Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Protective Effects of Alpha-lipoic Acid, Resveratrol, and Apigenin Against Oxidative Damages, Histopathological Changes, and Mortality Induced by Lung Irradiation in Rats

Author(s): Nasrin Seyedpour, Elahe Motevaseli, Shahram Taeb, Azin Nowrouzi, Fatemeh Mirzaei, Mina Bahri, Hamid Reza Dehghan-Manshadi, Mohsen Zhaleh, Khodabakhsh Rashidi, Rasool Azmoonfar, Rasoul Yahyapour and Masoud Najafi*

Volume 17, Issue 1, 2024

Published on: 31 October, 2023

Page: [99 - 110] Pages: 12

DOI: 10.2174/0118744710244357231018070313

Price: $65

Abstract

Aim: This study investigated the protective effects of three antioxidants on radiationinduced lung injury.

Background: Oxidative stress is one of the key outcomes of radiotherapy in normal tissues. It can induce severe injuries in lung tissue, which may lead to pneumonitis and fibrosis. Recently, interest in natural chemicals as possible radioprotectors has increased due to their reduced toxicity, cheaper price, and other advantages.

Objective: The present study was undertaken to evaluate the radioprotective effect of Alpha-lipoic Acid (LA), Resveratrol (RVT), and Apigenin (APG) against histopathological changes and oxidative damage and survival induced by ionizing radiation (IR) in the lung tissues of rats.

Methods: First, the lung tissue of 50 mature male Wistar rats underwent an 18 Gy gamma irradiation. Next, the rats were sacrificed and transverse sections were obtained from the lung tissues and stained with hematoxylin and eosin (H and E) and Mason trichrome (MTC) for histopathological evaluation. Then, the activity of Glutathione peroxidase (GPx), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) was measured by an ELISA reader at 340, 405, and 550 nm.

Results: Based on the results of this study, IR led to a remarkable increase in morphological changes in the lung. However, APG, RVT, and LA could ameliorate the deleterious effects of IR in lung tissue. IR causes an increase in GPX level, and APG+IR administration causes a decrease in the level of GPX compared to the control group. Also, the results of this study showed that RVT has significant effects in reducing MDA levels in the short term. In addition, compared to the control group, IR and RVT+IR decrease the activity of SOD in the long term in the lung tissues of rats. Also, the analysis of results showed that weight changes in IR, LA+IR, APG+IR, and control groups were statistically significant.

Conclusion: APG and RVT could prevent tissue damage induced by radiation effects in rat lung tissues. Hence, APG, LA, and RVT could provide a novel preventive action with their potential antioxidant anti-inflammatory properties, as well as their great safety characteristic.

Graphical Abstract

[1]
Havránková, R. Biological effects of ionizing radiation. Cas. Lek. Cesk., 2020, 159(7-8), 258-260.
[PMID: 33445930]
[2]
Voos, P.; Fuck, S.; Weipert, F.; Babel, L.; Tandl, D.; Meckel, T.; Hehlgans, S.; Fournier, C.; Moroni, A.; Rödel, F.; Thiel, G. Ionizing radiation induces morphological changes and immunological modulation of jurkat cells. Front. Immunol., 2018, 9, 922.
[http://dx.doi.org/10.3389/fimmu.2018.00922] [PMID: 29760710]
[3]
Song, L.H.; Yan, H.L.; Cai, D.L. Protective effects of soybean isoflavone against gamma-irradiation induced damages in mice. J. Radiat. Res., 2006, 47(2), 157-165.
[http://dx.doi.org/10.1269/jrr.47.157] [PMID: 16819142]
[4]
Wei, J.; Wang, B.; Wang, H.; Meng, L.; Zhao, Q.; Li, X.; Xin, Y.; Jiang, X. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid. Med. Cell. Longev., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/3010342] [PMID: 31781332]
[5]
Sun, J.; Chen, Y.; Li, M.; Ge, Z. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic. Biol. Med., 1998, 24(4), 586-593.
[http://dx.doi.org/10.1016/S0891-5849(97)00291-8] [PMID: 9559871]
[6]
Yi, J.; Zhu, J.; Zhao, C.; Kang, Q.; Zhang, X.; Suo, K.; Cao, N.; Hao, L.; Lu, J. Potential of natural products as radioprotectors and radiosensitizers: Opportunities and challenges. Food Funct., 2021, 12(12), 5204-5218.
[http://dx.doi.org/10.1039/D1FO00525A] [PMID: 34018510]
[7]
Tannehill, S.P.; Mehta, M.P. Amifostine and radiation therapy: Past, present, and future. Semin. Oncol., 1996, 23(4)(Suppl. 8), 69-77.
[PMID: 8783671]
[8]
Li, X.; Wang, X.; Miao, L.; Guo, Y.; Yuan, R.; Ren, J.; Huang, Y.; Tian, H. Design, synthesis, and biological evaluation of a novel aminothiol compound as potential radioprotector. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/4714649] [PMID: 34471464]
[9]
Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res., 2018, 41(11), 1033-1050.
[http://dx.doi.org/10.1007/s12272-018-1083-6] [PMID: 30361949]
[10]
Prathima, P. Venkaiah, K.; Pavani, R.; Daveedu, T.; Munikumar, M.; Gobinath, M.; Valli, M.; Sainath, S.B. α-lipoic acid inhibits oxidative stress in testis and attenuates testicular toxicity in rats exposed to carbimazole during embryonic period. Toxicol. Rep., 2017, 4, 373-381.
[http://dx.doi.org/10.1016/j.toxrep.2017.06.009] [PMID: 28959662]
[11]
Said, R.S.; Mohamed, H.A.; Kassem, D.H. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β and PPAR-ϒ pathways. Toxicology, 2020, 442, 152536.
[http://dx.doi.org/10.1016/j.tox.2020.152536] [PMID: 32649955]
[12]
Rochette, L.; Ghibu, S.; Richard, C.; Zeller, M.; Cottin, Y.; Vergely, C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol. Nutr. Food Res., 2013, 57(1), 114-125.
[http://dx.doi.org/10.1002/mnfr.201200608] [PMID: 23293044]
[13]
Koga, T.; Ishida, T.; Takeda, T.; Ishii, Y.; Uchi, H.; Tsukimori, K.; Yamamoto, M.; Himeno, M.; Furue, M.; Yamada, H. Restoration of dioxin-induced damage to fetal steroidogenesis and gonadotropin formation by maternal co-treatment with α-lipoic acid. PLoS One, 2012, 7(7), e40322.
[http://dx.doi.org/10.1371/journal.pone.0040322] [PMID: 22911699]
[14]
Kim, J.H.; Kim, K.M.; Jung, M.H.; Jung, J.H.; Kang, K.M.; Jeong, B.K.; Kim, J.P.; Park, J.J.; Woo, S.H. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats. Oncotarget, 2016, 7(20), 29143-29153.
[http://dx.doi.org/10.18632/oncotarget.8661] [PMID: 27072584]
[15]
Jeong, B.K.; Song, J.H.; Jeong, H.; Choi, H.S.; Jung, J.H.; Hahm, J.R.; Woo, S.H.; Jung, M.H.; Choi, B.H.; Kim, J.H.; Kang, K.M. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget, 2016, 7(12), 15105-15117.
[http://dx.doi.org/10.18632/oncotarget.7874] [PMID: 26943777]
[16]
Peñalver, P.; Belmonte-Reche, E.; Adán, N.; Caro, M.; Mateos-Martín, M.L.; Delgado, M.; González-Rey, E.; Morales, J.C. Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur. J. Med. Chem., 2018, 146, 123-138.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.037] [PMID: 29407944]
[17]
Gao, P.; Li, N.; Ji, K.; Wang, Y.; Xu, C.; Liu, Y.; Wang, Q.; Wang, J.; He, N.; Sun, Z.; Du, L.; Liu, Q. Resveratrol targets TyrRS acetylation to protect against radiation‐induced damage. FASEB J., 2019, 33(7), 8083-8093.
[http://dx.doi.org/10.1096/fj.201802474RR] [PMID: 30939244]
[18]
Sener, T.E.; Tavukcu, H.H.; Atasoy, B.M.; Cevik, O.; Kaya, O.T.; Cetinel, S.; Dagli Degerli, A.; Tinay, I.; Simsek, F.; Akbal, C.; Butticè, S.; Sener, G. Resveratrol treatment may preserve the erectile function after radiotherapy by restoring antioxidant defence mechanisms, SIRT1 and NOS protein expressions. Int. J. Impot. Res., 2018, 30(4), 179-188.
[http://dx.doi.org/10.1038/s41443-018-0042-6] [PMID: 29973698]
[19]
Seyyedebrahimi, S.; Khodabandehloo, H.; Nasli Esfahani, E.; Meshkani, R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol., 2018, 55(4), 341-353.
[http://dx.doi.org/10.1007/s00592-017-1098-3] [PMID: 29357033]
[20]
Ozbey, U.; Attar, R.; Romero, M.A.; Alhewairini, S.S.; Afshar, B.; Sabitaliyevich, U.Y.; Hanna-Wakim, L.; Ozcelik, B.; Farooqi, A.A. Apigenin as an effective anticancer natural product: Spotlight on TRAIL, WNT/β-catenin, JAK-STAT pathways, and microRNAs. J. Cell. Biochem., 2018, 120(2), 1060-1067.
[PMID: 30278099]
[21]
Bridgeman, B.B.; Wang, P.; Ye, B.; Pelling, J.C.; Volpert, O.V.; Tong, X. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention. Cell. Signal., 2016, 28(5), 460-468.
[http://dx.doi.org/10.1016/j.cellsig.2016.02.008] [PMID: 26876613]
[22]
Eliopoulos, A.G.; Havaki, S.; Gorgoulis, V.G. DNA damage response and autophagy: A meaningful partnership. Front. Genet., 2016, 7, 204.
[http://dx.doi.org/10.3389/fgene.2016.00204] [PMID: 27917193]
[23]
Park, S.; Lim, W.; Bazer, F.W.; Song, G. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. J. Cell. Physiol., 2018, 233(4), 3055-3065.
[http://dx.doi.org/10.1002/jcp.26054] [PMID: 28617956]
[24]
Sandeep, V.; Babu, S. Radio-histopathological evaluation of anti-arthritic activity of apigenin in Freund’s induced arthritis in Wistar Albino Rats. Natl. J. Physiol. Pharm. Pharmacol., 2022, 12(10), 1614-1618.
[25]
Shabeeb, D.; Musa, A.E.; Keshavarz, M.; Esmaely, F.; Hassanzadeh, G.; Shirazi, A.; Najafi, M. Histopathological and functional evaluation of radiation-induced sciatic nerve damage: Melatonin as radioprotector. Medicina, 2019, 55(8), 502.
[http://dx.doi.org/10.3390/medicina55080502] [PMID: 31430996]
[26]
Shivappa, P.; Bernhardt, G. Natural radioprotectors on current and future perspectives: A mini-review. J. Pharm. Bioallied Sci., 2022, 14(2), 57-71.
[http://dx.doi.org/10.4103/jpbs.jpbs_502_21] [PMID: 36034486]
[27]
Bhandari, M.; Raj, S.; Manchanda, R.; Alam, M.S. Review on natural bioactive products as radioprotective therapeutics: Present and past perspective. Curr. Pharm. Biotechnol., 2022, 23(14), 1721-1738.
[http://dx.doi.org/10.2174/1389201023666220110104645] [PMID: 35016594]
[28]
Tibullo, D.; Li Volti, G.; Giallongo, C.; Grasso, S.; Tomassoni, D.; Anfuso, C.D.; Lupo, G.; Amenta, F.; Avola, R.; Bramanti, V. Biochemical and clinical relevance of alpha lipoic acid: Antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm. Res., 2017, 66(11), 947-959.
[http://dx.doi.org/10.1007/s00011-017-1079-6] [PMID: 28676917]
[29]
Delgobo, M.; Agnes, J.P.; Gonçalves, R.M.; dos Santos, V.W.; Parisotto, E.B.; Zamoner, A.; Zanotto-Filho, A. N-acetylcysteine and alpha-lipoic acid improve antioxidant defenses and decrease oxidative stress, inflammation and serum lipid levels in ovariectomized rats via estrogen-independent mechanisms. J. Nutr. Biochem., 2019, 67, 190-200.
[http://dx.doi.org/10.1016/j.jnutbio.2019.02.012] [PMID: 30951973]
[30]
Kim, J.H.; Jung, M.H.; Kim, J.P.; Kim, H.J.; Jung, J.H.; Hahm, J.R.; Kang, K.M.; Jeong, B.K.; Woo, S.H. Alpha lipoic acid attenuates radiation-induced oral mucositis in rats. Oncotarget, 2017, 8(42), 72739-72747.
[http://dx.doi.org/10.18632/oncotarget.20286] [PMID: 29069822]
[31]
Kim, H.; Yoo, W.S.; Jung, J.H.; Jeong, B.K.; Woo, S.H.; Kim, J.H.; Kim, S.J. Alpha-lipoic acid ameliorates radiation-induced lacrimal gland injury through NFAT5-dependent signaling. Int. J. Mol. Sci., 2019, 20(22), 5691.
[http://dx.doi.org/10.3390/ijms20225691] [PMID: 31766286]
[32]
Najafi, M.; Taeb, S.; Farhood, B.; Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Aliasgharzadeh, A.; Vakili, Z.; Tavakoli, S.; Aryafar, T.; Musa, A.E. Imperatorin attenuates the proliferation of MCF-7 cells in combination with radiotherapy or hyperthermia. Curr. Radiopharm., 2022, 15(3), 236-241.
[http://dx.doi.org/10.2174/1874471015666220318122202] [PMID: 35306999]
[33]
Sadeghinezhad, S.; Khodamoradi, E.; Diojan, L.; Taeb, S.; Najafi, M. Radioprotective mechanisms of arbutin: A systematic review. Curr. Drug Res. Rev., 2022, 14(2), 132-138.
[http://dx.doi.org/10.2174/2589977514666220321114415] [PMID: 35319405]
[34]
Jeong, G.S.; Lee, S.H.; Jeong, S.N.; Kim, Y.C.; Kim, E.C. Anti-inflammatory effects of apigenin on nicotine- and lipopolysaccharide-stimulated human periodontal ligament cells via heme oxygenase-1. Int. Immunopharmacol., 2009, 9(12), 1374-1380.
[http://dx.doi.org/10.1016/j.intimp.2009.08.015] [PMID: 19729077]
[35]
Singh, D.; Gupta, M.; Sarwat, M.; Siddique, H.R. Apigenin in cancer prevention and therapy: A systematic review and meta-analysis of animal models. Crit. Rev. Oncol. Hematol., 2022, 176, 103751.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103751] [PMID: 35752426]
[36]
Prasad, N.R.; Thayalan, K.; Begum, N. Apigenin protects gamma-radiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(1), 45-52.
[http://dx.doi.org/10.4103/2231-0738.93134]
[37]
Begum, N.; Prasad, N.R. Apigenin, a dietary antioxidant, modulates gamma radiation-induced oxidative damages in human peripheral blood lymphocytes. Biomed. Prevent. Nutr., 2012, 2(1), 16-24.
[http://dx.doi.org/10.1016/j.bionut.2011.11.003]
[38]
Ali, F. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Protective effect of apigenin against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in albino rats. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2014, 767, 13-20.
[http://dx.doi.org/10.1016/j.mrgentox.2014.04.006] [PMID: 24755254]
[39]
Rauf, A.; Imran, M.; Suleria, H.A.R.; Ahmad, B.; Peters, D.G.; Mubarak, M.S. A comprehensive review of the health perspectives of resveratrol. Food Funct., 2017, 8(12), 4284-4305.
[http://dx.doi.org/10.1039/C7FO01300K] [PMID: 29044265]
[40]
Shirazi, A.; Ghobadi, A.; Najafi, M.; Kahkesh, M.; Rezapoor, S. Melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J. Med. Phys., 2017, 42(4), 241-244.
[http://dx.doi.org/10.4103/jmp.JMP_60_17] [PMID: 29296038]
[41]
Tarik Emre Sener, B.M.A.; Cevik, O.; Kaya, O.T.C.; Cetinel, S. Effects of resveratrol against scattered radiation-induced testicular damage in rats. Turk J Biochem, 2020, 2020

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy