Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

An Emerging Class of Antimicrobial Heterocycles Derived from Natural Sources

Author(s): Benu Chaudhary*, Babita Patial, Rajiv Sharma and Anshul Chawla

Volume 21, Issue 13, 2024

Published on: 27 October, 2023

Page: [2521 - 2536] Pages: 16

DOI: 10.2174/0115701808254524231018040600

Price: $65

Abstract

An energetic desire to reduce the undesirable effects brought on by synthetic heterocyclic substances and to combat antimicrobial resistance has led to an increase in curiosity in using natural antimicrobial agents derived from plants, such as phenolics, catechol, pyrogallol, essential oils, Lchicoric acid, caffeic acid, catechins, coumarin, proanthocyanidins, 4-thiazolidinone, and alkaloids. The usage of naturally occurring heterocycles against Gram-positive (S. aureus, S. pyogenes, B. subtilis, A. niger, and B. cereus) and Gram-negative (P. aeruginosa, E. coli, K. pneumonia, P. vulgaris, and S. infantis) bacteria has been the subject of increased investigation in past few decades. This review targets the use of plant-derived antimicrobials to increase the microbiological safety of food and the possible antimicrobial activity of nitrogen- and oxygen-based heterocyclic compounds. It is possible to find novel medications to treat infectious diseases and address the issues brought on by antibiotic resistance by exploring and utilising the potential of these chemicals. Additional research is desirable on the toxicological effects and potential additive and/or synergistic antimicrobial actions in order to maximise the usage of these potential natural antimicrobials in foods.

[1]
Clark, A.M. Natural products as a resource for new drugs. Pharm. Res., 1996, 13(8), 1133-1141.
[http://dx.doi.org/10.1023/A:1016091631721] [PMID: 8865302]
[2]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[3]
Ostrosky-Zeichner, L.; Rex, J.H.; Pappas, P.G.; Hamill, R.J.; Larsen, R.A.; Horowitz, H.W.; Powderly, W.G.; Hyslop, N.; Kauffman, C.A.; Cleary, J.; Mangino, J.E.; Lee, J. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob. Agents Chemother., 2003, 47(10), 3149-3154.
[http://dx.doi.org/10.1128/AAC.47.10.3149-3154.2003] [PMID: 14506023]
[4]
Pfaller, M.A.; Diekema, D.J.; Jones, R.N.; Sader, H.S.; Fluit, A.C.; Hollis, R.J.; Messer, S.A. International surveillance of bloodstream infections due to Candida species: Frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J. Clin. Microbiol., 2001, 39(9), 3254-3259.
[http://dx.doi.org/10.1128/JCM.39.9.3254-3259.2001] [PMID: 11526159]
[5]
Canuto, M.M.; Rodero, F.G. Antifungal drug resistance to azoles and polyenes. Lancet Infect. Dis., 2002, 2(9), 550-563.
[http://dx.doi.org/10.1016/S1473-3099(02)00371-7] [PMID: 12206971]
[6]
Sanglard, D.; Odds, F.C. Resistance of Candida species to antifungal agents: Molecular mechanisms and clinical consequences. Lancet Infect. Dis., 2002, 2(2), 73-85.
[http://dx.doi.org/10.1016/S1473-3099(02)00181-0] [PMID: 11901654]
[7]
Cassidy, A.; Hanley, B.; Lamuela-Raventos, R.M. Isoflavones, lignans and stilbenes: Origins, metabolism and potential importance to human health. J. Sci. Food Agric., 2000, 80(7), 1044-1062.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1044::AID-JSFA586>3.0.CO;2-N]
[8]
Etkin, N.L. Medicinal cuisines: Diet and ethopharmacology. Int. J. Pharmac., 1996, 34(5), 313-326.
[http://dx.doi.org/10.1076/phbi.34.5.313.13246]
[9]
Srinivasan, R.; Kannappan, A.; Shi, C.; Lin, X. Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Mar. Drugs, 2021, 19(10), 530.
[http://dx.doi.org/10.3390/md19100530] [PMID: 34677431]
[10]
Pieroni, A. Medicinal plants and food medicines in the folk traditions of the upper Lucca Province, Italy. J. Ethnopharmacol., 2000, 70(3), 235-273.
[http://dx.doi.org/10.1016/S0378-8741(99)00207-X] [PMID: 10837988]
[11]
Faisca Phillips, A.M.; Pombeiro, A.J.L. Recent developments in transition metal-catalyzed cross-dehydrogenative coupling reactions of ethers and thioethers. ChemCatChem, 2018, 10(16), 3354-3383.
[http://dx.doi.org/10.1002/cctc.201800582]
[12]
Béahdy, J. Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv. Appl. Microbiol., 1974, 18(0), 309-406.
[http://dx.doi.org/10.1016/S0065-2164(08)70573-2] [PMID: 4613148]
[13]
Alamgir, A.N.M.; Alamgir, A.N.M. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles. Therapeutic Use of Medicinal Plants and Their Extracts Phytochemistry and Bioactive Compounds, 2018, 2, 165-309.
[http://dx.doi.org/10.1007/978-3-319-92387-1_3]
[14]
Wagner, S.; Hofmann, A.; Siedle, B.; Terfloth, L.; Merfort, I.; Gasteiger, J. Development of a structural model for NF-kappaB inhibition of sesquiterpene lactones using self-organizing neural networks. J. Med. Chem., 2006, 49(7), 2241-2252.
[http://dx.doi.org/10.1021/jm051125n] [PMID: 16570920]
[15]
Todorova, A.K.; Juettner, F.; Linden, A.; Pluess, T.; von Philipsborn, W. Nostocyclamide: A new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria). J. Org. Chem., 1995, 60(24), 7891-7895.
[http://dx.doi.org/10.1021/jo00129a032]
[16]
Lentzen, G.; Klinck, R.; Matassova, N.; Aboul-ela, F.; Murchie, A.I.H. Structural basis for contrasting activities of ribosome binding thiazole antibiotics. Chem. Biol., 2003, 10(8), 769-778.
[http://dx.doi.org/10.1016/S1074-5521(03)00173-X] [PMID: 12954336]
[17]
Fabbretti, A.; He, C.G.; Gaspari, E.; Maffioli, S.; Brandi, L.; Spurio, R.; Sosio, M.; Jabes, D.; Donadio, S. A derivative of the thiopeptide GE2270A highly selective against propionibacterium acnes. Antimicrob. Agents Chemother., 2015, 59(8), 4560-4568.
[http://dx.doi.org/10.1128/AAC.05155-14] [PMID: 25987631]
[18]
Knerr, P.J.; van der Donk, W.A. Chemical synthesis of the lantibiotic lacticin 481 reveals the importance of lanthionine stereochemistry. J. Am. Chem. Soc., 2013, 135(19), 7094-7097.
[http://dx.doi.org/10.1021/ja4014024] [PMID: 23621626]
[19]
Ueno, M.; Furukawa, S.; Abe, F.; Ushioda, M.; Fujine, K.; Johki, S.; Hatori, H.; Ueda, H. Suppressive effect of antibiotic siomycin on antibody production. J. Antibiot., 2004, 57(9), 590-596.
[http://dx.doi.org/10.7164/antibiotics.57.590] [PMID: 15580960]
[20]
de Carvalho, L.P.; Groeger-Otero, S.; Kreidenweiss, A.; Kremsner, P.G.; Mordmüller, B.; Held, J. Boromycin has rapid-onset antibiotic activity against asexual and sexual blood stages of plasmodium falciparum. Front. Cell. Infect. Microbiol., 2022, 11, 802294.
[http://dx.doi.org/10.3389/fcimb.2021.802294] [PMID: 35096650]
[21]
Dembitsky, V.M. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids, 2005, 40(11), 1081-1105.
[http://dx.doi.org/10.1007/s11745-005-1473-2] [PMID: 16459921]
[22]
Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol., 2019, 10, 911.
[http://dx.doi.org/10.3389/fmicb.2019.00911] [PMID: 31156565]
[23]
van Bergeijk, D.A.; Terlouw, B.R.; Medema, M.H.; van Wezel, G.P. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat. Rev. Microbiol., 2020, 18(10), 546-558.
[http://dx.doi.org/10.1038/s41579-020-0379-y] [PMID: 32483324]
[24]
Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[25]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[26]
Amirkia, V.; Heinrich, M. Alkaloids as drug leads: A predictive structural and biodiversity-based analysis. Phytochem. Lett., 2014, 10, xlviii-liii.
[http://dx.doi.org/10.1016/j.phytol.2014.06.015]
[27]
Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly Bazzaz, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm., 2015, 41(6), 989-994.
[http://dx.doi.org/10.3109/03639045.2014.920025] [PMID: 24842547]
[28]
Zandavar, H.; Babazad, M.A. Secondary Metabolites: Alkaloids and flavonoids in medicinal plants. In: Herbs and Spices-New Advances; IntechOpen, 2023.
[http://dx.doi.org/10.5772/intechopen.108030]
[29]
Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 2019, 9(11), 258.
[http://dx.doi.org/10.3390/metabo9110258] [PMID: 31683833]
[30]
Rosales, P.F.; Bordin, G.S.; Gower, A.E.; Moura, S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia, 2020, 143, 104558.
[http://dx.doi.org/10.1016/j.fitote.2020.104558] [PMID: 32198108]
[31]
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[32]
Dai, J.; Dan, W.; Zhang, Y.; He, M.; Wang, J. Design and synthesis of C modified and ring-truncated canthin-6-one analogues as effective membrane-active antibacterial agents. Bioorg. Med. Chem. Lett., 2018, 28(18), 3123-3128.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.001] [PMID: 30097370]
[33]
Yang, F.F.; Shuai, M.S.; Guan, X.; Zhang, M.; Zhang, Q.Q.; Fu, X.Z.; Li, Z.Q.; Wang, D.P.; Zhou, M.; Yang, Y.Y.; Liu, T.; He, B.; Zhao, Y.L. Synthesis and antibacterial activity studies in vitro of indirubin-3′-monoximes. RSC Advances, 2022, 12(38), 25068-25080.
[http://dx.doi.org/10.1039/D2RA01035F] [PMID: 36199871]
[34]
Casciaro, B.; Mangiardi, L.; Cappiello, F.; Romeo, I.; Loffredo, M.R.; Iazzetti, A.; Calcaterra, A.; Goggiamani, A.; Ghirga, F.; Mangoni, M.L.; Botta, B.; Quaglio, D. Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections. Molecules, 2020, 25(16), 3619.
[http://dx.doi.org/10.3390/molecules25163619] [PMID: 32784887]
[35]
Mohtar, M.; Johari, S.A.; Li, A.R.; Isa, M.M.; Mustafa, S.; Ali, A.M.; Basri, D.F. Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA). Curr. Microbiol., 2009, 59(2), 181-186.
[http://dx.doi.org/10.1007/s00284-009-9416-9] [PMID: 19475447]
[36]
Casciaro, B.; Calcaterra, A.; Cappiello, F.; Mori, M.; Loffredo, M.; Ghirga, F.; Mangoni, M.; Botta, B.; Quaglio, D. Nigritanine as a new potential antimicrobial alkaloid for the treatment of Staphylococcus aureus: Induced Infections. Toxins (Basel), 2019, 11(9), 511.
[http://dx.doi.org/10.3390/toxins11090511] [PMID: 31480508]
[37]
Lebold, T.P.; Kerr, M.A. Total syntheses of clausamines A-C and clausevatine D. Org. Lett., 2008, 10(5), 997-1000.
[http://dx.doi.org/10.1021/ol703085f] [PMID: 18232706]
[38]
maneerat, W.; Phakhodee, W.; Ritthiwigrom, T.; Cheenpracha, S.; Promgool, T.; Yossathera, K.; Deachathai, S.; Laphookhieo, S. Antibacterial carbazole alkaloids from clausenaharmandiana twigs. Fitoterapia, 2012, 83(6), 1110-1114.
[http://dx.doi.org/10.1016/j.fitote.2012.04.026] [PMID: 22579839]
[39]
Ahire, J.J.; Kashikar, M.S.; Madempudi, R.S. Survival and Germination of Bacillus clausii UBBC07 Spores in in vitro human gastrointestinal tract simulation model and evaluation of clausin production. Front. Microbiol., 2020, 11, 1010.
[http://dx.doi.org/10.3389/fmicb.2020.01010] [PMID: 32733389]
[40]
Elmaidomy, A.H.; Shady, N.H.; Abdeljawad, K.M.; Elzamkan, M.B.; Helmy, H.H.; Tarshan, E.A.; Adly, A.N.; Hussien, Y.H.; Sayed, N.G.; Zayed, A.; Abdelmohsen, U.R. Antimicrobial potentials of natural products against multidrug resistance pathogens: A comprehensive review. RSC Adv., 2022, 12(45), 29078-29102.
[http://dx.doi.org/10.1039/D2RA04884A] [PMID: 36320761]
[41]
Danquah, C.A.; Kakagianni, E.; Khondkar, P.; Maitra, A.; Rahman, M.; Evangelopoulos, D.; McHugh, T.D.; Stapleton, P.; Malkinson, J.; Bhakta, S.; Gibbons, S. Analogues of disulfides from allium stipitatum demonstrate potent anti-tubercular activities through drug efflux pump and biofilm inhibition. Sci. Rep., 2018, 8(1), 1150.
[http://dx.doi.org/10.1038/s41598-017-18948-w] [PMID: 29348586]
[42]
Maneerat, W.; Phakhodee, W.; Cheenpracha, S.; Ritthiwigrom, T.; Deachathai, S.; Laphookhieo, S. Clausenawallines G–K, carbazole alkaloids from Clausena wallichii twigs. Phytochemistry, 2013, 88, 74-78.
[http://dx.doi.org/10.1016/j.phytochem.2012.12.014]
[43]
Joshi, T.; Jain, T.; Mahar, R.; Singh, S.K.; Srivastava, P.; Shukla, S.K.; Mishra, D.K.; Bhatta, R.S.; Banerjee, D.; Kanojiya, S. Pyranocarbazoles from Murraya koenigii (L.) Spreng. as antimicrobial agents. Nat. Prod. Res., 2018, 32(4), 430-434.
[http://dx.doi.org/10.1080/14786419.2017.1308363] [PMID: 28368664]
[44]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[45]
Herraiz, T.; Peña, A.; Mateo, H.; Herraiz, M.; Salgado, A. Formation, characterization, and occurrence of β-carboline alkaloids derived from α-dicarbonyl compounds and L -tryptophan. J. Agric. Food Chem., 2022, 70(29), 9143-9153.
[http://dx.doi.org/10.1021/acs.jafc.2c03187] [PMID: 35819924]
[46]
Dai, J.; Dan, W.; Schneider, U.; Wang, J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur. J. Med. Chem., 2018, 157, 622-656.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.027] [PMID: 30125723]
[47]
Darabpour, E.; Poshtkouhian Bavi, A.; Motamedi, H.; Seyyed Nejad, S.M. Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria. EXCLI J., 2011, 10, 252-263.
[PMID: 29033706]
[48]
Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. Marine-derived indole alkaloids and their biological and pharmacological activities. Mar. Drugs, 2021, 20(1), 3.
[http://dx.doi.org/10.3390/md20010003] [PMID: 35049859]
[49]
Husson, H-P. Simple indole alkaloids including ß-carbolines and carbazoles.The Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press, 1985, Vol. 26, pp. 1-51.
[http://dx.doi.org/10.1016/S0099-9598(08)60192-3]
[50]
Han, Y.; Dong, W.; Guo, Q.; Li, X.; Huang, L. The importance of indole and azaindole scaffold in the development of antitumor agents. Eur. J. Med. Chem., 2020, 203, 112506.
[http://dx.doi.org/10.1016/j.ejmech.2020.112506] [PMID: 32688198]
[51]
Maneerat, W.; Ritthiwigrom, T.; Cheenpracha, S.; Promgool, T.; Yossathera, K.; Deachathai, S.; Phakhodee, W.; Laphookhieo, S. Bioactive carbazole alkaloids from Clausena wallichii roots. J. Nat. Prod., 2012, 75(4), 741-746.
[http://dx.doi.org/10.1021/np3000365] [PMID: 22482432]
[52]
Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food, 2005, 8(4), 454-461.
[http://dx.doi.org/10.1089/jmf.2005.8.454] [PMID: 16379555]
[53]
Choi, J.G.; Kang, O.H.; Chae, H.S.; Obiang-Obounou, B.; Lee, Y.S.; Oh, Y.C.; Kim, M.S.; Shin, D.W.; Kim, J.A.; Kim, Y.H.; Kwon, D.Y. Antibacterial activity of Hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus. Appl. Biochem. Biotechnol., 2010, 160(8), 2467-2474.
[http://dx.doi.org/10.1007/s12010-009-8698-5] [PMID: 19578993]
[54]
Hamoud, R.; Reichling, J.; Wink, M. Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria. Drug Metab. Lett., 2015, 8(2), 119-128.
[http://dx.doi.org/10.2174/187231280802150212100742] [PMID: 25692301]
[55]
Tzeng, H.E.; Tsai, C.H.; Ho, T.Y.; Hsieh, C.T.; Chou, S.C.; Lee, Y.J.; Tsay, G.J.; Huang, P.H.; Wu, Y.Y. Radix Paeoniae Rubra stimulates osteoclast differentiation by activation of the NF-κB and mitogen-activated protein kinase pathways. BMC Complement. Altern. Med., 2018, 18(1), 132.
[http://dx.doi.org/10.1186/s12906-018-2196-7] [PMID: 29688864]
[56]
Rodríguez-Guzmán, R.; Johansmann Fulks, L.; Radwan, M.; Burandt, C.; Ross, S. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum. Planta Med., 2011, 77(13), 1542-1544.
[http://dx.doi.org/10.1055/s-0030-1270782] [PMID: 21341176]
[57]
Costa, R.S.; Lins, M.O.; Le Hyaric, M.; Barros, T.F.; Velozo, E.S. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Bras. Farmacogn., 2017, 27(2), 195-198.
[http://dx.doi.org/10.1016/j.bjp.2016.11.001]
[58]
Zuo, G.Y.; Meng, F.Y.; Hao, X.Y.; Zhang, Y.L.; Wang, G.C.; Xu, G.L. Antibacterial alkaloids from chelidonium majus linn (papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Pharm. Pharm. Sci., 2009, 11(4), 90-94.
[http://dx.doi.org/10.18433/J3D30Q] [PMID: 19183517]
[59]
Yin, S.; Rao, G.; Wang, J.; Luo, L.; He, G.; Wang, C.; Ma, C.; Luo, X.; Hou, Z.; Xu, G. Roemerine improves the survival rate of septicemic BALB/c Mice by increasing the cell membrane permeability of staphylococcus aureus. PLoS One, 2015, 10(11), e0143863.
[http://dx.doi.org/10.1371/journal.pone.0143863] [PMID: 26606133]
[60]
Avci, F.G.; Atas, B.; Aksoy, C.S.; Kurpejovic, E.; Gulsoy Toplan, G.; Gurer, C.; Guillerminet, M.; Orelle, C.; Jault, J.M.; Sariyar Akbulut, B. Repurposing bioactive aporphine alkaloids as efflux pump inhibitors. Fitoterapia, 2019, 139, 104371.
[http://dx.doi.org/10.1016/j.fitote.2019.104371] [PMID: 31629051]
[61]
Stork, G.; Tang, P.C.; Casey, M.; Goodman, B.; Toyota, M. Regiospecific and stereoselective syntheses of (+/-)-reserpine and (-)-reserpine. J. Am. Chem. Soc., 2005, 127(46), 16255-16262.
[http://dx.doi.org/10.1021/ja055744x] [PMID: 16287318]
[62]
Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol. Pharmacol., 1988, 33(2), 144-147.
[PMID: 2893251]
[63]
Neyfakh, A.A.; Bidnenko, V.E.; Chen, L.B. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc. Natl. Acad. Sci., 1991, 88(11), 4781-4785.
[http://dx.doi.org/10.1073/pnas.88.11.4781] [PMID: 1675788]
[64]
Henry, J.P.; Botton, D.; Sagne, C.; Isambert, M.F.; Desnos, C.; Blanchard, V.; Raisman-Vozari, R.; Krejci, E.; Massoulie, J.; Gasnier, B. Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules. J. Exp. Biol., 1994, 196(1), 251-262.
[http://dx.doi.org/10.1242/jeb.196.1.251] [PMID: 7823026]
[65]
Jia, W.; Li, C.; Zhang, H.; Li, G.; Liu, X.; Wei, J. Prevalence of Genes of OXA-23 Carbapenemase and AdeABC Efflux pump associated with multidrug resistance of acinetobacter baumannii isolates in the icu of a comprehensive hospital of northwestern China. Int. J. Environ. Res. Public Health, 2015, 12(8), 10079-10092.
[http://dx.doi.org/10.3390/ijerph120810079] [PMID: 26308027]
[66]
Neyfakh, A.A.; Borsch, C.M.; Kaatz, G.W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother., 1993, 37(1), 128-129.
[http://dx.doi.org/10.1128/AAC.37.1.128] [PMID: 8431010]
[67]
Vecchione, J.J.; Alexander, B., Jr; Sello, J.K. Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob. Agents Chemother., 2009, 53(11), 4673-4677.
[http://dx.doi.org/10.1128/AAC.00853-09] [PMID: 19687245]
[68]
Godreuil, S.; Galimand, M.; Gerbaud, G.; Jacquet, C.; Courvalin, P.; Lde, E.P. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob. Agents Chemother., 2003, 47(2), 704-708.
[http://dx.doi.org/10.1128/AAC.47.2.704-708.2003] [PMID: 12543681]
[69]
Floyd, J.L.; Smith, K.P.; Kumar, S.H.; Floyd, J.T.; Varela, M.F.; Lmr, S. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob. Agents Chemother., 2010, 54(12), 5406-5412.
[http://dx.doi.org/10.1128/AAC.00580-10] [PMID: 20855745]
[70]
Gibbons, S.; Udo, E.E. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res., 2000, 14(2), 139-140.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<139::AID-PTR608>3.0.CO;2-8] [PMID: 10685116]
[71]
Shaheen, A.; Afridi, W.A.; Mahboob, S.; Sana, M.; Zeeshan, N.; Ismat, F.; Mirza, O.; Iqbal, M.; Rahman, M. Reserpine is the new addition into the repertoire of AcrB efflux pump inhibitors. Mol. Biol., 2019, 53(4), 674-684.
[http://dx.doi.org/10.1134/S0026898419040128] [PMID: 31397441]
[72]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci., 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[73]
Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810-812.
[http://dx.doi.org/10.1128/AAC.50.2.810-812.2006] [PMID: 16436753]
[74]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Darokar, M.P.; Srivastava, S.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli. Chem. Biol. Drug Des., 2015, 86(3), 272-283.
[http://dx.doi.org/10.1111/cbdd.12491] [PMID: 25476148]
[75]
Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des., 2013, 81(4), 484-490.
[http://dx.doi.org/10.1111/cbdd.12103] [PMID: 23290001]
[76]
Genest, K. A direct densitometric method on thin-layer plates for the determination of lysergic acid amide, isolysergic acid amide and clavine alkaloids in morning glory seeds. J. Chromatogr. A, 1965, 19(3), 531-539.
[http://dx.doi.org/10.1016/S0021-9673(01)99495-6] [PMID: 5864081]
[77]
Maurya, A.; Verma, R.K.; Srivastava, S.K. Quantitative determination of bioactive alkaloids lysergol and chanoclavine in Ipomoea muricata by reversed-phase high-performance liquid chromatography. Biomed. Chromatogr., 2012, 26(9), 1096-1100.
[http://dx.doi.org/10.1002/bmc.1753] [PMID: 22120837]
[78]
Bayazeid, O.; Nemutlu, E.; Eylem, C.C.; İlhan, M.; Küpeli-Akkol, E.; Karahan, H.; Kelicen-Uğur, P.; Ersoz, T.; Yalçın, F.N. Neuroactivity of the naturally occurring aporphine alkaloid, roemerine. Nat. Prod. Res., 2021, 35(24), 6147-6152.
[http://dx.doi.org/10.1080/14786419.2020.1830395] [PMID: 33025828]
[79]
Morita, Y.; Nakashima, K.; Nishino, K.; Kotani, K.; Tomida, J.; Inoue, M.; Kawamura, Y. Berberine is a novel type efflux inhibitor which attenuates the mexxy-mediated aminoglycoside resistance in pseudomonas aeruginosa. Front. Microbiol., 2016, 7, 1223.
[http://dx.doi.org/10.3389/fmicb.2016.01223] [PMID: 27547203]
[80]
Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother., 2002, 46(10), 3133-3141.
[http://dx.doi.org/10.1128/AAC.46.10.3133-3141.2002] [PMID: 12234835]
[81]
Das, S.; Kumar, G.S.; Ray, A.; Maiti, M. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J. Biomol. Struct. Dyn., 2003, 20(5), 703-713.
[http://dx.doi.org/10.1080/07391102.2003.10506887] [PMID: 12643773]
[82]
Bhadra, K.; Maiti, M.; Kumar, G.S. Berberine–DNA complexation: New insights into the cooperative binding and energetic aspects. Biochim. Biophys. Acta, Gen. Subj., 2008, 1780(9), 1054-1061.
[http://dx.doi.org/10.1016/j.bbagen.2008.05.005] [PMID: 18549823]
[83]
Yadav, R.C.; Kumar, G.S.; Bhadra, K.; Giri, P.; Sinha, R.; Pal, S.; Maiti, M. Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study. Bioorg. Med. Chem., 2005, 13(1), 165-174.
[http://dx.doi.org/10.1016/j.bmc.2004.09.045] [PMID: 15582461]
[84]
Domadia, P.N.; Bhunia, A.; Sivaraman, J.; Swarup, S.; Dasgupta, D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry, 2008, 47(10), 3225-3234.
[http://dx.doi.org/10.1021/bi7018546] [PMID: 18275156]
[85]
Boberek, J.M.; Stach, J.; Good, L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One, 2010, 5(10), e13745.
[http://dx.doi.org/10.1371/journal.pone.0013745] [PMID: 21060782]
[86]
Schwartzberg, L.; Osswald, S.S.; Elston, D.M. Botanical Briefs: Bloodroot (Sanguinaria canadensis). Cutis, 2021, 108(4), 212-214.
[http://dx.doi.org/10.12788/cutis.0345] [PMID: 34847001]
[87]
Beuria, T.K.; Santra, M.K.; Panda, D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry, 2005, 44(50), 16584-16593.
[http://dx.doi.org/10.1021/bi050767+] [PMID: 16342949]
[88]
W Obiang-Obounou, B.; Kang, O.H.; Choi, J.G.; Keum, J.H.; Kim, S.B.; Mun, S.H.; Shin, D.W.; Woo Kim, K.; Park, C.B.; Kim, Y.G.; Han, S.H.; Kwon, D.Y. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus. J. Toxicol. Sci., 2011, 36(3), 277-283.
[http://dx.doi.org/10.2131/jts.36.277] [PMID: 21628956]
[89]
Obiang-Obounou, B.W.; Kang, O.H.; Choi, J.G.; Keum, J.H.; Kim, S.B.; Mun, S.H.; Shin, D.W.; Park, C.B.; Kim, Y.G.; Han, S.H.; Lee, J.H.; Kwon, D.Y. In vitro potentiation of ampicillin, oxacillin, norfloxacin, ciprofloxacin, and vancomycin by sanguinarine against methicillin-resistant Staphylococcus aureus. Foodborne Pathog. Dis., 2011, 8(8), 869-874.
[http://dx.doi.org/10.1089/fpd.2010.0759] [PMID: 21524196]
[90]
Parhi, A.; Lu, S.; Kelley, C.; Kaul, M.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of substituted dibenzo[a,g]quinolizin-7-ium derivatives. Bioorg. Med. Chem. Lett., 2012, 22(22), 6962-6966.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.123] [PMID: 23058886]
[91]
Hamoud, R.; Reichling, J.; Wink, M. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J. Pharm. Pharmacol., 2015, 67(2), 264-273.
[http://dx.doi.org/10.1111/jphp.12326] [PMID: 25495516]
[92]
AL-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine, 2015, 22(2), 245-255.
[http://dx.doi.org/10.1016/j.phymed.2014.11.019] [PMID: 25765829]
[93]
Hamoud, R.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine, 2014, 21(4), 443-447.
[http://dx.doi.org/10.1016/j.phymed.2013.10.016] [PMID: 24262063]
[94]
Zuo, G.Y.; Li, Y.; Wang, T.; Han, J.; Wang, G.C.; Zhang, Y.L.; Pan, W.D. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules, 2011, 16(12), 9819-9826.
[http://dx.doi.org/10.3390/molecules16129819] [PMID: 22117171]
[95]
Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(8), 1694-1701.
[http://dx.doi.org/10.1093/jac/dkq186] [PMID: 20525733]
[96]
Mirza, Z.M.; Kumar, A.; Kalia, N.P.; Zargar, A.; Khan, I.A. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J. Med. Microbiol., 2011, 60(10), 1472-1478.
[http://dx.doi.org/10.1099/jmm.0.033167-0] [PMID: 21680766]
[97]
Bhardwaj, R.K.; Glaeser, H.; Becquemont, L.; Klotz, U.; Gupta, S.K.; Fromm, M.F. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther., 2002, 302(2), 645-650.
[http://dx.doi.org/10.1124/jpet.102.034728] [PMID: 12130727]
[98]
Singh, J.; Dubey, R.K.; Atal, C.K. Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: Evidence that piperine lowers the endogeneous UDP-glucuronic acid content. J. Pharmacol. Exp. Ther., 1986, 236(2), 488-493.
[PMID: 3080587]
[99]
Pan, X.; Bligh, S.W.A.; Smith, E. Quinolone alkaloids from Fructus Euodiae show activity against methicillin-resistant Staphylococcus aureus. Phytother. Res., 2014, 28(2), 305-307.
[http://dx.doi.org/10.1002/ptr.4987] [PMID: 24497124]
[100]
Hochfellner, C.; Evangelopoulos, D.; Zloh, M.; Wube, A.; Guzman, J.D.; McHugh, T.D.; Kunert, O.; Bhakta, S.; Bucar, F. Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. J. Appl. Microbiol., 2015, 118(4), 864-872.
[http://dx.doi.org/10.1111/jam.12753] [PMID: 25604161]
[101]
Hamasaki, N.; Ishii, E.; Tominaga, K.; Tezuka, Y.; Nagaoka, T.; Kadota, S.; Kuroki, T.; Yano, I. Highly selective antibacterial activity of novel alkyl quinolone alkaloids from a Chinese herbal medicine, Gosyuyu (Wu-Chu-Yu), against Helicobacter pylori in vitro. Microbiol. Immunol., 2000, 44(1), 9-15.
[http://dx.doi.org/10.1111/j.1348-0421.2000.tb01240.x] [PMID: 10711594]
[102]
Tominaga, K.; Higuchi, K.; Hamasaki, N.; Hamaguchi, M.; Takashima, T.; Tanigawa, T.; Watanabe, T.; Fujiwara, Y.; Tezuka, Y.; Nagaoka, T.; Kadota, S.; Ishii, E.; Kobayashi, K.; Arakawa, T. In vivo action of novel alkyl methyl quinolone alkaloids against Helicobacter pylori. J. Antimicrob. Chemother., 2002, 50(4), 547-552.
[http://dx.doi.org/10.1093/jac/dkf159] [PMID: 12356800]
[103]
Guzman, J.D.; Wube, A.; Evangelopoulos, D.; Gupta, A.; Hüfner, A.; Basavannacharya, C.; Rahman, M.M.; Thomaschitz, C.; Bauer, R.; McHugh, T.D.; Nobeli, I.; Prieto, J.M.; Gibbons, S.; Bucar, F.; Bhakta, S. Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium tuberculosis: antibacterial activity, molecular docking and inhibition kinetics. J. Antimicrob. Chemother., 2011, 66(8), 1766-1772.
[http://dx.doi.org/10.1093/jac/dkr203] [PMID: 21622974]
[104]
Gçker, H.; Kus, C.; Arch, A.U. Synthesis and antimicrobial activity of some new 2-[(1H-benzimidazol-2-yl)methyl]-5-nitro-1H-benzimidazole derivatives. Pharm., 1995, 328, 425-430.
[105]
Desai, N.C.; Dodiya, A.M.; Makwana, A.H. Antimicrobial screening of novel synthesized benzimidazole nucleus containing 4-oxo-thiazolidine derivatives. Med. Chem. Res., 2012, 21(9), 2320-2328.
[http://dx.doi.org/10.1007/s00044-011-9752-8]
[106]
Hu, L.; Kully, M.L.; Boykin, D.W.; Abood, N. Optimization of the central linker of dicationic bis-benzimidazole anti-MRSA and anti-VRE agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3374-3377.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.061] [PMID: 19481935]
[107]
Al-Mohammed, N.; Alias, Y.; Abdullah, Z.; Shakir, R.; Taha, E.; Hamid, A. Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides. Molecules, 2013, 18(10), 11978-11995.
[http://dx.doi.org/10.3390/molecules181011978] [PMID: 24077176]
[108]
Wiseman, S.A.; Balentine, D.A.; Frei, B. Antioxidants in tea. Crit. Rev. Food Sci. Nutr., 1997, 37(8), 705-718.
[http://dx.doi.org/10.1080/10408399709527798] [PMID: 9447271]
[109]
Chou, C.; Lin, L.L.; Chung, K.T. Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season. Int. J. Food Microbiol., 1999, 48(2), 125-130.
[http://dx.doi.org/10.1016/S0168-1605(99)00034-3] [PMID: 10426448]
[110]
Otake, S.; Makimura, M.; Kuroki, T.; Nishihara, Y.; Hirasawa, M. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res., 1991, 25(6), 438-443.
[http://dx.doi.org/10.1159/000261407] [PMID: 1667297]
[111]
Yoda, Y.; Hu, Z.Q.; Shimamura, T.; Zhao, W-H. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. J. Infect. Chemother., 2004, 10(1), 55-58.
[http://dx.doi.org/10.1007/s10156-003-0284-0] [PMID: 14991521]
[112]
Mabe, K.; Yamada, M.; Oguni, I.; Takahashi, T. In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrob. Agents Chemother., 1999, 43(7), 1788-1791.
[http://dx.doi.org/10.1128/AAC.43.7.1788] [PMID: 10390246]
[113]
Hirasawa, M.; Takada, K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother., 2004, 53(2), 225-229.
[http://dx.doi.org/10.1093/jac/dkh046] [PMID: 14688042]
[114]
Jodoin, J.; Demeule, M.; Béliveau, R. Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols. Biochim. Biophys. Acta Mol. Cell Res., 2002, 1542(1-3), 149-159.
[http://dx.doi.org/10.1016/S0167-4889(01)00175-6] [PMID: 11853888]
[115]
Blanco, A.R.; La Terra Mulè, S.; Babini, G.; Garbisa, S.; Enea, V.; Rusciano, D. (−)Epigallocatechin-3-gallate inhibits gelatinase activity of some bacterial isolates from ocular infection, and limits their invasion through gelatine. Biochim. Biophys. Acta, Gen. Subj., 2003, 1620(1-3), 273-281, 273-281.
[http://dx.doi.org/10.1016/S0304-4165(03)00007-2] [PMID: 12595099]
[116]
Higdon, J.V.; Frei, B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 2003, 43(1), 89-143.
[http://dx.doi.org/10.1080/10408690390826464] [PMID: 12587987]
[117]
Park, B.J.; Park, J.C.; Taguchi, H.; Fukushima, K.; Hyon, S.H.; Takatori, K. Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochem. Biophys. Res. Commun., 2006, 347(2), 401-405.
[http://dx.doi.org/10.1016/j.bbrc.2006.06.037] [PMID: 16831406]
[118]
Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull., 2006, 29(11), 2226-2235.
[http://dx.doi.org/10.1248/bpb.29.2226] [PMID: 17077519]
[119]
Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta Biomembr., 1993, 1147(1), 132-136.
[http://dx.doi.org/10.1016/0005-2736(93)90323-R] [PMID: 8466924]
[120]
Sudano Roccaro, A.; Blanco, A.R.; Giuliano, F.; Rusciano, D.; Enea, V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob. Agents Chemother., 2004, 48(6), 1968-1973.
[http://dx.doi.org/10.1128/AAC.48.6.1968-1973.2004] [PMID: 15155186]
[121]
Zhao, W.H.; Hu, Z.Q.; Hara, Y.; Shimamura, T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob. Agents Chemother., 2002, 46(7), 2266-2268.
[http://dx.doi.org/10.1128/AAC.46.7.2266-2268.2002] [PMID: 12069986]
[122]
Zhao, W.H.; Hu, Z.Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of Synergy between Epigallocatechin Gallate and β-Lactams against Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2001, 45(6), 1737-1742.
[http://dx.doi.org/10.1128/AAC.45.6.1737-1742.2001] [PMID: 11353619]
[123]
Chung, K.T.; Wei, C.I.; Johnson, M.G. Are tannins a double-edged sword in biology and health? Trends Food Sci. Technol., 1998, 9(4), 168-175.
[http://dx.doi.org/10.1016/S0924-2244(98)00028-4]
[124]
Hori, Y.; Sato, S.; Hatai, A. Antibacterial activity of plant extracts from azuki beans (Vigna angularis) in vitro. Phytother. Res., 2006, 20(2), 162-164.
[http://dx.doi.org/10.1002/ptr.1826] [PMID: 16444673]
[125]
Amarowicz, R.; Pegg, R.B.; Bautista, D.A. Antibacterial activity of green tea polyphenols against Escherichia coliK 12. Nahrung, 2000, 44(1), 60-62.
[http://dx.doi.org/10.1002/(SICI)1521-3803(20000101)44:1<60::AID-FOOD60>3.0.CO;2-L] [PMID: 10703004]
[126]
Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol., 2001, 90(4), 494-507.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01271.x] [PMID: 11309059]
[127]
Howell, A.B.; Vorsa, N.; Marderosian, A.D.; Foo, L.Y. Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. N. Engl. J. Med., 1998, 339(15), 1085-1086.
[http://dx.doi.org/10.1056/NEJM199810083391516] [PMID: 9767006]
[128]
(a) Taylor, R.S.L.; Edel, F.; Manandhar, N.P.; Towers, G.H.N. Screening of selected medicinal plants of Nepal for antimicrobial activities. J. Ethnopharmacol., 1999, 50, 97 82.;
(b) Nelson, K.E.; Pell, A.N.; Doane, P.H.; Giner-Chavez, B.I.; Schofield, P. Chemical and Biological Assays to Evaluate Bacterial Inhibition by Tannins. J. Chem. Ecol., 1997, 23(4), 1175-1194.
[http://dx.doi.org/10.1023/B:JOEC.0000006394.06574.f4]
[129]
Jones, G.A.; McAllister, T.A.; Muir, A.D.; Cheng, K.J. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol., 1994, 60(4), 1374-1378.
[http://dx.doi.org/10.1128/aem.60.4.1374-1378.1994] [PMID: 16349244]
[130]
Dixon, R.A.; Xie, D.Y.; Sharma, S.B.; Proanthocyanidins, A. Proanthocyanidins: A final frontier in flavonoid research? New Phytol., 2005, 165(1), 9-28.
[http://dx.doi.org/10.1111/j.1469-8137.2004.01217.x] [PMID: 15720617]
[131]
Schötz, K.; Nöldner, M. Mass spectroscopic characterisation of oligomeric proanthocyanidins derived from an extract of Pelargonium sidoides roots (EPs® 7630) and pharmacological screening in CNS models. Phytomedicine, 2007, 14(6), 32-39.
[http://dx.doi.org/10.1016/j.phymed.2006.11.019] [PMID: 17218089]
[132]
McRose, D.L.; Li, J.; Newman, D.K. The chemical ecology of coumarins and phenazines affects iron acquisition by pseudomonads. Proc. Natl. Acad. Sci., 2023, 120(14), e2217951120.
[http://dx.doi.org/10.1073/pnas.2217951120] [PMID: 36996105]
[133]
Vogel, A. Gilbert’s. Ann. Phys. Phys. Chem., 1820, 64(2), 161-166.
[http://dx.doi.org/10.1002/andp.18200640205]
[134]
Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents, 2009, 33(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.022] [PMID: 19155158]
[135]
Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), 901.
[http://dx.doi.org/10.3390/molecules21070901] [PMID: 27409600]
[136]
Geissman, T.A. Flavonoid compounds, tannins, lignins, and related compounds.Pyrrole Pigments, Isoprenoid Compounds and Phenolic Plant Constituents; Florkin, M.; Stotz, E.H., Eds.; Elsevier, 1963, 9, p. 265.
[http://dx.doi.org/10.1016/B978-1-4831-9718-0.50018-7]
[137]
Ferrazzano, G.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules, 2011, 16(2), 1486-1507.
[http://dx.doi.org/10.3390/molecules16021486] [PMID: 21317840]
[138]
Aldulaimi, O. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn. Rev., 2017, 11(22), 123-127.
[http://dx.doi.org/10.4103/phrev.phrev_43_16] [PMID: 28989246]
[139]
Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol., 2017, 43(6), 668-689.
[http://dx.doi.org/10.1080/1040841X.2017.1295225] [PMID: 28346030]
[140]
Mendonca, A.; Jackson-Davis, A.; Moutiq, R.; Thomas-Popo, E. Use of natural antimicrobials of plant origin to improve the microbiological safety of foods. Food Feed Saf. Syst. Anal., 2018, 249-272.

© 2025 Bentham Science Publishers | Privacy Policy