Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Evaluation of Supervised Machine Learning Algorithms and Computational Structural Validation of Single Nucleotide Polymorphisms Related to Acute Liver Injury with Paracetamol

Author(s): Kannan Sridharan*, Ambritha Balasundaram, Thirumal Kumar D and George Priya Doss C

Volume 24, Issue 10, 2023

Published on: 03 November, 2023

Page: [684 - 699] Pages: 16

DOI: 10.2174/0113892002267867231101051310

Price: $65

Abstract

Aims: To identify single nucleotide polymorphisms (SNPs) of paracetamol-metabolizing enzymes that can predict acute liver injury.

Background: Paracetamol is a commonly administered analgesic/antipyretic in critically ill and chronic renal failure patients and several SNPs influence the therapeutic and toxic effects.

Objective: To evaluate the role of machine learning algorithms (MLAs) and bioinformatics tools to delineate the predictor SNPs as well as to understand their molecular dynamics.

Methods: A cross-sectional study was undertaken by recruiting critically ill patients with chronic renal failure and administering intravenous paracetamol as a standard of care. Serum concentrations of paracetamol and the principal metabolites were estimated. Following SNPs were evaluated: CYP2E1*2, CYP2E1_-1295G>C, CYP2D6*10, CYP3A4*1B, CYP3A4*2, CYP1A2*1K, CYP1A2*6, CYP3A4*3, and CYP3A5*7. MLAs were used to identify the predictor genetic variable for acute liver failure. Bioinformatics tools such as Predict SNP2 and molecular docking (MD) were undertaken to evaluate the impact of the above SNPs with binding affinity to paracetamol.

Results: CYP2E1*2 and CYP1A2*1C genotypes were identified by MLAs to significantly predict hepatotoxicity. The predictSNP2 revealed that CYP1A2*3 was highly deleterious in all the tools. MD revealed binding energy of -5.5 Kcal/mol, -6.9 Kcal/mol, and -6.8 Kcal/mol for CYP1A2, CYP1A2*3, and CYP1A2*6 against paracetamol. MD simulations revealed that CYP1A2*3 and CYP1A2*6 missense variants in CYP1A2 affect the binding ability with paracetamol. In-silico techniques found that CYP1A2*2 and CYP1A2*6 are highly harmful. MD simulations revealed CYP3A4*2 (A>G) had decreased binding energy with paracetamol than CYP3A4, and CYP3A4*2 (A>T) and CYP3A4*3 both have greater binding energy with paracetamol.

Conclusion: Polymorphisms in CYP2E1, CYP1A2, CYP3A4, and CYP3A5 significantly influence paracetamol's clinical outcomes or binding affinity. Robust clinical studies are needed to identify these polymorphisms' clinical impact on the pharmacokinetics or pharmacodynamics of paracetamol.

Graphical Abstract

[1]
Sridharan, K.; Hasan, H.; Al Jufairi, M.; Al Daylami, A.; Abdul Azeez Pasha, S.; Al Ansari, E. Drug utilisation in adult, paediatric and neonatal intensive care units, with an emphasis on systemic antimicrobials. Anaesthesiol. Intensive Ther., 2021, 53(1), 18-24.
[http://dx.doi.org/10.5114/ait.2021.103628] [PMID: 33625820]
[2]
Sridharan, K.; Shah, S.; Al Segai, O.; Mansoor, E.; Hammad, M.; Farid, E. A drug utilization and drug interaction study in renal transplant patients: Implications for an urgent need for drug deprescribing. Int. J. Risk Saf. Med., 2022.
[http://dx.doi.org/10.3233/JRS-210072] [PMID: 36442212]
[3]
Gummin, D.D.; Mowry, J.B.; Beuhler, M.C.; Spyker, D.A.; Bronstein, A.C.; Rivers, L.J.; Pham, N.P.T.; Weber, J. 2020 Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 38th Annual Report. Clin. Toxicol., 2021, 59(12), 1282-1501.
[http://dx.doi.org/10.1080/15563650.2021.1989785] [PMID: 34890263]
[4]
Popiolek, I.; Hydzik, P.; Jagielski, P.; Zrodlowska, M.; Mystek, K.; Porebski, G. Risk factors for hepatotoxicity due to paracetamol overdose in adults. Medicina, 2021, 57(8), 752.
[http://dx.doi.org/10.3390/medicina57080752] [PMID: 34440958]
[5]
Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-induced hepatotoxicity: A comprehensive update. J. Clin. Transl. Hepatol., 2016, 4(2), 131-142.
[PMID: 27350943]
[6]
Kramer, L.; Jordan, B.; Druml, W.; Bauer, P.; Metnitz, P.G.H. Incidence and prognosis of early hepatic dysfunction in critically ill patients—A prospective multicenter study. Crit. Care Med., 2007, 35(4), 1099-e7.
[http://dx.doi.org/10.1097/01.CCM.0000259462.97164.A0] [PMID: 17334250]
[7]
Sridharan, K.; Al Jufairi, M.; Al Ansari, E.; Jasim, A.; Eltayeb Diab, D.; Al Marzooq, R.; Al Madhoob, A. Evaluation of urinary acetaminophen metabolites and its association with the genetic polymorphisms of the metabolising enzymes, and serum acetaminophen concentrations in preterm neonates with patent ductus arteriosus. Xenobiotica, 2021, 51(11), 1335-1342.
[http://dx.doi.org/10.1080/00498254.2021.1982070] [PMID: 34529545]
[8]
Rotundo, L.; Pyrsopoulos, N. Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World J. Hepatol., 2020, 12(4), 125-136.
[http://dx.doi.org/10.4254/wjh.v12.i4.125] [PMID: 32685105]
[9]
Sridharan, K.; Ramanathan, M.; Al Banna, R. Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin. Int. J. Clin. Pharm., 2023, 45(1), 79-87.
[http://dx.doi.org/10.1007/s11096-022-01471-y] [PMID: 36306062]
[10]
Thanacoody, H.K.R.; Gray, A.; Dear, J.W.; Coyle, J.; Sandilands, E.A.; Webb, D.J.; Lewis, S.; Eddleston, M.; Thomas, S.H.L.; Bateman, D.N. Scottish and Newcastle Antiemetic Pre-treatment for paracetamol poisoning study (SNAP). BMC Pharmacol. Toxicol., 2013, 14(1), 20.
[http://dx.doi.org/10.1186/2050-6511-14-20] [PMID: 23556549]
[11]
LiverTox Clinical and research information on drug-induced liver injury. Adverse Drug Reaction Probability Scale (Naranjo) in Drug Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases; 2012-.: Bethesda (MD),., 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548069/
[12]
Sridharan, K.; Qader, A.M.; Hammad, M.; Jassim, A.; Diab, D.E.; Abraham, B.; Hasan, H.M.S.N.; Pasha, S.A.A.; Shah, S. Evaluation of the association between single nucleotide polymorphisms of metabolizing enzymes with the serum concentration of paracetamol and its metabolites. Metabolites, 2022, 12(12), 1235.
[http://dx.doi.org/10.3390/metabo12121235] [PMID: 36557273]
[13]
Diab, D.E.; Sridharan, K. Development of urinary assay methods for the estimation of paracetamol glucuronide and paracetamol sulphate in preterm neonates with patent Ductus arteriosus. Curr. Chromatogr., 2022, 9(1), e021221198479.
[http://dx.doi.org/10.2174/2213240608666211202092036]
[14]
Supandi, A.; Saefuddin, A.; Sulvianti, I.D. Two step cluster application to classify villages in kabupaten madiun based on village potential data. Xplore: J. Statistics, 2020, 10(1), 12-26.
[http://dx.doi.org/10.29244/xplore.v10i1.272]
[15]
Bendl, J.; Musil, M. Štourač, J.; Zendulka, J.; Damborský, J.; Brezovský, J. PredictSNP2: A unified platform for accurately evaluating SNP effects by exploiting the different characteristics of variants in distinct genomic regions. PLOS Comput. Biol., 2016, 12(5), e1004962.
[http://dx.doi.org/10.1371/journal.pcbi.1004962] [PMID: 27224906]
[16]
Waring, R.H. Cytochrome P450: Genotype to phenotype. Xenobiotica, 2020, 50(1), 9-18.
[http://dx.doi.org/10.1080/00498254.2019.1648911] [PMID: 31411087]
[17]
Sievers, F; Higgins, D.G. Clustal omega. Curr. Protoc. Bioinformat., 2014, 48 3.13.1-3.13.16
[http://dx.doi.org/10.1002/0471250953.bi0313s48]
[18]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[19]
Kaplan, W.; Littlejohn, T.G. Swiss-PDB viewer (deep view). Brief. Bioinform., 2001, 2(2), 195-197.
[http://dx.doi.org/10.1093/bib/2.2.195] [PMID: 11465736]
[20]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[21]
Goodsell, D.S.; Sanner, M.F.; Olson, A.J.; Forli, S. The autodock suite at 30. prot. sci. a publicat. Prot. Soci., 2021, 30(1), 31-43.
[22]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[23]
Hassan, N.M.; Alhossary, A.A.; Mu, Y.; Kwoh, C.K. Protein-ligand blind docking using quickVina-W with inter-process spatio-temporal integration. Sci. Rep., 2017, 7(1), 15451.
[http://dx.doi.org/10.1038/s41598-017-15571-7] [PMID: 29133831]
[24]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[25]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[26]
Schuler, L.D.; Daura, X.; van Gunsteren, W.F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem., 2001, 22(11), 1205-1218.
[http://dx.doi.org/10.1002/jcc.1078]
[27]
Petrova, S.S.; Solov’ev, A.D. The origin of the method of steepest descent. Hist. Math., 1997, 24(4), 361-375.
[http://dx.doi.org/10.1006/hmat.1996.2146]
[28]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[29]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[30]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[31]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H]
[32]
Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem., 1992, 13(8), 952-962.
[http://dx.doi.org/10.1002/jcc.540130805]
[33]
Minerali, E.; Foil, D.H.; Zorn, K.M.; Lane, T.R.; Ekins, S. Comparing machine learning algorithms for predicting Drug-Induced Liver Injury (DILI). Mol. Pharm., 2020, 17(7), 2628-2637.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00326] [PMID: 32422053]
[34]
Panella, L.; Volontè, L.; Poloni, N.; Caserta, A.; Ielmini, M.; Caselli, I.; Lucca, G.; Callegari, C. Pharmacogenetic testing in acute and chronic pain: A preliminary study. Medicina, 2019, 55(5), 147.
[http://dx.doi.org/10.3390/medicina55050147] [PMID: 31100953]
[35]
Swift, O.; Sharma, S.; Ramanarayanan, S.; Umar, H.; Laws, K.R.; Vilar, E.; Farrington, K. Prevalence and outcomes of chronic liver disease in patients receiving dialysis: Systematic review and meta-analysis. Clin. Kidney J., 2022, 15(4), 747-757.
[http://dx.doi.org/10.1093/ckj/sfab230] [PMID: 35371444]
[36]
Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary. Pharmacogenet. Genomics, 2015, 25(8), 416-426.
[http://dx.doi.org/10.1097/FPC.0000000000000150] [PMID: 26049587]
[37]
Athersuch, T.J.; Antoine, D.J.; Boobis, A.R.; Coen, M.; Daly, A.K.; Possamai, L.; Nicholson, J.K.; Wilson, I.D. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: A perspective. Toxicol. Res., 2018, 7(3), 347-357.
[http://dx.doi.org/10.1039/c7tx00340d] [PMID: 30090586]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy