Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Coumarin-derived Hydroxamic Acids as Histone Deacetylase Inhibitors: A Review of Anti-cancer Activities

Author(s): Nguyen Quang Khai and Tran Khac Vu*

Volume 24, Issue 1, 2024

Published on: 07 November, 2023

Page: [18 - 29] Pages: 12

DOI: 10.2174/0118715206272112231102063919

Price: $65

Abstract

Since coumarin and hydroxamic acid compounds are well-known in medicinal chemistry, a variety of their derivatives have been highlighted due to their potential uses for plentiful treatments. Different compounds of their derivatives acting through diverse activities, such as anti-tumor, anti-cancer, anti-inflammation, and histone deacetylase inhibition, have been comprehensively investigated by many researchers over the years. This present review provides the latest literature and knowledge on hydroxamic acids derived from coumarin. Overall, some recent advancements in biological activities of hybrid derivatives of hydroxamic acids containing coumarin moieties in medicinal chemistry are discussed.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Yabroff, K.R.; Wu, X.C.; Negoita, S.; Stevens, J.; Coyle, L.; Zhao, J.; Mumphrey, B.J.; Jemal, A.; Ward, K.C. Association of the COVID-19 pandemic with patterns of statewide cancer services. J. Natl. Cancer Inst., 2022, 114(6), 907-909.
[http://dx.doi.org/10.1093/jnci/djab122] [PMID: 34181001]
[3]
Bell, M.; Webster, L.; Woodland, A. Research techniques made simple: An introduction to drug discovery for dermatology. J. Invest. Dermatol., 2019, 139(11), 2252-2257.e1.
[http://dx.doi.org/10.1016/j.jid.2019.07.699] [PMID: 31648685]
[4]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[5]
Sarmento-Ribeiro, A.B.; Scorilas, A.; Gonçalves, A.C.; Efferth, T.; Trougakos, I.P. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist. Updat., 2019, 47, 100646.
[http://dx.doi.org/10.1016/j.drup.2019.100646] [PMID: 31733611]
[6]
Grover, J.; Jachak, S.M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv, 2015, 5(49), 38892-38905.
[http://dx.doi.org/10.1039/C5RA05643H]
[7]
Ranjan Sahoo, C.; Sahoo, J.; Mahapatra, M.; Lenka, D.; Kumar, S.P.; Dehury, B.; Nath, P.R.; Kumar Paidesetty, S. Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem., 2021, 14(2), 102922.
[http://dx.doi.org/10.1016/j.arabjc.2020.102922]
[8]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587.
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[9]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[10]
Paramjeet, K.; Sheetal, B.; Arti, D.; Hariom, N.; Dipak, S. Sources and biological activity of coumarin: An appraisal. J. Environ. Sci. Technol., 2021, 7, 11-25.
[11]
Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853.
[http://dx.doi.org/10.3389/fonc.2020.592853] [PMID: 33344242]
[12]
Xu, L.; Zhao, X.Y.; Wu, Y.L.; Zhang, W. The study on biological and pharmacological activity of coumarins. Proceedings of the 2015 Asia-Pacific Energy Equipment Engineering Research Conference, 2015, pp. 135-138.
[http://dx.doi.org/10.2991/ap3er-15.2015.33]
[13]
Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins — An important class of phytochemicals. In: Phytochemicals - Isolation; Characterisation and Role in Human Health; , 2015.
[http://dx.doi.org/10.5772/59982]
[14]
Pan, Y.; Liu, T.; Wang, X.; Sun, J. Research progress of coumarins and their derivatives in the treatment of diabetes. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 616-628.
[http://dx.doi.org/10.1080/14756366.2021.2024526] [PMID: 35067136]
[15]
Nikhil, B.; Shikha, B.; Anil, P.; Prakash, N.B. Diverse pharmacological activities of 3 - substituted coumarins: A review. 2012. Available from: https://www.semanticscholar.org/paper/diverse-pharmacological-activities-of-3-substituted-Nikhil-Shikha/71c55aea18f2aa30a19353da2eee5f265bf5e6bc
[16]
Detsi, A.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2015-2016). Expert Opin. Ther. Pat., 2017, 27(11), 1201-1226.
[http://dx.doi.org/10.1080/13543776.2017.1360284] [PMID: 28756713]
[17]
Song, X.F.; Fan, J.; Liu, L.; Liu, X.F.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm., 2020, 353(8), 2000025.
[http://dx.doi.org/10.1002/ardp.202000025] [PMID: 32383190]
[18]
Bouhaoui, A.; Eddahmi, M.; Dib, M.; Khouili, M.; Aires, A.; Catto, M.; Bouissane, L. Synthesis and biological properties of coumarin derivatives. A review. Chem. Select, 2021, 6(24), 5848-5870.
[http://dx.doi.org/10.1002/slct.202101346]
[19]
Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03217] [PMID: 32042967]
[20]
Catterall, F.; Ames, P.R.J.; Isles, C. Warfarin in patients with mechanical heart valves. BMJ, 2020, 371, m3956.
[http://dx.doi.org/10.1136/bmj.m3956] [PMID: 33060144]
[21]
Trailokya, A.; Hiremath, J.S.; Sawhney, J.; Mishra, Y.K.; Kanhere, V.; Srinivasa, R.; Tiwaskar, M. Acenocoumarol: A review of anticoagulant efficacy and safety. J. Assoc. Physicians India, 2016, 64(2), 88-93.
[PMID: 27730796]
[22]
Silva, V.L.M.; Silva-Reis, R.; Moreira-Pais, A.; Ferreira, T.; Oliveira, P.A.; Ferreira, R.; Cardoso, S.M.; Sharifi-Rad, J.; Butnariu, M.; Costea, M.A.; Grozea, I. Dicoumarol: From chemistry to antitumor benefits. Chin. Med., 2022, 17(1), 145.
[http://dx.doi.org/10.1186/s13020-022-00699-0] [PMID: 36575479]
[23]
Citarella, A.; Moi, D.; Pinzi, L.; Bonanni, D.; Rastelli, G. Hydroxamic acid derivatives: From synthetic strategies to medicinal chemistry applications. ACS Omega, 2021, 6(34), 21843-21849.
[http://dx.doi.org/10.1021/acsomega.1c03628] [PMID: 34497879]
[24]
Keth, J.; Johann, T.; Frey, H. Hydroxamic acid: An underrated moiety? marrying bioinorganic chemistry and polymer science. Biomacromolecules, 2020, 21(7), 2546-2556.
[http://dx.doi.org/10.1021/acs.biomac.0c00449] [PMID: 32525665]
[25]
Zhao, C.; Dong, H.; Xu, Q.; Zhang, Y. Histone deacetylase (HDAC) inhibitors in cancer: A patent review (2017-present). Expert Opin. Ther. Pat., 2020, 30(4), 263-274.
[http://dx.doi.org/10.1080/13543776.2020.1725470] [PMID: 32008402]
[26]
Munson, J.W. Hydroxamic acids. In: Acid Derivatives; Patai, S., Ed.; , 1992; pp. 849-873.
[http://dx.doi.org/10.1002/9780470772508.ch15]
[27]
Muri, E.; Nieto, M.; Sindelar, R.; Williamson, J. Hydroxamic acids as pharmacological agents. Curr. Med. Chem., 2002, 9(17), 1631-1653.
[http://dx.doi.org/10.2174/0929867023369402] [PMID: 12171558]
[28]
Gupta, S.P.; Sharma, A. The chemistry of hydroxamic acids. In: Hydroxamic Acids; Patai, S., Ed.; , 2013; pp. 1-17.
[http://dx.doi.org/10.1007/978-3-642-38111-9_1]
[29]
Carneiro, A.; Matos, M.J.; Uriarte, E.; Santana, L. Trending topics on coumarin and its derivatives in 2020. Molecules, 2021, 26(2), 501.
[http://dx.doi.org/10.3390/molecules26020501] [PMID: 33477785]
[30]
Marmion, C.J.; Parker, J.P.; Nolan, K.B. Hydroxamic acids: An important class of metalloenzyme inhibitors. Inorg. Chem., 2013, II, 683-708.
[http://dx.doi.org/10.1002/ejic.200400221]
[31]
Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.H.; Yadav, J.P.; Verma, A.; Khalilullah, H.; Kumar, P. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals, 2022, 15(9), 1071.
[http://dx.doi.org/10.3390/ph15091071] [PMID: 36145292]
[32]
Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: Design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorg. Med. Chem. Lett., 2014, 24(16), 3797-3801.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.067] [PMID: 25042254]
[33]
Minh, N.V.; Thanh, N.T.; Lien, H.T.; Anh, D.T.P.; Cuong, H.D.; Nam, N.H.; Hai, P.T.; Minh-Ngoc, L.; Le-Thi-Thu, H.; Chinh, L.V.; Vu, T.K. Design, synthesis and biological evaluation of novel n-hydroxyheptanamides incorporating 6-hydroxy-2-methylquinazolin-4(3H)-ones as histone deacetylase inhibitors and cytotoxic agents. Anticancer. Agents Med. Chem., 2019, 19(12), 1543-1557.
[http://dx.doi.org/10.2174/1871520619666190702142654] [PMID: 31267876]
[34]
Hieu, D.T.; Anh, D.T.; Tuan, N.M.; Hai, P.T.; Huong, L.T.T.; Kim, J.; Kang, J.S.; Vu, T.K.; Dung, P.T.P.; Han, S.B.; Nam, N.H.; Hoa, N.D. Design, synthesis and evaluation of novel N -hydroxybenzamides/ N -hydroxypropenamides incorporating quinazolin-4(3 H)-ones as histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2018, 76, 258-267.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.007] [PMID: 29223029]
[35]
Ha, V.T.; Kien, V.T.; Binh, L.H.; Tien, V.D.; My, N.T.T.; Nam, N.H.; Baltas, M.; Hahn, H.; Han, B.W.; Thao, D.T.; Vu, T.K. Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton. Bioorg. Chem., 2016, 66, 63-71.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.008] [PMID: 27018835]
[36]
Vu, T.K.; Thanh, N.T.; Minh, N.V.; Linh, N.H.; Thao, N.T.P.; Nguyen, T.T.B.; Hien, D.T.; Chinh, L.V.; Duc, T.H.; Anh, L.D.; Hai, P.T. Novel conjugated quinazolinone-based hydroxamic acids: Design, synthesis and biological evaluation. Med. Chem., 2021, 17(7), 732-749.
[http://dx.doi.org/10.2174/1573406416666200420081540] [PMID: 32310052]
[37]
Li, X.; Hou, J.; Li, X.; Jiang, Y.; Liu, X.; Mu, W.; Jin, Y.; Zhang, Y.; Xu, W. Development of 3-hydroxycinnamamide-based HDAC inhibitors with potent in vitro and in vivo anti-tumor activity. Eur. J. Med. Chem., 2015, 89, 628-637.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.077] [PMID: 25462271]
[38]
Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N -hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675.
[http://dx.doi.org/10.1016/j.bmc.2016.12.001] [PMID: 28336407]
[39]
Ling, Y.; Gao, W.J.; Ling, C.; Liu, J.; Meng, C.; Qian, J.; Liu, S.; Gan, H.; Wu, H.; Tao, J.; Dai, H.; Zhang, Y. β-Carboline and N-hydroxycinnamamide hybrids as anticancer agents for drug-resistant Hepatocellular carcinoma. Eur. J. Med. Chem., 2019, 168, 515-526.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.054] [PMID: 30851694]
[40]
Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.024] [PMID: 28340413]
[41]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[42]
Singh, A.; Patel, P.; Patel, V.K.; Jain, D.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Histone deacetylase inhibitors for the treatment of colorectal cancer: Recent progress and future prospects. Curr. Cancer Drug Targets, 2017, 17(5), 456-466.
[http://dx.doi.org/10.2174/1568009617666170109150134] [PMID: 28067178]
[43]
Ruijter, A.J.M.; Gennip, A.H.; Caron, H.N.; Kemp, S.; Kuilenburg, A.B.P. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[44]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[45]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[46]
Cao, Y.; Ning, B.; Tian, Y.; Lan, T.; Chu, Y.; Ren, F.; Wang, Y.; Meng, Q.; Li, J.; Jia, B.; Chang, Z. CREPT disarms the inhibitory activity of HDAC1 on oncogene expression to promote tumorigenesis. Cancers, 2022, 14(19), 4797.
[http://dx.doi.org/10.3390/cancers14194797] [PMID: 36230720]
[47]
Li, T.; Zhang, C.; Hassan, S.; Liu, X.; Song, F.; Chen, K.; Zhang, W.; Yang, J. Histone deacetylase 6 in cancer. J. Hematol. Oncol., 2018, 11(1), 111.
[http://dx.doi.org/10.1186/s13045-018-0654-9] [PMID: 30176876]
[48]
Shanmugam, G.; Rakshit, S.; Sarkar, K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl. Oncol., 2022, 16, 101312.
[http://dx.doi.org/10.1016/j.tranon.2021.101312] [PMID: 34922087]
[49]
Rajak, H.; Singh, A.; Dewangan, P.K.; Patel, V.; Jain, D.K.; Tiwari, S.K.; Veerasamy, R.; Sharma, P.C. Peptide based macrocycles: Selective histone deacetylase inhibitors with antiproliferative activity. Curr. Med. Chem., 2013, 20(14), 1887-1903.
[http://dx.doi.org/10.2174/0929867311320140006] [PMID: 23409715]
[50]
Manal, M.; Chandrasekar, M.J.N.; Gomathi, P.J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem., 2016, 67, 18-42.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.005] [PMID: 27239721]
[51]
Qiu, X.; Xiao, X.; Li, N.; Li, Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 72, 60-72.
[http://dx.doi.org/10.1016/j.pnpbp.2016.09.002] [PMID: 27614213]
[52]
He, X.; Hui, Z.; Xu, L.; Bai, R.; Gao, Y.; Wang, Z.; Xie, T.; Ye, X.Y. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). Eur. J. Med. Chem., 2022, 227, 113946.
[http://dx.doi.org/10.1016/j.ejmech.2021.113946] [PMID: 34775332]
[53]
Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.; Shan, P.; Zhang, H. Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (Hdac) inhibitors with antitumor activities. Molecules, 2019, 24(14), 2569.
[http://dx.doi.org/10.3390/molecules24142569] [PMID: 31311163]
[54]
Zhao, N.; Yang, F.; Han, L.; Qu, Y.; Ge, D.; Zhang, H. Development of coumarin-based hydroxamates as histone deacetylase inhibitors with antitumor activities. Molecules, 2020, 25(3), 717.
[http://dx.doi.org/10.3390/molecules25030717] [PMID: 32046013]
[55]
García, S.; Mercado-Sánchez, I.; Bahena, L.; Alcaraz, Y.; García-Revilla, M.A.; Robles, J.; Santos-Martínez, N.; Ordaz-Rosado, D.; García-Becerra, R.; Vazquez, M.A. Design of fluorescent coumarin-hydroxamic acid derivatives as inhibitors of HDACs: Synthesis, anti-proliferative evaluation and docking studies. Molecules, 2020, 25(21), 5134.
[http://dx.doi.org/10.3390/molecules25215134] [PMID: 33158250]
[56]
Ding, J.; Liu, J.; Zhang, Z.; Guo, J.; Cheng, M.; Wan, Y.; Wang, R.; Fang, Y.; Guan, Z.; Jin, Y.; Xie, S.S. Design, synthesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacetylase inhibitors with anticancer activities. Bioorg. Chem., 2020, 101, 104023.
[http://dx.doi.org/10.1016/j.bioorg.2020.104023] [PMID: 32650178]
[57]
Singh, R.K.; Mandal, T.; Balasubramanian, N.; Cook, G.; Srivastava, D.K. Coumarin-suberoylanilide hydroxamic acid as a fluorescent probe for determining binding affinities and off-rates of histone deacetylase inhibitors. Anal. Biochem., 2011, 408(2), 309-315.
[http://dx.doi.org/10.1016/j.ab.2010.08.040] [PMID: 20816742]
[58]
Singh, R.K.; Lall, N.; Leedahl, T.S.; McGillivray, A.; Mandal, T.; Haldar, M.; Mallik, S.; Cook, G.; Srivastava, D.K. Kinetic and thermodynamic rationale for suberoylanilide hydroxamic acid being a preferential human histone deacetylase 8 inhibitor as compared to the structurally similar ligand, trichostatin a. Biochemistry, 2013, 52(45), 8139-8149.
[http://dx.doi.org/10.1021/bi400740x] [PMID: 24079912]
[59]
Rubio-Ruiz, B.; Weiss, J.T.; Unciti-Broceta, A. Efficient palladium-triggered release of vorinostat from a bioorthogonal precursor. J. Med. Chem., 2016, 59(21), 9974-9980.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01426] [PMID: 27786474]
[60]
Pardo-Jiménez, V.; Navarrete-Encina, P.; Díaz-Araya, G. Synthesis and biological evaluation of novel thiazolyl-coumarin derivatives as potent histone deacetylase inhibitors with antifibrotic activity. Molecules, 2019, 24(4), 739.
[http://dx.doi.org/10.3390/molecules24040739] [PMID: 30791388]
[61]
Ieda, N.; Yamada, S.; Kawaguchi, M.; Miyata, N.; Nakagawa, H. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity. Bioorg. Med. Chem., 2016, 24(12), 2789-2793.
[http://dx.doi.org/10.1016/j.bmc.2016.04.042] [PMID: 27143132]
[62]
Nakagawa, H. Photo-Controlled release of small signaling molecules to induce biological responses. Chem. Rec., 2018, 18(12), 1708-1716.
[http://dx.doi.org/10.1002/tcr.201800035] [PMID: 30040190]
[63]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Lee, S.S.; Hsu, F.L.; Lu, Y.L.; Hung, M.F.; Chang, C.I. Synthesis of N-hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase. ChemMedChem, 2010, 5(4), 598-607.
[http://dx.doi.org/10.1002/cmdc.200900494] [PMID: 20209563]
[64]
Qiu, X.; Zhu, L.; Wang, H.; Tan, Y.; Yang, Z.; Yang, L.; Wan, L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg. Med. Chem., 2021, 52, 116510.
[http://dx.doi.org/10.1016/j.bmc.2021.116510] [PMID: 34826681]
[65]
Wittine, K.; Ratkaj, I.; Benci, K.; Suhina, T. Mandić L.; Ilić N.; Pavelić S.K.; Pavelić K.; Mintas, M. The novel coumarin[3,2-c]thiophene and its hydroxamic acid and ureido derivatives: Synthesis and cytostatic activity evaluations. Med. Chem. Res., 2016, 25(4), 728-737.
[http://dx.doi.org/10.1007/s00044-016-1523-0]
[66]
Ji, H.; Tan, Y.; Gan, N.; Zhang, J.; Li, S.; Zheng, X.; Wang, Z.; Yi, W. Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors. Bioorg. Med. Chem., 2021, 29, 115870.
[http://dx.doi.org/10.1016/j.bmc.2020.115870] [PMID: 33221062]
[67]
Tashima, T.; Murata, H.; Kodama, H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem., 2014, 22(14), 3720-3731.
[http://dx.doi.org/10.1016/j.bmc.2014.05.001] [PMID: 24864038]
[68]
Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00830] [PMID: 32608981]
[69]
Bertrand, P. Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2095-2116.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.030] [PMID: 20223566]
[70]
Rana, Z.; Diermeier, S.; Hanif, M.; Rosengren, R.J. Understanding failure and improving treatment using hdac inhibitors for prostate cancer. Biomedicines, 2020, 8(2), 22.
[http://dx.doi.org/10.3390/biomedicines8020022] [PMID: 32019149]
[71]
Yamamoto, N.; Renfrew, A.K.; Kim, B.J.; Bryce, N.S.; Hambley, T.W. Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. J. Med. Chem., 2012, 55(24), 11013-11021.
[http://dx.doi.org/10.1021/jm3014713] [PMID: 23199008]
[72]
Munteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans., 2015, 44(31), 13796-13808.
[http://dx.doi.org/10.1039/C5DT02101D] [PMID: 26148776]
[73]
Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[74]
Lee, V.E.Y.; Lim, Z.C.; Chew, S.L.; Ang, W.H. Strategy for traceless codrug delivery with platinum(IV) prodrug complexes using self-immolative linkers. Inorg. Chem., 2021, 60(3), 1823-1831.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03299] [PMID: 33464875]
[75]
Green, B.P.; Renfrew, A.K.; Glenister, A.; Turner, P.; Hambley, T.W. The influence of the ancillary ligand on the potential of cobalt (III) complexes to act as chaperones for hydroxamic acid-based drugs. Dalton Trans., 2017, 46(45), 15897-15907.
[http://dx.doi.org/10.1039/C7DT03645K] [PMID: 29116280]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy