Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents

In Press, (this is not the final "Version of Record"). Available online 31 October, 2023
Author(s): Eyra Ortiz-Perez, Lenci K. Vazquez-Jimenez, Alma D. Paz-Gonzalez, Timoteo Delgado-Maldonado, Alonzo González-González, Carlos Gaona-Lopez, Antonio Moreno-Herrera, Karina Vazquez and Gildardo Rivera*
Published on: 31 October, 2023

DOI: 10.2174/0109298673249553231018070920

Price: $95

Abstract

Background: Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3- transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others.

Objective: In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed.

Conclusion: According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.

[1]
Singh, B.; Varikuti, S.; Halsey, G.; Volpedo, G.; Hamza, O.M.; Satoskar, A.R. Host-directed therapies for parasitic diseases. Future Med. Chem., 2019, 11(15), 1999-2018.
[http://dx.doi.org/10.4155/fmc-2018-0439] [PMID: 31390889]
[2]
Andargie, G.; Kassu, A.; Moges, F.; Tiruneh, M.; Huruy, K. Prevalence of bacteria and intestinal parasites among food-handlers in Gondar town, Northwest Ethiopia. J. Health Popul. Nutr., 2008, 26(4), 451-455.
[PMID: 19069624]
[3]
Robertson, L.J.; Sprong, H.; Ortega, Y.R.; van der Giessen, J.W.B.; Fayer, R. Impacts of globalisation on foodborne parasites. Trends Parasitol., 2014, 30(1), 37-52.
[http://dx.doi.org/10.1016/j.pt.2013.09.005] [PMID: 24140284]
[4]
Dorny, P.; Praet, N.; Deckers, N.; Gabriël, S. Emerging food-borne parasites. Vet. Parasitol., 2009, 163(3), 196-206.
[http://dx.doi.org/10.1016/j.vetpar.2009.05.026] [PMID: 19559535]
[5]
Pickles, R.S.A.; Thornton, D.; Feldman, R.; Marques, A.; Murray, D.L. Predicting shifts in parasite distribution with climate change: A multitrophic level approach. Glob. Change Biol., 2013, 19(9), 2645-2654.
[http://dx.doi.org/10.1111/gcb.12255] [PMID: 23666800]
[6]
Altizer, S.; Ostfeld, R. S.; Johnson, P. T. J.; Kutz, S.; Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science (80-.), 2013, 341(6145), 514-519.
[7]
Organization, W.H. Vector-borne Diseases; WHO Regional Office for South-east Asia, 2014.
[8]
Torgerson, P.R. One world health: Socioeconomic burden and parasitic disease control priorities. Vet. Parasitol., 2013, 195(3-4), 223-232.
[http://dx.doi.org/10.1016/j.vetpar.2013.04.004] [PMID: 23628712]
[9]
Beatriz Vermelho, A.; Rodrigues, G.C.; Nocentini, A.; Mansoldo, F.R.P.; Supuran, C.T. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin. Drug Discov., 2022, 17(10), 1147-1158.
[http://dx.doi.org/10.1080/17460441.2022.2117295] [PMID: 36039500]
[10]
Pan, P.; Vermelho, A.B.; Scozzafava, A.; Parkkila, S.; Capasso, C.; Supuran, C.T. Anion inhibition studies of the α-carbonic anhydrase from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease. Bioorg. Med. Chem., 2013, 21(15), 4472-4476.
[http://dx.doi.org/10.1016/j.bmc.2013.05.058] [PMID: 23790722]
[11]
Reungprapavut, S.; Krungkrai, S.R.; Krungkrai, J. Plasmodium falciparum carbonic anhydrase is a possible target for malaria chemotherapy. J. Enzyme Inhib. Med. Chem., 2004, 19(3), 249-256.
[http://dx.doi.org/10.1080/14756360410001689577] [PMID: 15499996]
[12]
Ozensoy Guler, O.; Capasso, C.; Supuran, C.T. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 689-694.
[http://dx.doi.org/10.3109/14756366.2015.1059333] [PMID: 26118417]
[13]
Aspatwar, A.; Barker, H.; Tolvanen, M.; Emameh, R.Z.; Parkkila, S. Carbonic anhydrases from pathogens: protozoan cas and related inhibitors as potential antiprotozoal agents. In: Carbonic Anhydrases; Elsevier, 2019; pp. 449-475.
[http://dx.doi.org/10.1016/B978-0-12-816476-1.00020-4]
[14]
Capasso, C.; Supuran, C.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin. Ther. Targets, 2015, 19(12), 1689-1704.
[http://dx.doi.org/10.1517/14728222.2015.1067685] [PMID: 26235676]
[15]
Lomelino, C.L.; Andring, J.T.; McKenna, R. Crystallography and its impact on carbonic anhydrase research. Int. J. Med. Chem., 2018, 2018, 1-21.
[http://dx.doi.org/10.1155/2018/9419521] [PMID: 30302289]
[16]
Capasso, C.; Supuran, C.T. Protozoan, fungal and bacterial carbonic anhydrases targeting for obtaining antiinfectives; Target. Carbon. anhydrases; London Futur. Sci. Ltd, 2014, pp. 133-141.
[17]
Protein Data Bank Available from: https://www.rcsb.org/
[18]
Supuran, C.T. Carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3467-3474.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.009] [PMID: 20529676]
[19]
Supuran, C.T.; Capasso, C. The η-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin. Ther. Targets, 2015, 19(4), 551-563.
[http://dx.doi.org/10.1517/14728222.2014.991312] [PMID: 25495426]
[20]
Akocak, S.; Supuran, C.T. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1652-1659.
[http://dx.doi.org/10.1080/14756366.2019.1664501] [PMID: 31530034]
[21]
da Silva Cardoso, V.; Vermelho, A.B.; Ricci Junior, E.; Almeida Rodrigues, I.; Mazotto, A.M.; Supuran, C.T. Antileishmanial activity of sulphonamide nanoemulsions targeting the β -carbonic anhydrase from Leishmania species. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 850-857.
[http://dx.doi.org/10.1080/14756366.2018.1463221] [PMID: 29708476]
[22]
Llanos, M.A.; Sbaraglini, M.L.; Villalba, M.L.; Ruiz, M.D.; Carrillo, C.; Alba Soto, C.; Talevi, A.; Angeli, A.; Parkkila, S.; Supuran, C.T.; Gavernet, L. A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 21-30.
[http://dx.doi.org/10.1080/14756366.2019.1677638] [PMID: 31619095]
[23]
Krungkrai, J.; Supuran, C. The alpha-carbonic anhydrase from the malaria parasite and its inhibition. Curr. Pharm. Des., 2008, 14(7), 631-640.
[http://dx.doi.org/10.2174/138161208783877901] [PMID: 18336308]
[24]
Krungkrai, S.R.; Suraveratum, N.; Rochanakij, S.; Krungkrai, J. Characterisation of carbonic anhydrase in Plasmodium falciparum. Int. J. Parasitol., 2001, 31(7), 661-668.
[http://dx.doi.org/10.1016/S0020-7519(01)00172-2] [PMID: 11336746]
[25]
Basu, S.; Sahi, P.K. Malaria: An update. Indian J. Pediatr., 2017, 84(7), 521-528.
[http://dx.doi.org/10.1007/s12098-017-2332-2] [PMID: 28357581]
[26]
Krungkrai, S.R.; Krungkrai, J. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential. Asian Pac. J. Trop. Biomed., 2011, 1(3), 233-242.
[http://dx.doi.org/10.1016/S2221-1691(11)60034-8] [PMID: 23569766]
[27]
World Health Organization. Available from: https://www. who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (Accessed on: 2022-02-03).
[28]
NTD. World Health Organization. Available from: https://www.who.int/ (Accessed on: 2022-02-23).
[29]
DrugBank. Available from: https://go.drugbank.com/ (Accessed on: 2021-02-03).
[30]
Vullo, D.; Del Prete, S.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum. Bioorg. Med. Chem., 2015, 23(3), 526-531.
[http://dx.doi.org/10.1016/j.bmc.2014.12.009] [PMID: 25533402]
[31]
Frampton, J.E. Tafenoquine: First global approval. Drugs, 2018, 78(14), 1517-1523.
[http://dx.doi.org/10.1007/s40265-018-0979-2] [PMID: 30229442]
[32]
Adebayo, J.O.; Tijjani, H.; Adegunloye, A.P.; Ishola, A.A.; Balogun, E.A.; Malomo, S.O. Enhancing the antimalarial activity of artesunate. Parasitol. Res., 2020, 119(9), 2749-2764.
[http://dx.doi.org/10.1007/s00436-020-06786-1] [PMID: 32638101]
[33]
Duffy, P.E.; Patrick Gorres, J. Malaria Vaccines since 2000: Progress, priorities, products. NPJ. Vaccines (Basel), 2020, 5(1), 48.
[PMID: 32012760]
[34]
Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum —The η-carbonic anhydrases. Bioorg. Med. Chem. Lett., 2014, 24(18), 4389-4396.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.015] [PMID: 25168745]
[35]
Krungkrai, J.; Krungkrai, S.; Supuran, C. Malarial parasite carbonic anhydrase and its inhibitors. Curr. Top. Med. Chem., 2007, 7(9), 909-917.
[http://dx.doi.org/10.2174/156802607780636744] [PMID: 17504136]
[36]
Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; di Fonzo, P.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Anion inhibition profiles of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. Bioorg. Med. Chem., 2016, 24(18), 4410-4414.
[http://dx.doi.org/10.1016/j.bmc.2016.07.034] [PMID: 27480028]
[37]
Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; Osman, S.M.; Alothman, Z.; Supuran, C.T.; Capasso, C. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2016, 26(17), 4184-4190.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.060] [PMID: 27485387]
[38]
Giovannuzzi, S.; De Luca, V.; Nocentini, A.; Capasso, C.; Supuran, C.T. Coumarins inhibit η-class carbonic anhydrase from Plasmodium falciparum. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 680-685.
[http://dx.doi.org/10.1080/14756366.2022.2036986] [PMID: 35139744]
[39]
Rodrigues, G.C.; Feijó, D.F.; Bozza, M.T.; Pan, P.; Vullo, D.; Parkkila, S.; Supuran, C.T.; Capasso, C.; Aguiar, A.P.; Vermelho, A.B. Design, synthesis, and evaluation of hydroxamic acid derivatives as promising agents for the management of Chagas disease. J. Med. Chem., 2014, 57(2), 298-308.
[http://dx.doi.org/10.1021/jm400902y] [PMID: 24299463]
[40]
Pan, P.; Vermelho, A.B.; Capaci Rodrigues, G.; Scozzafava, A.; Tolvanen, M.E.E.; Parkkila, S.; Capasso, C.; Supuran, C.T. Cloning, characterization, and sulfonamide and thiol inhibition studies of an α-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease. J. Med. Chem., 2013, 56(4), 1761-1771.
[http://dx.doi.org/10.1021/jm4000616] [PMID: 23391336]
[41]
Robertson, L.J.; Devleesschauwer, B.; Alarcón de Noya, B.; Noya González, O.; Torgerson, P.R. Trypanosoma cruzi: Time for international recognition as a foodborne parasite. PLoS Negl. Trop. Dis., 2016, 10(6), e0004656.
[http://dx.doi.org/10.1371/journal.pntd.0004656] [PMID: 27253136]
[42]
Echavarría, N.G.; Echeverría, L.E.; Stewart, M.; Gallego, C.; Saldarriaga, C. Chagas disease: Chronic chagas cardiomyopathy. Curr. Probl. Cardiol., 2021, 46(3), 100507.
[http://dx.doi.org/10.1016/j.cpcardiol.2019.100507] [PMID: 31983471]
[43]
Güzel-Akdemir, Ö.; Akdemir, A.; Pan, P.; Vermelho, A.B.; Parkkila, S.; Scozzafava, A.; Capasso, C.; Supuran, C.T. A class of sulfonamides with strong inhibitory action against the α-carbonic anhydrase from Trypanosoma cruzi. J. Med. Chem., 2013, 56(14), 5773-5781.
[http://dx.doi.org/10.1021/jm400418p] [PMID: 23815159]
[44]
Ribeiro, V.; Dias, N.; Paiva, T.; Hagström-Bex, L.; Nitz, N.; Pratesi, R.; Hecht, M. Current trends in the pharmacological management of Chagas disease. Int. J. Parasitol. Drugs Drug Resist., 2020, 12, 7-17.
[http://dx.doi.org/10.1016/j.ijpddr.2019.11.004] [PMID: 31862616]
[45]
Campos, M.C.O.; Leon, L.L.; Taylor, M.C.; Kelly, J.M. Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert. Mol. Biochem. Parasitol., 2014, 193(1), 17-19.
[http://dx.doi.org/10.1016/j.molbiopara.2014.01.002] [PMID: 24462750]
[46]
Mejia, A.M.; Hall, B.S.; Taylor, M.C.; Gómez-Palacio, A.; Wilkinson, S.R.; Triana-Chávez, O.; Kelly, J.M. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J. Infect. Dis., 2012, 206(2), 220-228.
[http://dx.doi.org/10.1093/infdis/jis331] [PMID: 22551809]
[47]
Adasme, M.F.; Bolz, S.N.; Adelmann, L.; Salentin, S.; Haupt, V.J.; Moreno-Rodríguez, A.; Nogueda-Torres, B.; Castillo-Campos, V.; Yepez-Mulia, L.; De Fuentes-Vicente, J.A.; Rivera, G.; Schroeder, M. Repositioned drugs for chagas disease unveiled via structure-based drug repositioning. Int. J. Mol. Sci., 2020, 21(22), 8809.
[http://dx.doi.org/10.3390/ijms21228809] [PMID: 33233837]
[48]
Vázquez-Jiménez, L.K.; Moreno-Herrera, A.; Juárez-Saldivar, A.; González-González, A.; Ortiz-Pérez, E.; Paz-González, A.D.; Palos, I.; Ramírez-Moreno, E.; Rivera, G. Recent advances in the development of triose phosphate isomerase inhibitors as antiprotozoal agents. Curr. Med. Chem., 2022, 29(14), 2504-2529.
[http://dx.doi.org/10.2174/0929867328666210913090928] [PMID: 34517794]
[49]
Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in vitro and in vivo evaluation of new potential trans -sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Eur. J. Med. Chem., 2017, 132, 249-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.063] [PMID: 28364659]
[50]
Vázquez-Jiménez, L.K.; Paz-González, A.D.; Juárez-Saldivar, A.; Uhrig, M.L.; Agusti, R.; Reyes-Arellano, A.; Nogueda-Torres, B.; Rivera, G. Structure-based virtual screening of new benzoic acid derivatives as Trypanosoma cruzi trans-sialidase inhibitors. Med. Chem., 2021, 17(7), 724-731.
[http://dx.doi.org/10.2174/1573406416666200506084611] [PMID: 32370720]
[51]
Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6), 1015.
[http://dx.doi.org/10.3390/molecules22061015] [PMID: 28629155]
[52]
Herrera-Mayorga, V.; Lara-Ramírez, E.; Chacón-Vargas, K.; Aguirre-Alvarado, C.; Rodríguez-Páez, L.; Alcántara-Farfán, V.; Cordero-Martínez, J.; Nogueda-Torres, B.; Reyes-Espinosa, F.; Bocanegra-García, V.; Rivera, G. Structure-based virtual screening and in vitro evaluation of new Trypanosoma cruzi cruzain inhibitors. Int. J. Mol. Sci., 2019, 20(7), 1742.
[http://dx.doi.org/10.3390/ijms20071742] [PMID: 30970549]
[53]
Juárez-Saldivar, A.; Schroeder, M.; Salentin, S.; Haupt, V.J.; Saavedra, E.; Vázquez, C.; Reyes-Espinosa, F.; Herrera-Mayorga, V.; Villalobos-Rocha, J.C.; García-Pérez, C.A.; Campillo, N.E.; Rivera, G. Computational drug repositioning for chagas disease using protein-ligand interaction profiling. Int. J. Mol. Sci., 2020, 21(12), 4270.
[http://dx.doi.org/10.3390/ijms21124270] [PMID: 32560043]
[54]
Yepes, A.F.; Quintero-Saumeth, J.; Cardona-Galeano, W. Biologically active quinoline-hydrazone conjugates as potential Trypanosoma cruzi DHFR-TS inhibitors: Docking, molecular dynamics, MM/PBSA and drug-likeness studies. Chem. Select, 2021, 6(12), 2928-2938.
[http://dx.doi.org/10.1002/slct.202100238]
[55]
Espinosa-Bustos, C.; Ortiz Pérez, M.; Gonzalez-Gonzalez, A.; Zarate, A.M.; Rivera, G.; Belmont-Díaz, J.A.; Saavedra, E.; Cuellar, M.A.; Vázquez, K.; Salas, C.O. New amino naphthoquinone derivatives as anti-trypanosoma cruzi agents targeting trypanothione reductase. Pharmaceutics, 2022, 14(6), 1121.
[http://dx.doi.org/10.3390/pharmaceutics14061121] [PMID: 35745694]
[56]
Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases. Molecules, 2020, 25(8), 1924.
[http://dx.doi.org/10.3390/molecules25081924] [PMID: 32326257]
[57]
Mansoldo, F.R.P.; Carta, F.; Angeli, A.; Cardoso, V.S.; Supuran, C.T.; Vermelho, A.B. Chagas disease: Perspectives on the past and present and challenges in drug discovery. Molecules, 2020, 25(22), 5483.
[http://dx.doi.org/10.3390/molecules25225483] [PMID: 33238613]
[58]
Nocentini, A.; Cadoni, R.; Dumy, P.; Supuran, C.T.; Winum, J.Y. Carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani chagasi are inhibited by benzoxaboroles. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 286-289.
[http://dx.doi.org/10.1080/14756366.2017.1414808] [PMID: 29278948]
[59]
Supuran, C.T. Inhibition of carbonic anhydrase from Trypanosoma cruzi for the management of Chagas disease: an underexplored therapeutic opportunity. Future Med. Chem., 2016, 8(3), 311-324.
[http://dx.doi.org/10.4155/fmc.15.185] [PMID: 26898220]
[60]
Winum, J.Y.; Supuran, C.T. Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2015, 30(2), 321-324.
[http://dx.doi.org/10.3109/14756366.2014.913587] [PMID: 24939097]
[61]
Vermelho, A.B.; da Silva Cardoso, V.; Ricci Junior, E.; dos Santos, E.P.; Supuran, C.T. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 139-146.
[http://dx.doi.org/10.1080/14756366.2017.1405264] [PMID: 29192555]
[62]
Alafeefy, A.M.; Ceruso, M.; Al-Jaber, N.A.; Parkkila, S.; Vermelho, A.B.; Supuran, C.T. A new class of quinazoline-sulfonamides acting as efficient inhibitors against the α-carbonic anhydrase from Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 581-585.
[http://dx.doi.org/10.3109/14756366.2014.956309] [PMID: 25373503]
[63]
Alterio, V.; Cadoni, R.; Esposito, D.; Vullo, D.; Fiore, A.D.; Monti, S.M.; Caporale, A.; Ruvo, M.; Sechi, M.; Dumy, P.; Supuran, C.T.; Simone, G.D.; Winum, J.Y. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chem. Commun. (Camb.), 2016, 52(80), 11983-11986.
[http://dx.doi.org/10.1039/C6CC06399C] [PMID: 27722534]
[64]
Nocentini, A.; Osman, S.M.; Rodrigues, I.A.; Cardoso, V.S.; Alasmary, F.A.S.; AlOthman, Z.; Vermelho, A.B.; Gratteri, P.; Supuran, C.T. Appraisal of anti-protozoan activity of nitroaromatic benzenesulfonamides inhibiting carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1164-1171.
[http://dx.doi.org/10.1080/14756366.2019.1626375] [PMID: 31219348]
[65]
Bonardi, A.; Parkkila, S.; Supuran, C.T. Inhibition studies of the protozoan α-carbonic anhydrase from Trypanosoma cruzi with phenols. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2417-2422.
[http://dx.doi.org/10.1080/14756366.2022.2119965] [PMID: 36065959]
[66]
Pal, D.S.; Mondal, D.K.; Datta, R. Identification of metal dithiocarbamates as a novel class of antileishmanial agents. Antimicrob. Agents Chemother., 2015, 59(4), 2144-2152.
[http://dx.doi.org/10.1128/AAC.05146-14] [PMID: 25624329]
[67]
Syrjänen, L.; Vermelho, A.B.; de Almeida Rodrigues, I.; Corte-Real, S.; Salonen, T.; Pan, P.; Vullo, D.; Parkkila, S.; Capasso, C.; Supuran, C.T. Cloning, characterization, and inhibition studies of a β-carbonic anhydrase from Leishmania donovani chagasi, the protozoan parasite responsible for leishmaniasis. J. Med. Chem., 2013, 56(18), 7372-7381.
[http://dx.doi.org/10.1021/jm400939k] [PMID: 23977960]
[68]
Ceruso, M.; Carta, F.; Osman, S.M.; Alothman, Z.; Monti, S.M.; Supuran, C.T. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg. Med. Chem., 2015, 23(15), 4181-4187.
[http://dx.doi.org/10.1016/j.bmc.2015.06.050] [PMID: 26145821]
[69]
Nocentini, A.; Cadoni, R.; del Prete, S.; Capasso, C.; Dumy, P.; Gratteri, P.; Supuran, C.T.; Winum, J.Y. Benzoxaboroles as efficient inhibitors of the β-carbonic anhydrases from pathogenic fungi: activity and modeling study. ACS Med. Chem. Lett., 2017, 8(11), 1194-1198.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00369] [PMID: 29152053]
[70]
Al-Tamimi, A.M.S.; Etxebeste-Mitxeltorena, M.; Sanmartín, C.; Jiménez-Ruiz, A.; Syrjänen, L.; Parkkila, S.; Selleri, S.; Carta, F.; Angeli, A.; Supuran, C.T. Discovery of new organoselenium compounds as antileishmanial agents. Bioorg. Chem., 2019, 86, 339-345.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.069] [PMID: 30743174]
[71]
Angeli, A.; Etxebeste-Mitxeltorena, M.; Sanmartín, C.; Espuelas, S.; Moreno, E.; Azqueta, A.; Parkkila, S.; Carta, F.; Supuran, C.T. Tellurides bearing sulfonamides as novel inhibitors of leishmanial carbonic anhydrase with potent antileishmanial activity. J. Med. Chem., 2020, 63(8), 4306-4314.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00211] [PMID: 32223141]
[72]
Bua, S.; Haapanen, S.; Kuuslahti, M.; Parkkila, S.; Supuran, C. Sulfonamide inhibition studies of a new β-carbonic anhydrase from the pathogenic protozoan Entamoeba histolytica. Int. J. Mol. Sci., 2018, 19(12), 3946.
[http://dx.doi.org/10.3390/ijms19123946] [PMID: 30544802]
[73]
Haapanen, S.; Bua, S.; Kuuslahti, M.; Parkkila, S.; Supuran, C. Cloning, characterization and anion inhibition studies of a β-carbonic anhydrase from the pathogenic protozoan Entamoeba histolytica. Molecules, 2018, 23(12), 3112.
[http://dx.doi.org/10.3390/molecules23123112] [PMID: 30486513]
[74]
Zolfaghari Emameh, R.; Barker, H.; Tolvanen, M.E.E.; Ortutay, C.; Parkkila, S. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasit. Vectors, 2014, 7(1), 38.
[http://dx.doi.org/10.1186/1756-3305-7-38] [PMID: 24447594]
[75]
Zolfaghari Emameh, R.; Barker, H.; Hytönen, V.P.; Tolvanen, M.E.E.; Parkkila, S. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasit. Vectors, 2014, 7(1), 403.
[http://dx.doi.org/10.1186/1756-3305-7-403] [PMID: 25174433]
[76]
Urbański, L.J.; Di Fiore, A.; Azizi, L.; Hytönen, V.P.; Kuuslahti, M.; Buonanno, M.; Monti, S.M.; Angeli, A.; Zolfaghari Emameh, R.; Supuran, C.T.; De Simone, G.; Parkkila, S. Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from Trichomonas vaginalis. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1292-1299.
[http://dx.doi.org/10.1080/14756366.2020.1774572] [PMID: 32515610]
[77]
Van Gerwen, O.T.; Muzny, C.A. Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000 Res., 2019, 8, 1666.
[http://dx.doi.org/10.12688/f1000research.19972.1] [PMID: 31583080]
[78]
Urbański, L.J.; Angeli, A.; Hytönen, V.P.; Di Fiore, A.; Parkkila, S.; De Simone, G.; Supuran, C.T. Inhibition of the newly discovered β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules. J. Inorg. Biochem., 2020, 213, 111274.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111274] [PMID: 33068968]
[79]
Urbański, L.J.; Angeli, A.; Mykuliak, V.V.; Azizi, L.; Kuuslahti, M.; Hytönen, V.P.; Supuran, C.T.; Parkkila, S. Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis. J. Mol. Med. (Berl.), 2022, 100(1), 115-124.
[http://dx.doi.org/10.1007/s00109-021-02148-1] [PMID: 34652457]
[80]
Urbański, L.J.; Angeli, A.; Hytönen, V.P.; Di Fiore, A.; De Simone, G.; Parkkila, S.; Supuran, C.T. Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 330-335.
[http://dx.doi.org/10.1080/14756366.2020.1863958] [PMID: 33356653]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy