Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Microglia: Formidable Players in Alzheimer’s Disease and Other Neurodegenerative Disorders

Author(s): Kenneth Maiese*

Volume 20, Issue 5, 2023

Published on: 27 October, 2023

Page: [515 - 518] Pages: 4

DOI: 10.2174/1567202620999231027155308

Price: $65

Next »
[1]
Hou J, Chong ZZ, Shang YC, Maiese K. Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res 2010; 7(2): 95-112.
[2]
Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal 2010; 22(9): 1317-29.
[3]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[4]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[5]
Ahmad R, Khan A, Rehman IU, Lee HJ, Khan I, Kim MO. Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. International journal of molecular sciences 2022; 23(11)
[6]
Dehghanian F, Soltani Z, Khaksari M. Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury? J Mol Neurosci 2020.
[7]
Jayaraj RL, Beiram R, Azimullah S, Mf NM, Ojha SK, Adem A, et al. Valeric Acid Protects Dopaminergic Neurons by Suppressing Oxidative Stress, Neuroinflammation and Modulating Autophagy Pathways. International journal of molecular sciences 2020; 21(20)
[8]
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, et al. Roles of α-synuclein in gastrointestinal microbiome dysbiosis-related Parkinson’s disease progression (Review). Molecular medicine reports 2021; 24(4)
[9]
Mansour RM, El Sayed NS, Ahmed MAE, El-Sahar AE. Addressing Peroxisome Proliferator-Activated Receptor-gamma in 3-Nitropropionic Acid-Induced Striatal Neurotoxicity in Rats. Mol Neurobiol 2022.
[10]
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer’s disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta neuropathologica communications 2023; 11(1): 102.
[11]
Bailey TJ, Fossum SL, Fimbel SM, Montgomery JE, Hyde DR. The inhibitor of phagocytosis, O-phospho-L-serine, suppresses Muller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina. Exp Eye Res 2010; 91(5): 601-12.
[12]
Kang JQ, Chong ZZ, Maiese K. Critical role for Akt1 in the modulation of apoptotic phosphatidylserine exposure and microglial activation. Mol Pharmacol 2003; 64(3): 557-69.
[13]
Maiese K, Chong ZZ. Insights into oxidative stress and potential novel therapeutic targets for Alzheimer disease. Restor Neurol Neurosci 2004; 22(2): 87-104.
[14]
Maiese K, Chong ZZ, Li F. Driving cellular plasticity and survival through the signal transduction pathways of metabotropic glutamate receptors. Curr Neurovasc Res 2005; 2(5): 425-46.
[15]
Williams CJ, Dexter DT. Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem 2014; 129(1): 4-20.
[16]
Shang YC, Chong ZZ, Hou J, Maiese K. FoxO3a governs early microglial proliferation and employs mitochondrial depolarization with caspase 3, 8, and 9 cleavage during oxidant induced apoptosis. Curr Neurovasc Res 2009; 6(4): 223-38.
[17]
Wei L, Sun C, Lei M, Li G, Yi L, Luo F, et al. Activation of Wnt/beta-catenin Pathway by Exogenous Wnt1 Protects SH-SY5Y Cells Against 6-Hydroxydopamine Toxicity. J Mol Neurosci 2013; 49(1): 105-15.
[18]
Hou J, Wang S, Shang YC, Chong ZZ, Maiese K. Erythropoietin Employs Cell Longevity Pathways of SIRT1 to Foster Endothelial Vascular Integrity During Oxidant Stress. Curr Neurovasc Res 2011; 8(3): 220-35.
[19]
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer’s disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123: 110721.
[20]
Amini J, Sanchooli N, Milajerdi MH, Baeeri M, Haddadi M, Sanadgol N. The interplay between tauopathy and aging through interruption of UPR/Nrf2/Autophagy crosstalk in the Alzheimer’s disease transgenic experimental models. The International journal of neuroscience 2023; 1-27.
[21]
Ciesielska K, Gajewska M. Fatty Acids as Potent Modulators of Autophagy Activity in White Adipose Tissue. Biomolecules 2023; 13(2)
[22]
Liang H, Liu Q. The role of non-coding RNA in lupus nephritis. Hum Cell 2023.
[23]
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13(5): 816.
[24]
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, et al. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Scientific reports 2023; 13(1): 15133.
[25]
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12(12)
[26]
Wang J, Chen S, Zhao X, Guo Q, Yang R, Zhang C, et al. Effect of PPARγ on oxidative stress in diabetes-related dry eye. Exp Eye Res 2023; 231: 109498.
[27]
Chong ZZ, Kang JQ, Maiese K. Essential cellular regulatory elements of oxidative stress in early and late phases of apoptosis in the central nervous system. Antioxid Redox Signal 2004; 6(2): 277-87.
[28]
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75(3): 207-46.
[29]
Pathipati P, Ferriero DM. The Differential Effects of Erythropoietin Exposure to Oxidative Stress on Microglia and Astrocytes in vitro. Dev Neurosci 2017.
[30]
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. Curr Neurovasc Res 2023; 20(3): 314-33.
[31]
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10(7)
[32]
Farid HA, Sayed RH, El-Shamarka ME, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson’s disease in rats. Inflammopharmacology 2023.
[33]
Kostić M, Korićanac G, Tepavčević S, Stanišić J, Romić S, Ćulafić T, et al. Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats. Metab Syndr Relat Disord 2023.
[34]
Razzaghi A, Choobineh S, Gaeini A, Soori R. Interaction of exercise training with taurine attenuates infarct size and cardiac dysfunction via Akt-Foxo3a-Caspase-8 signaling pathway. Amino Acids 2023; 55(7): 869-80.
[35]
Zhao T, Miao H, Song Z, Li Y, Xia N, Zhang Z, et al. Metformin alleviates the cognitive impairment induced by benzo[a]pyrene via glucolipid metabolism regulated by FTO/FoxO6 pathway in mice. Environmental science and pollution research international 2023.
[36]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural regeneration research 2021; 16(3): 448-55.
[37]
Maiese K, Chong ZZ, Hou J, Shang YC. Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45(3): 217-34.
[38]
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14(5): 219-27.
[39]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[40]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[41]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[42]
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023.
[43]
Guo T, Chen M, Liu J, Wei Z, Yuan J, Wu W, et al. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. Journal of translational medicine 2023; 21(1): 297.
[44]
Sierra-Pagan JE, Dsouza N, Das S, Larson TA, Sorensen JR, Ma X, et al. FOXK1 regulates Wnt signaling to promote cardiogenesis. Cardiovasc Res 2023.
[45]
Zhang Y, Zhou H, Ding C. The ameliorative effect of CangFu Daotan Decoction on polycystic ovary syndrome of rodent model is associated with m6A methylation and Wnt/β-catenin pathway. Gynecol Endocrinol 2023; 2181637.
[46]
Yang K, Zhang L, Chen W, Cheng J, Zhao X, Zhang Y, et al. Expression of EPO and related factors in the liver and kidney of plain and Tibetan sheep. Histol Histopathol 2023; 18592.
[47]
Hu G, Wang T, Ma C. EPO activates PI3K-IKKα-CDK1 signaling pathway to promote the proliferation of Glial Cells under hypoxia environment. Genet Mol Biol 2022; 45(1): e20210249.
[48]
Liu H, Wang C, Sun X, Zhan C, Li Z, Qiu L, et al. Silk Fibroin/Collagen/Hydroxyapatite Scaffolds Obtained by 3D Printing Technology and Loaded with Recombinant Human Erythropoietin in the Reconstruction of Alveolar Bone Defects. ACS Biomater Sci Eng 2022.
[49]
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and Bacillus Calmette-Guérin Vaccination Mitigate 3-Nitropropionic Acid-Induced Huntington-like Disease in Rats by Modulating the PI3K/Akt/mTOR/P70S6K Pathway and Enhancing the Autophagy. ACS chemical neuroscience 2022.
[50]
Sergio CM, Rolando CA. Erythropoietin regulates signaling pathways associated with neuroprotective events. Exp Brain Res 2022.
[51]
Maiese K. Regeneration in the nervous system with erythropoietin. Frontiers in bioscience (Landmark edition) 2016; 21: 561-96.
[52]
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. International journal of molecular sciences 2012; 13(9): 11102-29.
[53]
Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 Govern Pathways of mTOR, Apaf-1, and XIAP in Inflammatory Microglia. Curr Neurovasc Res 2011; 8(4): 270-85.
[54]
Sohn EJ, Shin MJ, Eum WS, Kim DW, Yong JI, Ryu EJ, et al. Tat-NOL3 protects against hippocampal neuronal cell death induced by oxidative stress through the regulation of apoptotic pathways. Int J Mol Med 2016; 38(1): 225-35.
[55]
Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci 2017.
[56]
Zhang Y, Yuan Y, Zhang J, Zhao Y, Zhang Y, Fu J. Astragaloside IV supplementation attenuates cognitive impairment by inhibiting neuroinflammation and oxidative stress in type 2 diabetic mice. Frontiers in aging neuroscience 2022; 14: 1004557.
[57]
Chong ZZ, Kang J, Li F, Maiese K. mGluRI Targets Microglial Activation and Selectively Prevents Neuronal Cell Engulfment Through Akt and Caspase Dependent Pathways. Curr Neurovasc Res 2005; 2(3): 197-211.
[58]
Maiese K. Innovative Therapeutic Strategies for Cardiovascular Disease. EXCLI Journal 2023; 22: 690-715.
[59]
González-Fernández C, González P, González-Pérez F, Rodríguez F. Characterization of Ex Vivo and In Vitro Wnt Transcriptome Induced by Spinal Cord Injury in Rat Microglial Cells. Brain sciences 2022; 12(708)
[60]
Govindappa PK, Elfar JC. Erythropoietin promotes M2 macrophage phagocytosis of Schwann cells in peripheral nerve injury. Cell death & disease 2022; 13(3): 245.
[61]
Adhikari UK, Khan R, Mikhael M, Balez R, David MA, Mahns D, et al. Therapeutic anti-amyloid β antibodies cause neuronal disturbances. Alzheimer's & dementia : the journal of the Alzheimer's Association 2022.
[62]
Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2)
[63]
Chong ZZ, Kang JQ, Maiese K. AKT1 drives endothelial cell membrane asymmetry and microglial activation through Bcl-xL and caspase 1, 3, and 9. Exp Cell Res 2004; 296(2): 196-207.
[64]
Chong ZZ, Li F, Maiese K. Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res Brain Res Rev 2005; 49(1): 1-21.
[65]
Gao J, Xu H, Rong Z, Chen L. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Bioengineered 2022; 13(5): 12409-20.
[66]
Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Scientific reports 2019; 9(1): 840.
[67]
Tai S-H, Chao L-C, Huang S-Y, Lin H-W, Lee A-H, Chen Y-Y, et al. Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice. Biomedicines 2023; 11(8): 2145.
[68]
Sun N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N, et al. Human microglial state dynamics in Alzheimer’s disease progression. Cell 2023; 186(20): 4386-403.e29.
[69]
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59(3): 1850-61.
[70]
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. Sci Adv 2023; 9(7): eabq1141.
[71]
Wang Y, Lin Y, Wang L, Zhan H, Luo X, Zeng Y, et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice. Aging (Albany NY) 2020; 12.
[72]
Hardeland R. Redox Biology of Melatonin: Discriminating between Circadian and Non-circadian Functions. Antioxid Redox Signal 2022.
[73]
Fangma Y, Wan H, Shao C, Jin L, He Y. Research Progress on the Role of Sirtuin 1 in Cerebral Ischemia. Cell Mol Neurobiol 2022.
[74]
Inoue M, Tanida T, Kondo T, Takenaka S, Nakajima T. Oxygen-glucose deprivation-induced glial cell reactivity in the rat primary neuron-glia co-culture. J Vet Med Sci 2023.
[75]
McKenna M, Filteau JR, Butler B, Sluis K, Chungyoun M, Schimek N, et al. Organotypic whole hemisphere brain slice models to study the effects of donor age and oxygen-glucose-deprivation on the extracellular properties of cortical and striatal tissue. J Biol Eng 2022; 16(1): 14.
[76]
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12(4)
[77]
Xu L, Li L, Chen Q, Huang Y, Chen X, Qiao D. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 2023.
[78]
Maiese K. Clinical Depression, the Mechanistic Target of Rapamycin (mTOR), and Forkhead Transcription Factors (FoxOs). Curr Neurovasc Res 2023.
[79]
Sakai M, Yu Z, Hirayama R, Nakasato M, Kikuchi Y, Ono C, et al. Deficient Autophagy in Microglia Aggravates Repeated Social Defeat Stress-Induced Social Avoidance. Neural Plast 2022; 2022: 7503553.
[80]
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11(7): 1-18.
[81]
Piranavan P, Perl A. Management of cardiovascular disease in patients with systemic lupus erythematosus. Expert Opin Pharmacother 2020; 1-11.
[82]
Nagata W, Koizumi A, Nakagawa K, Takahashi S, Gotoh M, Satoh Y, et al. Treatment with lysophosphatidic acid prevents microglial activation and depression-like behaviours in a murine model of neuropsychiatric systemic lupus erythematosus. Clin Exp Immunol 2023; 212(2): 81-92.
[83]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Frontiers in bioscience (Landmark edition) 2020; 25: 1925-73.
[84]
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[85]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Frontiers in bioscience (Landmark edition) 2021; 26(9): 614-27.
[86]
Li X, Li K, Chu F, Huang J, Yang Z. Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons. Chem Biol Interact 2020; 325: 109126.
[87]
Wang MD, Zhang S, Liu XY, Wang PP, Zhu YF, Zhu JR, et al. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer’s disease mouse model through downregulating BACE1 and Aβ generation. Acta Pharmacol Sin 2023.
[88]
Fessel J. Cure of Alzheimer’s Dementia Requires Addressing All of the Affected Brain Cell Types. J Clin Med 2023; 12(2049): 1-14.
[89]
Kubat Oktem E, Aydin B, Yazar M, Arga KY. Integrative Analysis of Motor Neuron and Microglial Transcriptomes from SOD1(G93A) Mice Models Uncover Potential Drug Treatments for ALS. J Mol Neurosci 2022.
[90]
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer’s Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56(1): 406-34.
[91]
Carobene A, Maiese K, Abou-Diwan C, Locatelli M, Serteser M, Coskun A, et al. Biological variation estimates for serum neurofilament light chain in healthy subjects. Clin Chim Acta 2023; 117608.
[92]
Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T. Neurotrophin secretion from cultured microglia. J Neurosci Res 2001; 65(4): 322-31.
[93]
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Tejera N, Müller M, et al. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE-TR mice. Faseb j 2021; 35(5): e21583.
[94]
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, et al. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46(11): 2761-75.
[95]
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin Attenuates Huntington’s Disease through Activation of GLP-1 Receptor/PI3K/Akt/BDNF Pathway in 3-Nitropropionic Acid Rat Model. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 2020; 17(1): 252-68.
[96]
Xu JX, Fang K, Gao XR, Liu S, Ge JF. Resveratrol Protects SH-SY5Y Cells Against Oleic Acid-Induced Glucolipid Metabolic Dysfunction and Cell Injuries Via the Wnt/β-Catenin Signalling Pathway. Neurochem Res 2021.
[97]
Xu T, Liu J, Li XR, Yu Y, Luo X, Zheng X, et al. The mTOR/NF-κB Pathway Mediates Neuroinflammation and Synaptic Plasticity in Diabetic Encephalopathy. Mol Neurobiol 2021.
[98]
Yang H, Feng GD, Liang Z, Vitale A, Jiao XY, Ju G, et al. In vitro beneficial activation of microglial cells by mechanically-injured astrocytes enhances the synthesis and secretion of BDNF through p38MAPK. Neurochem Int 2012; 61(2): 175-86.
[99]
Chang R, Maghribi AA, Vanderpoel V, Vasilevko V, Cribbs DH, Boado R, et al. A Brain Penetrating Bifunctional Erythropoietin-Transferrin Receptor Antibody Fusion Protein for Alzheimer’s Disease. Molecular pharmaceutics 2018.
[100]
Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br J Pharmacol 2003; 138(6): 1107-18.
[101]
Basrai HS, Christie KJ, Turbic A, Bye N, Turnley AM. Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice. PLoS One 2016; 11(4): e0153418.
[102]
Bond WS, Rex TS. Evidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, Astrocytes, and Microglia. Frontiers in immunology 2014; 5: 523.
[103]
Busch S, Kannt A, Kolibabka M, Schlotterer A, Wang Q, Lin J, et al. Systemic treatment with erythropoietin protects the neurovascular unit in a rat model of retinal neurodegeneration. PLoS One 2014; 9(7): e102013.
[104]
Li F, Chong ZZ, Maiese K. Erythropoietin on a Tightrope: Balancing Neuronal and Vascular Protection between Intrinsic and Extrinsic Pathways. Neurosignals 2004; 13(6): 265-89.
[105]
Li F, Chong ZZ, Maiese K. Microglial integrity is maintained by erythropoietin through integration of Akt and its substrates of glycogen synthase kinase-3beta, beta-catenin, and nuclear factor-kappaB. Curr Neurovasc Res 2006; 3(3): 187-201.
[106]
Chong ZZ, Li F, Maiese K. Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways. Cell Signal 2007; 19(6): 1150-62.
[107]
Fu L, Liu C, Chen L, Lv Y, Meng G, Hu M, et al. Protective Effects of 1-Methylnicotinamide on Abeta1-42-Induced Cognitive Deficits, Neuroinflammation and Apoptosis in Mice. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 2019.
[108]
Shang YC, Chong ZZ, Wang S, Maiese K. Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY) 2012; 4(3): 187-201.
[109]
Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10(1): 29-38.
[110]
Takanezawa Y, Tanabe S, Kato D, Ozeki R, Komoda M, Suzuki T, et al. Microglial ASD-related genes are involved in oligodendrocyte differentiation. Scientific reports 2021; 11(1): 17825.
[111]
Tomita Y, Lee D, Tsubota K, Kurihara T. PPARα Agonist Oral Therapy in Diabetic Retinopathy. Biomedicines 2020; 8(10)
[112]
Madinier A, Bertrand N, Mossiat C, Prigent-Tessier A, Beley A, Marie C, et al. Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS ONE 2009; 4(12): e8101.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy