mol. Microbiol., 2022, 117(2), 293-306.
[http://dx.doi.org/10.1111/mmi.14844] [PMID: 34783412]
[32]
Monson, E.A.; Crosse, K.M.; Duan, M.; Chen, W.; O’Shea, R.D.; Wakim, L.M.; Carr, J.M.; Whelan, D.R.; Helbig, K.J. Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. Nat. Commun., 2021, 12(1), 4303.
[http://dx.doi.org/10.1038/s41467-021-24632-5] [PMID: 34262037]
[33]
Bharathi, D.; Rajalakshmi, G.; Komathi, S. Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. J. King Saud Univ. Sci., 2019, 31(4), 898-901.
[http://dx.doi.org/10.1016/j.jksus.2017.12.018]
[34]
Elemosho, R.; Suwanto, A.; Thenawidjaja, M. Extracellular expression in Bacillus subtilis of a thermostable Geobacillus stearothermophilus lipase. Electron. J. Biotechnol., 2021, 53, 71-79.
[http://dx.doi.org/10.1016/j.ejbt.2021.07.003]
[35]
Winkler, U.K.; Stuckmann, M. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol., 1979, 138(3), 663-670.
[http://dx.doi.org/10.1128/jb.138.3.663-670.1979] [PMID: 222724]
[36]
Eom, G.T.; Song, J.K.; Ahn, J.H.; Seo, Y.S.; Rhee, J.S. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system. Appl. Environ. Microbiol., 2005, 71(7), 3468-3474.
[http://dx.doi.org/10.1128/AEM.71.7.3468-3474.2005] [PMID: 16000750]
[37]
Kumar, P.; Kumar, R.; Pandey, H.; Sundar, S.; Pai, K. Studies on the arginase, 5′-nucleotidase and lysozyme activity by monocytes from visceral leishmaniasis patients. J. Parasit. Dis., 2012, 36(1), 19-25.
[http://dx.doi.org/10.1007/s12639-011-0066-z] [PMID: 23542635]
[38]
Salwoom, L.; Raja Abd Rahman, R.N.Z.; Salleh, A.B.; Mohd Shariff, F.; Convey, P.; Pearce, D.; Mohamad Ali, M.S. Isolation, characterisation, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK25 isolated from signy Island, Antarctica. Molecules, 2019, 24(4), 715.
[http://dx.doi.org/10.3390/molecules24040715] [PMID: 30781467]
[39]
McEntee, C.P.; Finlay, C.M.; Lavelle, E.C. Divergent roles for the IL-1 family in gastrointestinal homeostasis and inflammation. Front. Immunol., 2019, 10, 1266.
[http://dx.doi.org/10.3389/fimmu.2019.01266] [PMID: 31231388]
[40]
Oh, J.H.; Alexander, L.M.; Pan, M.; Schueler, K.L.; Keller, M.P.; Attie, A.D.; Walter, J.; van Pijkeren, J.P. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont lactobacillus reuteri. Cell Host Microbe, 2019, 25(2), 273-284.e6.
[http://dx.doi.org/10.1016/j.chom.2018.11.016] [PMID: 30658906]
[41]
Newsholme, E.A.; Carrié, A.L. Quantitative aspects of glucose and glutamine metabolism by intestinal cells. Gut, 1994, 35(1 Suppl), S13-S17.
[http://dx.doi.org/10.1136/gut.35.1_Suppl.S13] [PMID: 8125383]
[42]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[43]
Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen., 2019, 39(1), 12.
[http://dx.doi.org/10.1186/s41232-019-0101-5] [PMID: 31182982]
[44]
Helal, R.; Melzig, M.F. In vitro effects of selected saponins on the production and release of lysozyme activity of human monocytic and epithelial cell lines. Sci. Pharm., 2011, 79(2), 337-349.
[http://dx.doi.org/10.3797/scipharm.1012-15] [PMID: 21773070]
[45]
de Jonge, P.A.; Wortelboer, K.; Scheithauer, T.P.M.; van den Born, B.H.; Zwinderman, A.H.; Nobrega, F.L.; Dutilh, B.E.; Nieuwdorp, M.; Herrema, H. Members of a highly widespread bacteriophage family are hallmarks of metabolic syndrome gut microbiomes. bioRxiv, 2021, 2021.03.30.437683.
[46]
Naudin, C.R.; Maner-Smith, K.; Owens, J.A.; Wynn, G.M.; Robinson, B.S.; Matthews, J.D.; Reedy, A.R.; Luo, L.; Wolfarth, A.A.; Darby, T.M.; Ortlund, E.A.; Jones, R.M. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology, 2020, 159(2), 639-651.e5.
[http://dx.doi.org/10.1053/j.gastro.2020.03.010] [PMID: 32169430]
[47]
Knapp, A.; Voget, S.; Gao, R.; Zaburannyi, N.; Krysciak, D.; Breuer, M.; Hauer, B.; Streit, W.R.; Müller, R.; Daniel, R.; Jaeger, K.E. Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1. Appl. Microbiol. Biotechnol., 2016, 100(3), 1265-1273.
[http://dx.doi.org/10.1007/s00253-015-7041-z] [PMID: 26476653]
[48]
Stuer, W.; Jaeger, K.E.; Winkler, U.K. Purification of extracellular lipase from Pseudomonas aeruginosa. J. Bacteriol., 1986, 168(3), 1070-1074.
[http://dx.doi.org/10.1128/jb.168.3.1070-1074.1986] [PMID: 3096967]
[49]
Mukherjee, S.; Hooper, L.V. Antimicrobial defense of the intestine. Immunity, 2015, 42(1), 28-39.
[http://dx.doi.org/10.1016/j.immuni.2014.12.028] [PMID: 25607457]
[50]
Camarillo-Guerrero, L.F.; Almeida, A.; Rangel-Pineros, G.; Finn, R.D.; Lawley, T.D. Massive expansion of human gut bacteriophage diversity. Cell, 2021, 184(4), 1098-1109.e9.
[http://dx.doi.org/10.1016/j.cell.2021.01.029] [PMID: 33606979]
[51]
Rubio, C. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions. Pathogens, 2014, 3(1), 73-92.
[http://dx.doi.org/10.3390/pathogens3010073] [PMID: 25437608]
[52]
Townsend, E.M.; Kelly, L.; Muscatt, G.; Box, J.D.; Hargraves, N.; Lilley, D.; Jameson, E. The human gut phageome: Origins and roles in the human gut microbiome. Front. Cell. Infect. Microbiol., 2021, 11, 643214.
[http://dx.doi.org/10.3389/fcimb.2021.643214] [PMID: 34150671]
[53]
van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112-124.
[http://dx.doi.org/10.1038/nrm2330] [PMID: 18216768]
[54]
van der Meer-Janssen, Y.P.M.; van Galen, J.; Batenburg, J.J.; Helms, J.B. Lipids in host–pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res., 2010, 49(1), 1-26.
[http://dx.doi.org/10.1016/j.plipres.2009.07.003] [PMID: 19638285]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy