Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Investigation of Ginseng-Ophiopogon Injection on Enhancing Physical Function by Pharmacogenomics and Metabolomics Evaluation

Author(s): Chen Meimei, Zhu Jingru, Gan Huijuan* and Li Candong

Volume 27, Issue 19, 2024

Published on: 07 November, 2023

Page: [2838 - 2849] Pages: 12

DOI: 10.2174/0113862073244102231020050502

open access plus

Abstract

Background: Ginseng-ophiopogon injection (GOI) is a clinically commonly used drug for Qi deficiency syndrome characterized by decreased physical function in China. This study aimed to clarify common pharmacological mechanisms of GOI in enhancing physical function.

Methods: We performed an integrative strategy of weight-loaded swimming tests in cold water (5.5°C), hepatic glycogen and superoxide dismutase (SOD) detections, GC-TOF/MS-based metabolomics, multivariate statistical techniques, network pharmacology of known targets and constituents, and KEGG pathway analysis of GOI.

Results: Compared with the control group, GOI showed significant increases in the weightloaded swimming time, hepatic levels of glycogen and SOD. Additionally, 34 significantly differential serum metabolites referred to glycolysis, gluconeogenesis and arginine biosynthesis were affected by GOI. The target collection revealed 98 metabolic targets and 50 experimentreported drug targets of ingredients in GOI involved in enhancing physical function. Further, the PPI network analysis revealed that 8 ingredients of GOI, such as ginsenoside Re, ginsenoside Rf, ginsenoside Rg1, and notoginsenoside R1, were well-associated with 48 hub targets, which had good ability in enhancing physical function. Meanwhile, nine hub proteins, such as SOD, mechanistic target of Rapamycin (mTOR), and nitric oxide synthases, were confirmed to be affected by GOI. Finally, 98 enriched KEGG pathways (P<0.01 and FDR<0.001) of GOI were obtained from 48 hub targets of the PPI network. Among them, pathways in cancer, Chagas disease, lipid and atherosclerosis, and PI3K-Akt signaling pathway ranked top four.

Conclusions: This study provided an integrative and efficient approach to understand the molecular mechanism of GOI in enhancing physical function.

[1]
Zhang, Y.; Zhang, L.; Zhao, X.; Liu, Y.; Du, S.; Li, J.; Liu, T.; Liu, F.; Su, Z.; Jiang, Y.; Ding, X. Symptom characteristics and prevalence of qi deficiency syndrome in people of varied health status and ages: A multicenter cross-sectional study. J. Trad. Chin. Med. Sci., 2015, 2(3), 173-182.
[http://dx.doi.org/10.1016/j.jtcms.2016.01.017]
[2]
Lu, L.; Zheng, G.; Wang, Y. An overview of systematic reviews of shenmai injection for healthcare. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/840650] [PMID: 24669229]
[3]
Liang, J.; Xu, D.; Wei, Y. Clinical observation of Shenmai injection treatment for cancer related fatigue. Zhongguo Shiyan Fangjixue Zazhi, 2012, 18(17), 279-281.
[4]
Zhang, G.; Zhou, X. Effect of Shenmai injection on blood routine and immune function in elderly patients with lung cancer after chemotherapy. Zhongguo Laonianxue Zazhi, 2018, 38, 5944-5946.
[5]
Pan, Y.; Ren, X.; Zhang, X.; Guan, D.; Zhu, M.; Lin, L. Effects of Shenmai injection on postoperative fatigue in hysterectomy patients. Chinese J. Integr. Tradit. Western Med., 2019, 39(05), 31-35.
[6]
Lee, J.S.; Song, J.H.; Sohn, N.W.; Shin, J.W. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother. Res., 2013, 27(9), 1270-1276.
[http://dx.doi.org/10.1002/ptr.4852] [PMID: 23042638]
[7]
Kim, D.H.; Kim, D.W.; Jung, B.H.; Lee, J.H.; Lee, H.; Hwang, G.S.; Kang, K.S.; Lee, J.W. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J. Ginseng Res., 2019, 43(2), 326-334.
[http://dx.doi.org/10.1016/j.jgr.2018.12.002] [PMID: 30976171]
[8]
Kim, D.H.; Park, C.H.; Park, D.; Choi, Y.J.; Park, M.H.; Chung, K.W.; Kim, S.R.; Lee, J.S.; Chung, H.Y. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Arch. Pharm. Res., 2014, 37(6), 813-820.
[http://dx.doi.org/10.1007/s12272-013-0223-2] [PMID: 23918648]
[9]
Fang, H.; Yang, S.; Luo, Y.; Zhang, C.; Rao, Y.; Liu, R.; Feng, Y.; Yu, J. Notoginsenoside R1 inhibits vascular smooth muscle cell proliferation, migration and neointimal hyperplasia through PI3K/Akt signaling. Sci. Rep., 2018, 8(1), 7595.
[http://dx.doi.org/10.1038/s41598-018-25874-y] [PMID: 29765072]
[10]
Huang, G.; Zou, B.; Lv, J.; Li, T.; Huai, G.; Xiang, S.; Lu, S.; Luo, H.; Zhang, Y.; Jin, Y.; Wang, Y. Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway. Int. J. Mol. Med., 2017, 39(3), 559-568.
[http://dx.doi.org/10.3892/ijmm.2017.2864] [PMID: 28112381]
[11]
Arneth, B.; Arneth, R.; Shams, M. Metabolomics of type 1 and type 2 diabetes. Int. J. Mol. Sci., 2019, 20(10), 2467.
[http://dx.doi.org/10.3390/ijms20102467] [PMID: 31109071]
[12]
Tao, Y.; Chen, X.; Cai, H.; Li, W.; Cai, B.; Chai, C.; Di, L.; Shi, L.; Hu, L. Untargeted serum metabolomics reveals Fu-Zhu-Jiang-Tang tablet and its optimal combination improve an impaired glucose and lipid metabolism in type II diabetic rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1040, 222-232.
[http://dx.doi.org/10.1016/j.jchromb.2016.11.012] [PMID: 27866845]
[13]
Gaggini, M.; Carli, F.; Rosso, C.; Younes, R.; D’Aurizio, R.; Bugianesi, E.; Gastaldelli, A. Altered metabolic profile and adipocyte insulin resistance mark severe liver fibrosis in patients with chronic liver disease. Int. J. Mol. Sci., 2019, 20(24), 6333.
[http://dx.doi.org/10.3390/ijms20246333] [PMID: 31888144]
[14]
Wang, Y.; Bi, C.; Pang, W.; Liu, Y.; Yuan, Y.; Zhao, H.; Zhang, T.; Zhao, Y.; Li, Y. Plasma metabolic profiling analysis of gout party on acute gout arthritis rats based on UHPLC–Q–TOF/MS combined with multivariate statistical analysis. Int. J. Mol. Sci., 2019, 20(22), 5753.
[http://dx.doi.org/10.3390/ijms20225753] [PMID: 31731809]
[15]
Sun, Y.; Wang, Y.; Guo, Z.; Du, K.; Meng, D. Systems pharmacological approach to investigate the mechanism of Ohwia caudata for application to alzheimer’s disease. Molecules, 2019, 24(8), 1499.
[http://dx.doi.org/10.3390/molecules24081499] [PMID: 30999553]
[16]
Xinqiang, S.; Yu, Z.; Ningning, Y.; Erqin, D.; Lei, W.; Hongtao, D. Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology. Life Sci., 2020, 240117063
[http://dx.doi.org/10.1016/j.lfs.2019.117063] [PMID: 31734262]
[17]
Jiang, Y.; Zhong, M.; Long, F.; Yang, R.; Zhang, Y.; Liu, T. Network pharmacology-based prediction of active ingredients and mechanisms of lamiophlomis rotata (benth) kudo against rheumatoid arthritis. Front. Pharmacol., 2019, 10, 1435.
[http://dx.doi.org/10.3389/fphar.2019.01435] [PMID: 31849678]
[18]
Pang, H.Q.; Yue, S.J.; Tang, Y.P.; Chen, Y.Y.; Tan, Y.J.; Cao, Y.J.; Shi, X.Q.; Zhou, G.S.; Kang, A.; Huang, S.L.; Shi, Y.J.; Sun, J.; Tang, Z.S.; Duan, J.A. Duan JA integrated metabolomics and network pharmacology approach to explain possible action mechanisms of Xin-Sheng-Hua granule for treating anemia. Front. Pharmacol., 2018, 9, 165.
[http://dx.doi.org/10.3389/fphar.2018.00165] [PMID: 29551975]
[19]
Wei, S.; Qian, L.; Niu, M.; Liu, H.; Yang, Y.; Wang, Y.; Zhang, L.; Zhou, X.; Li, H.; Wang, R.; Li, K.; Zhao, Y. The modulatory properties of Li-Ru-Kang treatment on hyperplasia of mammary glands using an integrated approach. Front. Pharmacol., 2018, 9, 651.
[http://dx.doi.org/10.3389/fphar.2018.00651] [PMID: 29971006]
[20]
National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2010.
[21]
Qi, B.; Ouyang, J.; Huang, H.; Zhang, L.; Zhang, Z. Effects of ginsenosides-Rb1. on exercise-induced oxidative stress in forced swimming mice. Pharmacogn. Mag., 2014, 10(40), 458-463.
[http://dx.doi.org/10.4103/0973-1296.141818] [PMID: 25422546]
[22]
Chen, M.; Yang, F.; Kang, J.; Gan, H.; Lai, X.; Gao, Y. Metabolomic investigation into molecular mechanisms of a clinical herb prescription against metabolic syndrome by a systematic approach. RSC Advances, 2017, 7(87), 55389-55399.
[http://dx.doi.org/10.1039/C7RA09779D]
[23]
Wang, B.; Sun, H.; Wu, X.; Jiang, L.; Guan, L.L.; Liu, J. Arteriovenous blood metabolomics: An efficient method to determine the key metabolic pathway for milk synthesis in the intra-mammary gland. Sci. Rep., 2018, 8(1), 5598.
[http://dx.doi.org/10.1038/s41598-018-23953-8] [PMID: 29618747]
[24]
Glymenaki, M.; Barnes, A.; Hagan, S.O.; Warhurst, G.; McBain, A.J.; Wilson, I.D.; Kell, D.B.; Else, K.J.; Cruickshank, S.M. Stability in metabolic phenotypes and inferred metagenome profiles before the onset of colitis-induced inflammation. Sci. Rep., 2017, 7(1), 8836.
[http://dx.doi.org/10.1038/s41598-017-08732-1] [PMID: 28821731]
[25]
Li, Z.; Lin, C.; Xu, J.; Wu, H.; Feng, J.; Huang, H. The relations between metabolic variations and genetic evolution of different species. Anal. Biochem., 2015, 477, 105-114.
[http://dx.doi.org/10.1016/j.ab.2015.02.024] [PMID: 25728943]
[26]
Lv, Y.; Hou, X.; Zhang, Q.; Li, R.; Xu, L.; Chen, Y.; Tian, Y.; Sun, R.; Zhang, Z.; Xu, F. Untargeted metabolomics study of the in vitro anti-hepatoma effect of saikosaponin d in combination with NRP-1 knockdown. Molecules, 2019, 24(7), 1423.
[http://dx.doi.org/10.3390/molecules24071423] [PMID: 30978940]
[27]
KEGG. KEGG Database. 2022. Available From: https://www.kegg.jp/kegg/kegg1.html
[28]
Pubchem. Pubchem database. 2022. Available From: https://pubchemncbinlmnihgov
[29]
Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: Integrating information about genes, proteins and diseases. Trends Genet., 1997, 13(4), 163.
[http://dx.doi.org/10.1016/S0168-9525(97)01103-7] [PMID: 9097728]
[30]
Meireles, L.M.C.; Dömling, A.S.; Camacho, C.J. ANCHOR: A web server and database for analysis of protein-protein interaction binding pockets for drug discovery. Nucleic Acids Res., 2010, 38(Web Server), W407-W411.
[http://dx.doi.org/10.1093/nar/gkq502] [PMID: 20525787]
[31]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[32]
Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and anti-fatigue constituents of okra. Nutrients, 2015, 7(10), 8846-8858.
[http://dx.doi.org/10.3390/nu7105435] [PMID: 26516905]
[33]
Jun, L. GW24-e3722 Ebselen protected myocardium from overtraining-induced oxidative damage in rats. Heart, 2013, 99(3)(Suppl. 3), A97.3-A98.
[http://dx.doi.org/10.1136/heartjnl-2013-304613.265]
[34]
Camic, C.L.; Housh, T.J.; Zuniga, J.M.; Hendrix, R.C.; Mielke, M.; Johnson, G.O.; Schmidt, R.J. Effects of arginine-based supplements on the physical working capacity at the fatigue threshold. J. Strength Cond. Res., 2010, 24(5), 1306-1312.
[http://dx.doi.org/10.1519/JSC.0b013e3181d68816] [PMID: 20386475]
[35]
Sun, Y.; Chen, Y.; Xu, M.; Liu, C.; Shang, H.; Wang, C. Shenmai Injection Supresses Glycolysis and Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant A549/DDP Cells via the AKT-mTOR-c-Myc Signaling Pathway. BioMed Res. Int., 2020, 2020(7), 1-10.
[http://dx.doi.org/10.1155/2020/9243681] [PMID: 32685545]
[36]
Zhang, W.; Tao, X.J.; Cheng, J. [Effect of shenmai injection on patients suffering from malnutrition-inflammation complex syndrome during the maintenance hemodialysis]. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2009, 29(8), 703-706.
[PMID: 19848201]
[37]
Yuan, H.; Sun, Y.; Chen, Q. Effect of Shenmai injection on acute myocardial infarction and its effect on serum Copeptin,NF-κB and markers of myocardial injury. Yunnan J. Trad. Chin. Med. Mater. Med., 2021, 4, 51-53.
[38]
Zhang, Y.; Zhao, Y.; Ran, Y.; Guo, J.; Cui, H.; Liu, S. Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity. Transl. Neurosci., 2020, 11(1), 215-226.
[http://dx.doi.org/10.1515/tnsci-2020-0118] [PMID: 33335762]
[39]
Apicella, M.; Giannoni, E.; Fiore, S.; Ferrari, K.J.; Fernández-Pérez, D.; Isella, C.; Granchi, C.; Minutolo, F.; Sottile, A.; Comoglio, P.M.; Medico, E.; Pietrantonio, F.; Volante, M.; Pasini, D.; Chiarugi, P.; Giordano, S.; Corso, S. Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab., 2018, 28(6), 848-865.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.08.006] [PMID: 30174307]
[40]
Li, L.; Yang, D.; Li, J.; Niu, L.; Chen, Y.; Zhao, X.; Oduro, P.K.; Wei, C.; Xu, Z.; Wang, Q.; Li, Y. Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation. BMC Complement. Med. Ther., 2020, 20(1), 112.
[http://dx.doi.org/10.1186/s12906-020-02905-8] [PMID: 32293408]
[41]
Chen, F.F.; Lin, L.N.; Miao, J.X. [Protective effect of Shenmai injection on lung injury induced by cardiac pulmonary bypass]. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2009, 29(5), 414-417.
[PMID: 19673331]

© 2025 Bentham Science Publishers | Privacy Policy