Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Aims: The aims of this study are to synthesize new derivatives of sodium alginate that improve the inherent properties, such as hydrogel strengthening, and create environmental sensitivity, such as pH sensitivity, for use in drug delivery.
Background: Today, hydrogels, due to outstanding properties such as biodegradability, biocompatibility, mechanical properties, and response to stimuli properties, are widely used as harmless biomaterials in various fields in drug delivery, wound dressing, and tissue engineering. Stimulus-sensitive polymers significantly respond to slight changes in their environment. Different types of stimuli are used to influence the properties of polymers, the most important of which are temperature and pH because these are two vital factors in the human body; hence, temperature-sensitive and pHsensitive hydrogels have been extensively studied. The ability to absorb water and swell the hydrogel is due to hydrophilic chains in the hydrogel network, and water absorption by hydrogel can be controlled by response to the stimuli. Since hydrogels mimic human tissue, the ability to retain water in them is essential. As a result, it is considered in many biomedical drug delivery systems. Stimulusresponsive swelling can control diffusion out of and into the hydrogel network, which allows temporal and spatial control of drug release. When a drug is loaded onto a biodegradable and stimulisensitive hydrogel, the drug delivery system has the added advantage of sustained release of the drug, which reduces side effects.
Methods: In this study, two different hydrocarbons, [1,3-diaminopropane (DAP)] as a short-chain hydrocarbon, and [1,7-diaminoheptane (DAH)] as a long-chain hydrocarbon were grafted onto three types ofsodium alginate (SA), through amide bond linkages. The hydrogel copolymer matrices were compared with sodium alginate (SA) beads. The graft copolymers were characterized using FTIR, 1HNMR, XRD spectroscopy, elemental analysis (CHNS) and thermal analysis (TGA, DTA and DSC). An environmental scanning electron microscope (ESEM) was used to investigate the surface morphology of hydrogels.
Results: Effects of variables such as the length of hydrocarbon chains cross-linked to alginate, temperature, pH, and cross-linkers on the properties of hydrogels investigated in the temperature range of 2-70 ˚C and two different pH values (4.4 and 7.4). The results showed that when the hydrocarbon chain length of diamines decreases, the extent of cross-linking and strength of the hydrogels are increased. Other results suggest that the hydrogels obtained from high-viscosity alginate derivatives had positive pH sensitivity. Hydrogels prepared in this study demonstrated good mechanical and swelling ratios that are necessary for wound dressing.
Conclusion: DAP-g-SA and DAH-g-SA pH-sensitive hydrogels were successfully synthesized through amide bond linkages. The new synthesis derivatives showed lower swelling levels at low pH (4.4). In contrast, their swelling levels at higher pH (7.4) were significantly enhanced. Higher swelling degree could be obtained at high pH. pH-responsive hydrogels are especially useful for various biological applications due to their unique feature of controlled swelling, biodegradability, biocompatibility, and fluid retention in their network structures. pH-responsive hydrogels, as intelligent systems, can be used in controlled-release drug delivery systems such as insulin delivery.
[1]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[2]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54(1), 3-12.
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[3]
Chatterjee, S. Stimuli-responsive hydrogels: An interdisciplinary overview. In: Hydrogels; IntechOpen; , 2019.
[4]
Ozdil, D.; Wimpenny, I.; Aydin, H.M.; Yang, Y. Science and principles of biodegradable and bioresorbable medical polymers. In: 13 - Biocompatibility of biodegradable medical polymers; Xiang, Z; Woodhead Publishing, 2017, pp. 379-414.
[5]
Ahmad Raus, R.; Wan Nawawi, W.M.F.; Nasaruddin, R.R.; Nasaruddin, R.R. Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 2021, 16(3), 280-306.
[http://dx.doi.org/10.1016/j.ajps.2020.10.001] [PMID: 34276819]
[http://dx.doi.org/10.1016/j.ajps.2020.10.001] [PMID: 34276819]
[6]
Lee, H.; Pietrasik, J.; Sheiko, S.S.; Matyjaszewski, K. Stimuli-responsive molecular brushes. Prog. Polym. Sci., 2010, 35(1-2), 24-44.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.11.002]
[http://dx.doi.org/10.1016/j.progpolymsci.2009.11.002]
[7]
Song, J.; Yu, R.; Wang, L.; Zheng, S.; Li, X. Poly(N-vinylpyrrolidone)-grafted poly(Nisopropylacrylamide) copolymers: Synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer , 2011, 52(9), 1983-1997.
[8]
Wang, F.Q.; Li, P.; Zhang, J.P.; Wang, A.Q.; Wei, Q. pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Pharm. Dev. Technol., 2011, 16(3), 228-236.
[http://dx.doi.org/10.3109/10837451003592217] [PMID: 20136349]
[http://dx.doi.org/10.3109/10837451003592217] [PMID: 20136349]
[9]
Kimura, K.; Sakamoto, H.; Nakamura, T. Application of photoresponsive polymers carrying crown ether and spirobenzopyran side chains to photochemical valve. J. Nanosci. Nanotechnol., 2006, 6(6), 1741-1749.
[http://dx.doi.org/10.1166/jnn.2006.232] [PMID: 17025078]
[http://dx.doi.org/10.1166/jnn.2006.232] [PMID: 17025078]
[10]
Huang, R.; Kostanski, L.K.; Filipe, C.D.M.; Ghosh, R. Environment-responsive hydrogel-based ultrafiltration membranes for protein bioseparation. J. Membr. Sci., 2009, 336(1-2), 42-49.
[http://dx.doi.org/10.1016/j.memsci.2009.03.002]
[http://dx.doi.org/10.1016/j.memsci.2009.03.002]
[11]
Chen, H.; Palmese, G.R.; Elabd, Y.A. Electrosensitive permeability of membranes with oriented polyelectrolyte nanodomains. Macromolecules, 2007, 40(4), 781-782.
[http://dx.doi.org/10.1021/ma062678q]
[http://dx.doi.org/10.1021/ma062678q]
[12]
Yang, W.C.; Xie, R.; Pang, X.Q.; Ju, X-J.; Chu, L-Y. Preparation and characterization of dual stimuli-responsive microcapsules with a superparamagnetic porous membrane and thermo-responsive gates. J. Membr. Sci., 2008, 321(2), 324-330.
[http://dx.doi.org/10.1016/j.memsci.2008.05.016]
[http://dx.doi.org/10.1016/j.memsci.2008.05.016]
[13]
Ramesh Babu, V.; Krishna Rao, K.S.V.; Sairam, M.; Naidu, B.V.K.; Hosamani, K.M.; Aminabhavi, T.M. pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J. Appl. Polym. Sci., 2006, 99(5), 2671-2678.
[http://dx.doi.org/10.1002/app.22760]
[http://dx.doi.org/10.1002/app.22760]
[14]
Chan, G.; Mooney, D.J. New materials for tissue engineering: Towards greater control over the biological response. Trends Biotechnol., 2008, 26(7), 382-392.
[http://dx.doi.org/10.1016/j.tibtech.2008.03.011] [PMID: 18501452]
[http://dx.doi.org/10.1016/j.tibtech.2008.03.011] [PMID: 18501452]
[15]
Hoffmann, J. Plötner, M.; Kuckling, D.; Fischer, W.J. Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens. Actuators A Phys., 1999, 77(2), 139-144.
[http://dx.doi.org/10.1016/S0924-4247(99)00080-1]
[http://dx.doi.org/10.1016/S0924-4247(99)00080-1]
[16]
Don, T.M.; Chen, H.R. Synthesis and characterization of AB-crosslinked graft copolymers based on maleilated chitosan and N-isopropylacrylamide. Carbohydr. Polym., 2005, 61(3), 334-347.
[http://dx.doi.org/10.1016/j.carbpol.2005.05.025]
[http://dx.doi.org/10.1016/j.carbpol.2005.05.025]
[17]
Işıklan, N.; Küçükbalcı, G. Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Eur. J. Pharm. Biopharm., 2012, 82(2), 316-331.
[http://dx.doi.org/10.1016/j.ejpb.2012.07.015] [PMID: 22906708]
[http://dx.doi.org/10.1016/j.ejpb.2012.07.015] [PMID: 22906708]
[18]
Wagner, A.M.; Gran, M.P.; Peppas, N.A. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm. Sin. B, 2018, 8(2), 147-164.
[http://dx.doi.org/10.1016/j.apsb.2018.01.013] [PMID: 29719776]
[http://dx.doi.org/10.1016/j.apsb.2018.01.013] [PMID: 29719776]
[19]
Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 2017, 3(1), 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[20]
Stanislawska, I.; Liwinska, W.; Lyp, M.; Stojek, Z.; Zabost, E. Recent advances in degradable hybrids of biomolecules and NGs for targeted delivery. Molecules, 2019, 24(10), 1873.
[http://dx.doi.org/10.3390/molecules24101873] [PMID: 31096669]
[http://dx.doi.org/10.3390/molecules24101873] [PMID: 31096669]
[21]
Kondiah, P.P.D.; Choonara, Y.E.; Tomar, L.K.; Tyagi, C.; Kumar, P.; du Toit, L.C.; Marimuthu, T.; Modi, G.; Pillay, V. Development of a gastric absorptive, immediate responsive, oral protein-loaded versatile polymeric delivery system. AAPS PharmSciTech, 2017, 18(7), 2479-2493.
[http://dx.doi.org/10.1208/s12249-017-0725-1] [PMID: 28205143]
[http://dx.doi.org/10.1208/s12249-017-0725-1] [PMID: 28205143]
[22]
Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Md Akil, H. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C, 2015, 57(57), 414-433.
[http://dx.doi.org/10.1016/j.msec.2015.07.053] [PMID: 26354282]
[http://dx.doi.org/10.1016/j.msec.2015.07.053] [PMID: 26354282]
[23]
Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today, 2002, 7(10), 569-579.
[http://dx.doi.org/10.1016/S1359-6446(02)02255-9] [PMID: 12047857]
[http://dx.doi.org/10.1016/S1359-6446(02)02255-9] [PMID: 12047857]
[24]
Hu, J.; Chen, Y.; Li, Y.; Zhou, Z.; Cheng, Y. A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials, 2017, 112, 133-140.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.015] [PMID: 27760397]
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.015] [PMID: 27760397]
[25]
Mansoor, S.; Kondiah, P.P.D.; Choonara, Y.E. Advanced hydrogels for the controlled delivery of insulin. Pharmaceutics, 2021, 13(12), 2113.
[http://dx.doi.org/10.3390/pharmaceutics13122113] [PMID: 34959394]
[http://dx.doi.org/10.3390/pharmaceutics13122113] [PMID: 34959394]
[26]
Ćujić, N.; Trifković, K.; Bugarski, B.; Ibrić, S.; Pljevljakušić, D.; Šavikin, K. Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Ind. Crops Prod., 2016, 86, 120-131.
[http://dx.doi.org/10.1016/j.indcrop.2016.03.045]
[http://dx.doi.org/10.1016/j.indcrop.2016.03.045]
[27]
Liu, D.; Zhao, K.; Qi, M.; Li, S.; Xu, G.; Wei, J.; He, X. Preparation of protein molecularimprinted polysiloxane membrane using calcium alginate film as matrix and its application for cell culture. Polymers, 2018, 10(2), 170.
[http://dx.doi.org/10.3390/polym10020170] [PMID: 30966206]
[http://dx.doi.org/10.3390/polym10020170] [PMID: 30966206]
[28]
Apoorva, A.; Rameshbabu, A.P.; Dasgupta, S.; Dhara, S.; Padmavati, M. Novel pH-sensitive alginate hydrogel delivery system reinforced with gum tragacanth for intestinal targeting of nutraceuticals. Int. J. Biol. Macromol., 2020, 147, 675-687.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.027] [PMID: 31926225]
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.027] [PMID: 31926225]
[29]
George, M.; Abraham, T.E. pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. Int. J. Pharm., 2007, 335(1-2), 123-129.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.009] [PMID: 17147980]
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.009] [PMID: 17147980]
[30]
Zhang, J.; Wang, Q.; Wang, A. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater., 2010, 6(2), 445-454.
[http://dx.doi.org/10.1016/j.actbio.2009.07.001] [PMID: 19596091]
[http://dx.doi.org/10.1016/j.actbio.2009.07.001] [PMID: 19596091]
[31]
Karewicz, A.; Zasada, K.; Szczubiałka, K.; Zapotoczny, S.; Lach, R.; Nowakowska, M. “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int. J. Pharm., 2010, 385(1-2), 163-169.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.021] [PMID: 19840839]
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.021] [PMID: 19840839]
[32]
Tripathy, T.; Pandey, S.R.; Karmakar, N.C.; Bhagat, R.P.; Singh, R.P. Novel flocculating agent based on sodium alginate and acrylamide. Eur. Polym. J., 1999, 35(11), 2057-2072.
[http://dx.doi.org/10.1016/S0014-3057(98)00284-5]
[http://dx.doi.org/10.1016/S0014-3057(98)00284-5]
[33]
Patel, G.M.; Patel, C.P.; Trivedi, H.C. Ceric-induced grafting of methyl acrylate onto sodium salt of partially carboxymethylated sodium alginate. Eur. Polym. J., 1999, 35(2), 201-208.
[http://dx.doi.org/10.1016/S0014-3057(98)00123-2]
[http://dx.doi.org/10.1016/S0014-3057(98)00123-2]
[34]
Işıklan, N.; Kurşun, F.; İnal, M. Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr. Polym., 2010, 79(3), 665-672.
[http://dx.doi.org/10.1016/j.carbpol.2009.09.021]
[http://dx.doi.org/10.1016/j.carbpol.2009.09.021]
[35]
Pourjavadi, A.; Zohuriaan-Mehr, M. J. Modification of carbohydrate polymers via grafting in air. 2. Ceric-initiated graft copolymerization of acrylonitrile onto natural and modified polysaccharides. Starch/Staerke., 2002, 54(10), 482-488.
[36]
Elsayed, N.H.; Monier, M.; Alatawi, R.A.S. Synthesis and characterization of photo-crosslinkable 4-styryl-pyridine modified alginate. Carbohydr. Polym., 2016, 145, 121-131.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.006] [PMID: 27106159]
[http://dx.doi.org/10.1016/j.carbpol.2016.03.006] [PMID: 27106159]
[37]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[38]
Işıklan, N.; Kurşun, F. Synthesis and characterization of graft copolymer of sodium alginate and poly(itaconic acid) by the redox system. Polym. Bull., 2013, 70(3), 1065-1084.
[http://dx.doi.org/10.1007/s00289-012-0876-x]
[http://dx.doi.org/10.1007/s00289-012-0876-x]
[39]
Salisu, A.; Sanagi, M.M.; Abu Naim, A.; Abd Karim, K.J.; Wan Ibrahim, W.A.; Abdulganiyu, U. Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym. Bull., 2016, 73(2), 519-537.
[http://dx.doi.org/10.1007/s00289-015-1504-3]
[http://dx.doi.org/10.1007/s00289-015-1504-3]
[40]
García-Astrain, C.; Avérous, L. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr. Polym., 2018, 190, 271-280.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.086] [PMID: 29628248]
[http://dx.doi.org/10.1016/j.carbpol.2018.02.086] [PMID: 29628248]
[41]
Soares, J.P.; Dos Santos, J.E.; Chierice, G.O. Cavalheiro, É.T.G. Thermal behavior of alginic acid and its sodium salt. Eclét. Quím, 2004, 29(2), 57-63.
[http://dx.doi.org/10.26850/1678-4618eqj.v29.2.2004.p57-63]
[http://dx.doi.org/10.26850/1678-4618eqj.v29.2.2004.p57-63]
[42]
Segato, M.P. Cavalheiro, É.T.G Thermal analysis of ammonium, mono-, di- and triethanolammonium alginates. J. Therm. Anal. Calorim., 2007, 87(3), 737-741.
[http://dx.doi.org/10.1007/s10973-006-7753-5]
[http://dx.doi.org/10.1007/s10973-006-7753-5]
[43]
Dinu, V.; Yakubov, G.E.; Lim, M.; Hurst, K.; Adams, G.G.; Harding, S.E.; Fisk, I.D. Mucin immobilization in calcium alginate: A possible mucus mimetic tool for evaluating mucoadhesion and retention of flavour. Int. J. Biol. Macromol., 2019, 138, 831-836.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.148] [PMID: 31351956]
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.148] [PMID: 31351956]
[44]
Eiselt, P.; Yeh, J.; Latvala, R.K.; Shea, L.D.; Mooney, D.J. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 2000, 21(19), 1921-1927.
[http://dx.doi.org/10.1016/S0142-9612(00)00033-8] [PMID: 10941913]
[http://dx.doi.org/10.1016/S0142-9612(00)00033-8] [PMID: 10941913]
[45]
Durkut, S.; Elçin, Y.M. Synthesis and characterization of thermosensitive poly(N ‐Vinyl Caprolactam)‐grafted‐aminated alginate hydrogels. Macromol. Chem. Phys., 2020, 221(2)1900412
[http://dx.doi.org/10.1002/macp.201900412]
[http://dx.doi.org/10.1002/macp.201900412]
[46]
Matyash, M.; Despang, F.; Ikonomidou, C.; Gelinsky, M. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Tissue Eng. Part C Methods, 2014, 20(5), 401-411.
[http://dx.doi.org/10.1089/ten.tec.2013.0252] [PMID: 24044417]
[http://dx.doi.org/10.1089/ten.tec.2013.0252] [PMID: 24044417]