Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions

In Press, (this is not the final "Version of Record"). Available online 26 October, 2023
Author(s): Madhav Singla, Smriti Verma, Kiran Thakur, Ahsas Goyal, Vishal Sharma, Diksha Sharma, Omji Porwal, Vetriselvan Subramaniyan, Tapan Behl, Sachin Kumar Singh, Kamal Dua, Gaurav Gupta* and Saurabh Gupta*
Published on: 26 October, 2023

DOI: 10.2174/0109298673250784231011094322

Price: $95

Abstract

Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.

[1]
Thakur, K.T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J. Mental, neurological, and substance use disorders. In: Disease Control Priorities; The International Bank for Reconstruction and Development / The World Bank: Washington (DC), 2016.
[2]
Siuly, S.; Zhang, Y. Medical big data: Neurological diseases diagnosis through medical data analysis. DSE, 2016, 1(2), 54-64.
[http://dx.doi.org/10.1007/s41019-016-0011-3]
[3]
Raggi, A.; Monasta, L.; Beghi, E.; Caso, V.; Castelpietra, G.; Mondello, S.; Giussani, G.; Logroscino, G.; Magnani, F.G.; Piccininni, M.; Pupillo, E.; Ricci, S.; Ronfani, L.; Santalucia, P.; Sattin, D.; Schiavolin, S.; Toppo, C.; Traini, E.; Steinmetz, J.; Nichols, E.; Ma, R.; Vos, T.; Feigin, V.; Leonardi, M. Incidence, prevalence and disability associated with neurological disorders in Italy between 1990 and 2019: An analysis based on the global burden of disease study 2019. J. Neurol., 2022, 269(4), 2080-2098.
[http://dx.doi.org/10.1007/s00415-021-10774-5] [PMID: 34498172]
[4]
Bertolote, J.M. Neurological disorders affect millions globally: WHO report. World Neurol., 2007, 22(1)
[5]
Jang, C.H.; Oh, J.; Lim, J.S.; Kim, H.J.; Kim, J.S. Fermented soy products: Beneficial potential in neurodegenerative diseases. Foods, 2021, 10(3), 636.
[http://dx.doi.org/10.3390/foods10030636] [PMID: 33803607]
[6]
Pistollato, F.; Battino, M. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci. Technol., 2014, 40(1), 62-81.
[http://dx.doi.org/10.1016/j.tifs.2014.07.012]
[7]
Berlin, J.; Dewick, P.M.; Barz, W.; Grisebach, H. Biosynthesis of coumestrol in Phaseolus aureus. Phytochemistry, 1972, 11(5), 1689-1693.
[http://dx.doi.org/10.1016/0031-9422(72)85020-9]
[8]
Phytoestrogens in functional foods; Yildiz, F., Ed.; CRC Press, 2019.
[http://dx.doi.org/10.1201/9780429113802]
[9]
Sonnenschein, C.; Soto, A.M. An updated review of environmental estrogen and androgen mimics and antagonists. J. Steroid Biochem. Mol. Biol., 1998, 65(1-6), 143-150.
[http://dx.doi.org/10.1016/S0960-0760(98)00027-2] [PMID: 9699867]
[10]
Whitten, P.L.; Lewis, C.; Russell, E.; Naftolin, F. Potential adverse effects of phytoestrogens. J. Nutr., 1995, 125(S3), 771S-776S.
[PMID: 7884563]
[11]
Thomas, B.F.; Zeisel, S.H.; Busby, M.G.; Hill, J.M.; Mitchell, R.A.; Scheffler, N.M.; Brown, S.S.; Bloeden, L.T.; Dix, K.J.; Jeffcoat, A.R. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr., Biomed. Appl., 2001, 760(2), 191-205.
[http://dx.doi.org/10.1016/S0378-4347(01)00269-9] [PMID: 11530977]
[12]
Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer, 2006, 54(2), 184-201.
[http://dx.doi.org/10.1207/s15327914nc5402_5] [PMID: 16898863]
[13]
Branham, W.S.; Dial, S.L.; Moland, C.L.; Hass, B.S.; Blair, R.M.; Sheehan, D.M.; Fang, H.; Shi, L.; Tong, W.; Perkins, R.G. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J. Nutr., 2002, 132(4), 658-664.
[http://dx.doi.org/10.1093/jn/132.4.658] [PMID: 11925457]
[14]
Wang, T.; Wang, Y.; Zhuang, X.; Luan, F.; Zhao, C.; Cordeiro, M.N.D.S. Interaction of coumarin phytoestrogens with ERα and ERβ: A molecular dynamics simulation study. Molecules, 2020, 25(5), 1165.
[http://dx.doi.org/10.3390/molecules25051165] [PMID: 32150902]
[15]
Bingol, Z.; Kızıltaş, H.; Gören, A.C.; Kose, L.P.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulcin, İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.) – profiling of phenolic compounds by LC-HRMS. Heliyon, 2021, 7(5), e06986.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06986] [PMID: 34027185]
[16]
Whitten, P.L.; Patisaul, H.B.; Young, L.J. Neurobehavioral actions of coumestrol and related isoflavonoids in rodents. Neurotoxicol. Teratol., 2002, 24(1), 47-54.
[http://dx.doi.org/10.1016/S0892-0362(01)00192-1] [PMID: 11836071]
[17]
Koirala, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Comparative molecular docking studies of lupeol and lupenone isolated from Pueraria lobata that inhibits BACE1: Probable remedies for Alzheimer’s disease. Asian Pac. J. Trop. Med., 2017, 10(12), 1117-1122.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.018] [PMID: 29268966]
[18]
Jantaratnotai, N.; Utaisincharoen, P.; Sanvarinda, P.; Thampithak, A.; Sanvarinda, Y. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2013, 17(2), 483-488.
[http://dx.doi.org/10.1016/j.intimp.2013.07.013] [PMID: 23938252]
[19]
Pogačnik, L.; Ota, A.; Poklar Ulrih, N. An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells, 2020, 9(3), 576.
[http://dx.doi.org/10.3390/cells9030576] [PMID: 32121302]
[20]
Fekri, K.; Nayebi, A.M.; Mahmoudi, J.; Sadigh-Eteghad, S. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions. Pharm. Sci., 2022, 29(2), 135-143.
[21]
Walf, A.A.; Frye, C.A. Administration of estrogen receptor beta-specific selective estrogen receptor modulators to the hippocampus decrease anxiety and depressive behavior of ovariectomized rats. Pharmacol. Biochem. Behav., 2007, 86(2), 407-414.
[http://dx.doi.org/10.1016/j.pbb.2006.07.003] [PMID: 16916539]
[22]
Michel, T.; Halabalaki, M.; Skaltsounis, A.L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. Planta Med., 2013, 79(7), 514-532.
[http://dx.doi.org/10.1055/s-0032-1328300] [PMID: 23479392]
[23]
Taujenis, L.; Padarauskas, A.; Cesevičienė, J.; Lemežienė, N.; Butkutė, B. Determination of coumestrol in lucerne by ultra-high pressure liquid chromatography-mass spectrometry. Chemija, 2016, 27(1), 60-64.
[24]
Martin, L.M.; Castilho, M.C.; Silveira, M.I.; Abreu, J.M. Liquid chromatographic validation of a quantitation method for phytoestrogens, biochanin-a, coumestrol, daidzein, formononetin, and genistein, in lucerne. J. Liq. Chromatogr. Relat. Technol., 2006, 29(19), 2875-2884.
[http://dx.doi.org/10.1080/10826070600961076]
[25]
Moravcová, J.; Kleinová, T.; Loučka, R. The determination of coumestrol in alfalfa (Medicago sativa) by capillary electrophoresis. Plant Soil Environ., 2002, 48(5), 224-229.
[http://dx.doi.org/10.17221/4230-PSE]
[26]
Knuckles, B.E.; Miller, R.E.; Bickoff, E.M. Quantitative determination of coumestrol in dried alfalfa and alfalfa leaf protein concentrates containing chlorophyll. J. Assoc. Off. Anal. Chem., 1975, 58(5), 983-986.
[http://dx.doi.org/10.1093/jaoac/58.5.983] [PMID: 1158842]
[27]
Livingston, A.L.; Bickoff, E.M.; Guggolz, J.; Thompson, C.R. Alfalfa estrogens, quantitative determination of coumestrol in fresh and dried alfalfa. J. Agric. Food Chem., 1961, 9(2), 135-137.
[http://dx.doi.org/10.1021/jf60114a013]
[28]
Bickoff, E.M.; Livingston, A.L.; Witt, S.C.; Knuckles, B.F.; Guggolz, J.; Spencer, R.R. Isolation of coumestrol and other phenolics from alfalfa by countercurrent distribution. J. Pharm. Sci., 1964, 53(12), 1496-1499.
[http://dx.doi.org/10.1002/jps.2600531213] [PMID: 14255129]
[29]
Knuckles, B.E.; DeFremery, D.; Kohler, G.O. Coumestrol content of fractions obtained during wet processing of alfalfa. J. Agric. Food Chem., 1976, 24(6), 1177-1180.
[http://dx.doi.org/10.1021/jf60208a034] [PMID: 12201]
[30]
Lee, E.J.; Jiménez, Z.; Seo, K.H.; Nam, G.B.; Kang, Y.G.; Lee, T.R.; Kim, D.; Yang, D.C. Mass production of coumestrol from soybean (Glycine max) adventitious roots through bioreactor: effect on collagen production. Plant Biotechnol. Rep., 2020, 14(1), 99-110.
[http://dx.doi.org/10.1007/s11816-019-00589-2]
[31]
Hutabarat, L.S.; Greenfield, H.; Mulholland, M. Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography. J. Chromatogr. A, 2000, 886(1-2), 55-63.
[http://dx.doi.org/10.1016/S0021-9673(00)00444-1] [PMID: 10950275]
[32]
Lookhart, G.L. Note on an improved method of extracting and quantitating coumestrol from soybeans. Cereal Chem., 1979, 56(4), 386-388.
[33]
Habib, R.; Noureen, N.; Nadeem, N. Decoding common features of neurodegenerative disorders: from differentially expressed genes to pathways. Curr. Genomics, 2018, 19(4), 300-312.
[http://dx.doi.org/10.2174/1389202918666171005100549] [PMID: 29755292]
[34]
Alafuzoff, I.; Ince, P.G.; Arzberger, T.; Al-Sarraj, S.; Bell, J.; Bodi, I.; Bogdanovic, N.; Bugiani, O.; Ferrer, I.; Gelpi, E.; Gentleman, S.; Giaccone, G.; Ironside, J.W.; Kavantzas, N.; King, A.; Korkolopoulou, P.; Kovács, G.G.; Meyronet, D.; Monoranu, C.; Parchi, P.; Parkkinen, L.; Patsouris, E.; Roggendorf, W.; Rozemuller, A.; Stadelmann-Nessler, C.; Streichenberger, N.; Thal, D.R.; Kretzschmar, H. Staging/typing of Lewy body related α-synuclein pathology: A study of the BrainNet Europe Consortium. Acta Neuropathol., 2009, 117(6), 635-652.
[http://dx.doi.org/10.1007/s00401-009-0523-2] [PMID: 19330340]
[35]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[36]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[37]
Vergara, C.; Houben, S.; Suain, V.; Yilmaz, Z.; De Decker, R.; Vanden Dries, V.; Boom, A.; Mansour, S.; Leroy, K.; Ando, K.; Brion, J.P. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol., 2019, 137(3), 397-412.
[http://dx.doi.org/10.1007/s00401-018-1953-5] [PMID: 30599077]
[38]
Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol., 1999, 56(3), 303-308.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[39]
Carmasin, J.S.; Roth, R.M.; Rabin, L.A.; Englert, J.J.; Flashman, L.A.; Saykin, A.J. Stability of subjective executive functioning in older adults with aMCI and subjective cognitive decline. Arch. Clin. Neuropsychol., 2021, 36(6), 1012-1018.
[http://dx.doi.org/10.1093/arclin/acaa129] [PMID: 33454755]
[40]
Seidel, K.; Mahlke, J.; Siswanto, S.; Krüger, R.; Heinsen, H.; Auburger, G.; Bouzrou, M.; Grinberg, L.T.; Wicht, H.; Korf, H.W.; den Dunnen, W.; Rüb, U. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol., 2015, 25(2), 121-135.
[http://dx.doi.org/10.1111/bpa.12168] [PMID: 24995389]
[41]
Dickson, D.W.; Fujishiro, H.; DelleDonne, A.; Menke, J.; Ahmed, Z.; Klos, K.J.; Josephs, K.A.; Frigerio, R.; Burnett, M.; Parisi, J.E.; Ahlskog, J.E. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol., 2008, 115(4), 437-444.
[http://dx.doi.org/10.1007/s00401-008-0345-7] [PMID: 18264713]
[42]
Trovato, B.; Magrì, B.; Castorina, A.; Maugeri, G.; D’Agata, V.; Musumeci, G. Effects of exercise on skeletal muscle pathophysiology in Huntington’s disease. J. Funct. Morphol. Kinesiol., 2022, 7(2), 40.
[http://dx.doi.org/10.3390/jfmk7020040] [PMID: 35645302]
[43]
Craufurd, D.; Thompson, J.C.; Snowden, J.S. Behavioral changes in Huntington disease. Neuropsychiatry Neuropsychol. Behav. Neurol., 2001, 14(4), 219-226.
[PMID: 11725215]
[44]
Chaturvedi, R.K.; Adhihetty, P.; Shukla, S.; Hennessy, T.; Calingasan, N.; Yang, L.; Starkov, A.; Kiaei, M.; Cannella, M.; Sassone, J.; Ciammola, A.; Squitieri, F.; Beal, M.F. Impaired PGC-1α function in muscle in Huntington’s disease. Hum. Mol. Genet., 2009, 18(16), 3048-3065.
[http://dx.doi.org/10.1093/hmg/ddp243] [PMID: 19460884]
[45]
Castro, C.C.; Pagnussat, A.S.; Moura, N.; da Cunha, M.J.; Machado, F.R.; Wyse, A.T.S.; Netto, C.A. Coumestrol treatment prevents Na +, K + -ATPase inhibition and affords histological neuroprotection to male rats receiving cerebral global ischemia. Neurol. Res., 2014, 36(3), 198-206.
[http://dx.doi.org/10.1179/1743132813Y.0000000286] [PMID: 24512013]
[46]
Wang, J.; Pantopoulos, K. Regulation of cellular iron metabolism. Biochem. J., 2011, 434(3), 365-381.
[http://dx.doi.org/10.1042/BJ20101825] [PMID: 21348856]
[47]
Busl, K.M.; Greer, D.M. Hypoxic-ischemic brain injury: Pathophysiology, neuropathology and mechanisms. NeuroRehabilitation, 2010, 26(1), 5-13.
[http://dx.doi.org/10.3233/NRE-2010-0531] [PMID: 20130351]
[48]
Orrenius, S.; McCabe, M.J., Jr; Nicotera, P. Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol. Lett., 1992, 64-65(Spec No), 357-364.
[http://dx.doi.org/10.1016/0378-4274(92)90208-2] [PMID: 1335178]
[49]
Chand, S.P.; Marwaha, R.; Bender, R.M. Anxiety (Nursing). In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023.
[PMID: 33760520]
[50]
Stein, M.B.; Steckler, T. Behavioral Neurobiology of Anxiety and Its treatment. Springer: Berlin, Heidelberg, 2010.
[http://dx.doi.org/10.1007/978-3-642-02912-7]
[51]
Jongen-Rêlo, A.L.; Amaral, D.G. Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. Eur. J. Neurosci., 1998, 10(9), 2924-2933.
[http://dx.doi.org/10.1111/j.1460-9568.1998.00299.x] [PMID: 9758162]
[52]
Lim, W.; Jeong, M.; Bazer, F.W.; Song, G. Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J. Cell. Physiol., 2017, 232(4), 862-871.
[http://dx.doi.org/10.1002/jcp.25494] [PMID: 27431052]
[53]
Cooke, P.S.; Nanjappa, M.K.; Ko, C.; Prins, G.S.; Hess, R.A. Estrogens in male physiology. Physiol. Rev., 2017, 97(3), 995-1043.
[http://dx.doi.org/10.1152/physrev.00018.2016] [PMID: 28539434]
[54]
Durmaz, L.; Erturk, A.; Akyüz, M.; Polat Kose, L.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, İ. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules, 2022, 27(10), 3091.
[http://dx.doi.org/10.3390/molecules27103091] [PMID: 35630566]
[55]
Gandhi, S.; Abramov, A.Y.; Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Front. Aging Neurosci., 2012, 24, 83-85.
[56]
Zuo, L.; Zhou, T.; Pannell, B.K.; Ziegler, A.C.; Best, T.M. Biological and physiological role of reactive oxygen species - the good, the bad and the ugly. Acta Physiol., 2015, 214(3), 329-348.
[http://dx.doi.org/10.1111/apha.12515] [PMID: 25912260]
[57]
Montero, G.; Arriagada, F.; Günther, G.; Bollo, S.; Mura, F.; Berríos, E.; Morales, J. Phytoestrogen coumestrol: Antioxidant capacity and its loading in albumin nanoparticles. Int. J. Pharm., 2019, 562, 86-95.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.029] [PMID: 30885651]
[58]
Ahmad, A.; Ramasamy, K.; Majeed, A.B.A.; Mani, V. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm. Biol., 2015, 53(5), 758-766.
[http://dx.doi.org/10.3109/13880209.2014.942791] [PMID: 25756802]
[59]
Liu, M.H.; Tsuang, F.Y.; Sheu, S.Y.; Sun, J.S.; Shih, C.M. The protective effects of coumestrol against amyloid-β peptide- and lipopolysaccharide-induced toxicity on mice astrocytes. Neurol. Res., 2011, 33(6), 663-672.
[http://dx.doi.org/10.1179/1743132810Y.0000000029] [PMID: 21708076]
[60]
Kim, D.C. Investigation of coumestrol as a potent IKK-beta inhibitor using microglia cell system and computer aided drug design technology. Int. J. Eng. Res. Technol., 2018, 11(1), 41-50.
[61]
You, J.S.; Cho, I.A.; Kang, K.R.; Oh, J.S.; Yu, S.J.; Lee, G.J.; Seo, Y.S.; Kim, S.G.; Kim, C.S.; Kim, D.K.; Im, H.J.; Kim, J.S. Coumestrol counteracts interleukin-1β-induced catabolic effects by suppressing inflammation in primary rat chondrocytes. Inflammation, 2017, 40(1), 79-91.
[http://dx.doi.org/10.1007/s10753-016-0455-7] [PMID: 27709316]
[62]
Juárez-Chairez, M.F.; Meza-Márquez, O.G.; Márquez-Flores, Y.K.; Jiménez-Martínez, C. Potential anti-inflammatory effects of legumes: A review. Br. J. Nutr., 2022, 128(11), 2158-2169.
[http://dx.doi.org/10.1017/S0007114522000137] [PMID: 35042569]
[63]
Gào, X.; Schöttker, B. Reduction-oxidation pathways involved in cancer development: A systematic review of literature reviews. Oncotarget, 2017, 8(31), 51888-51906.
[http://dx.doi.org/10.18632/oncotarget.17128] [PMID: 28881698]
[64]
Qin, M.; Zhang, J.; Xu, C.; Peng, P.; Tan, L.; Liu, S.; Huang, J. Knockdown of NIK and IKKβ-binding protein (NIBP) reduces colorectal cancer metastasis through down-regulation of the canonical NF-κBsignaling pathway and suppression of MAPK signaling mediated through ERK and JNK. PLoS One, 2017, 12(1), e0170595.
[http://dx.doi.org/10.1371/journal.pone.0170595] [PMID: 28125661]
[65]
Sharma, V.K.; Mehta, V.; Singh, T.G. Alzheimer’s disorder: Epigenetic connection and associated risk factors. Curr. Neuropharmacol., 2020, 18(8), 740-753.
[http://dx.doi.org/10.2174/1570159X18666200128125641] [PMID: 31989902]
[66]
Sharma, V.K.; Singh, T.G. CREB: A multifaceted target for Alzheimer’s disease. Curr. Alzheimer Res., 2021, 17(14), 1280-1293.
[http://dx.doi.org/10.2174/1567205018666210218152253] [PMID: 33602089]
[67]
Kwak, Y.D.; Wang, R.; Li, J.J.; Zhang, Y.W.; Xu, H.; Liao, F.F. Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol. Neurodegener., 2011, 6(1), 17.
[http://dx.doi.org/10.1186/1750-1326-6-17] [PMID: 21371311]
[68]
Mangialasche, F.; Polidori, M.C.; Monastero, R.; Ercolani, S.; Camarda, C.; Cecchetti, R.; Mecocci, P. Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res. Rev., 2009, 8(4), 285-305.
[http://dx.doi.org/10.1016/j.arr.2009.04.002] [PMID: 19376275]
[69]
Koirala, P.; Seong, S.; Jung, H.; Choi, J. comparative evaluation of the antioxidant and anti-Alzheimer’s disease potential of coumestrol and puerarol isolated from Pueraria lobata using molecular modeling studies. Molecules, 2018, 23(4), 785.
[http://dx.doi.org/10.3390/molecules23040785] [PMID: 29597336]
[70]
Moreira, A.C.; Silva, A.M.; Branco, A.F.; Baldeiras, I.; Pereira, G.C.; Seiça, R.; Santos, M.S.; Sardão, V.A. Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats. J. Funct. Foods, 2017, 34, 329-339.
[http://dx.doi.org/10.1016/j.jff.2017.05.002]
[71]
Belcher, S.M.; Zsarnovszky, A. Estrogenic actions in the brain: Estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J. Pharmacol. Exp. Ther., 2001, 299(2), 408-414.
[PMID: 11602649]
[72]
Merrill, J.E.; Ignarro, L.J.; Sherman, M.P.; Melinek, J.; Lane, T.E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol., 1993, 151(4), 2132-2141.
[http://dx.doi.org/10.4049/jimmunol.151.4.2132] [PMID: 8102159]
[73]
Chao, C.C.; Hu, S.; Molitor, T.W.; Shaskan, E.G.; Peterson, P.K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol., 1992, 149(8), 2736-2741.
[http://dx.doi.org/10.4049/jimmunol.149.8.2736] [PMID: 1383325]
[74]
Kamijo, R.; Harada, H.; Matsuyama, T.; Bosland, M.; Gerecitano, J.; Shapiro, D.; Le, J.; Koh, S.I.; Kimura, T.; Green, S.J.; Mak, T.W.; Taniguchi, T.; Vilček, J. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science, 1994, 263(5153), 1612-1615.
[http://dx.doi.org/10.1126/science.7510419] [PMID: 7510419]
[75]
Lennikov, A.; Mirabelli, P.; Mukwaya, A.; Schaupper, M.; Thangavelu, M.; Lachota, M.; Ali, Z.; Jensen, L.; Lagali, N. Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis, 2018, 21(2), 267-285.
[http://dx.doi.org/10.1007/s10456-018-9594-9] [PMID: 29332242]
[76]
Wisniewski, D.; LoGrasso, P.; Calaycay, J.; Marcy, A. Assay for IkappaB kinases using an in vivo biotinylated IkappaB protein substrate. Anal. Biochem., 1999, 274(2), 220-228.
[http://dx.doi.org/10.1006/abio.1999.4287] [PMID: 10527519]
[77]
Ping, H.; Yang, F.; Wang, M.; Niu, Y.; Xing, N. IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer. Oncol. Rep., 2016, 36(3), 1658-1664.
[http://dx.doi.org/10.3892/or.2016.4915] [PMID: 27432067]
[78]
Bahar, E.; Kim, J.Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. Int. J. Mol. Sci., 2017, 18(9), 1989.
[http://dx.doi.org/10.3390/ijms18091989] [PMID: 28914791]
[79]
Narayanan, K.B.; Park, H.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis, 2015, 20(2), 196-209.
[http://dx.doi.org/10.1007/s10495-014-1073-1] [PMID: 25563856]
[80]
Morale, M.C.; Serra, P.A.; L’Episcopo, F.; Tirolo, C.; Caniglia, S.; Testa, N.; Gennuso, F.; Giaquinta, G.; Rocchitta, G.; Desole, M.S.; Miele, E.; Marchetti, B. Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: Glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138(3), 869-878.
[http://dx.doi.org/10.1016/j.neuroscience.2005.07.060] [PMID: 16337092]
[81]
Eriksson, G.; Zetterström, M.; Cortes Toro, V.; Bartfai, T.; Iverfeldt, K. Hypersensitive cytokine response to beta-amyloid 25-35 in astroglial cells from IL-1 receptor type I-deficient mice. Int. J. Mol. Med., 1998, 1(1), 201-206.
[http://dx.doi.org/10.3892/ijmm.1.1.201] [PMID: 9852220]
[82]
GaoTaslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Goksu, S. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol., 2018, 119, 857-863.
[83]
Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; Tjernberg, L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther., 2017, 9(1), 57.
[http://dx.doi.org/10.1186/s13195-017-0279-1] [PMID: 28764767]
[84]
Seong, S.H.; Kim, B.R.; Cho, M.L.; Kim, T.S.; Im, S.; Han, S.; Jeong, J.W.; Jung, H.A.; Choi, J.S. Phytoestrogen coumestrol selectively inhibits monoamine oxidase-a and amyloid β self-aggregation. Nutrients, 2022, 14(18), 3822.
[http://dx.doi.org/10.3390/nu14183822] [PMID: 36145197]
[85]
Olanow, C.W.; Tatton, W.G. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci., 1999, 22(1), 123-144.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.123] [PMID: 10202534]
[86]
Zhu, J.; Chu, C.T. Mitochondrial dysfunction in Parkinson’s disease. J. Alzheimers Dis., 2010, 20(S2), S325-S334.
[http://dx.doi.org/10.3233/JAD-2010-100363] [PMID: 20442495]
[87]
Stefanis, L. α-synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399.
[http://dx.doi.org/10.1101/cshperspect.a009399] [PMID: 22355802]
[88]
Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol., 2009, 8(4), 382-397.
[http://dx.doi.org/10.1016/S1474-4422(09)70062-6] [PMID: 19296921]
[89]
Liu, B.; Gao, H.M.; Wang, J.Y.; Jeohn, G.H.; Cooper, C.L.; Hong, J.S. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. N. Y. Acad. Sci., 2002, 962(1), 318-331.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04077.x] [PMID: 12076984]
[90]
Kim, I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants, 2021, 10(7), 1064.
[http://dx.doi.org/10.3390/antiox10071064] [PMID: 34209224]
[91]
Chen, H.Q.; Wang, X.J.; Jin, Z.Y.; Xu, X.M.; Zhao, J.W.; Xie, Z.J. Protective effect of isoflavones from Trifolium pratense on dopaminergic neurons. Neurosci. Res., 2008, 62(2), 123-130.
[http://dx.doi.org/10.1016/j.neures.2008.07.001] [PMID: 18675857]
[92]
Lubbers, L.S.; Zafian, P.T.; Gautreaux, C.; Gordon, M.; Alves, S.E.; Correa, L.; Lorrain, D.S.; Hickey, G.J.; Luine, V. Estrogen receptor (ER) subtype agonists alter monoamine levels in the female rat brain. J. Steroid Biochem. Mol. Biol., 2010, 122(5), 310-317.
[http://dx.doi.org/10.1016/j.jsbmb.2010.08.005] [PMID: 20800684]
[93]
Lee, D.; Yoon, S.; Lee, J.; Lim, D.; Yoon, C.; Im, H.; Lee, K. Amyloid fibril formation of α-synuclein is modulated via the estrogen receptor ligand binding domain of estrogen receptor α bound with tamoxifen-based small molecules. Bull. Korean Chem. Soc., 2020, 41(3), 274-278.
[http://dx.doi.org/10.1002/bkcs.11956]
[94]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[95]
Gorzkiewicz, J.; Bartosz, G.; Sadowska-Bartosz, I. The potential effects of phytoestrogens: The role in neuroprotection. Molecules, 2021, 26(10), 2954.
[http://dx.doi.org/10.3390/molecules26102954] [PMID: 34065647]
[96]
Chen, C.M. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang Gung Med. J., 2011, 34(2), 135-152.
[PMID: 21539755]
[97]
Anastacio, J.B.R.; Sanches, E.F.; Nicola, F.; Odorcyk, F.; Fabres, R.B.; Netto, C.A. Phytoestrogen coumestrol attenuates brain mitochondrial dysfunction and long-term cognitive deficits following neonatal hypoxia–ischemia. Int. J. Dev. Neurosci., 2019, 79(1), 86-95.
[http://dx.doi.org/10.1016/j.ijdevneu.2019.10.009] [PMID: 31693927]
[98]
Kumar, A.; Ratan, R.R. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237.
[http://dx.doi.org/10.3233/JHD-160205] [PMID: 27662334]
[99]
Pavese, N.; Gerhard, A.; Tai, Y.F.; Ho, A.K.; Turkheimer, F.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation correlates with severity in Huntington disease: A clinical and PET study. Neurology, 2006, 66(11), 1638-1643.
[http://dx.doi.org/10.1212/01.wnl.0000222734.56412.17] [PMID: 16769933]
[100]
Politis, M.; Pavese, N.; Tai, Y.F.; Kiferle, L.; Mason, S.L.; Brooks, D.J.; Tabrizi, S.J.; Barker, R.A.; Piccini, P. Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: A multimodal imaging study. Hum. Brain Mapp., 2011, 32(2), 258-270.
[http://dx.doi.org/10.1002/hbm.21008] [PMID: 21229614]
[101]
Björkqvist, M.; Wild, E.J.; Thiele, J.; Silvestroni, A.; Andre, R.; Lahiri, N.; Raibon, E.; Lee, R.V.; Benn, C.L.; Soulet, D.; Magnusson, A.; Woodman, B.; Landles, C.; Pouladi, M.A.; Hayden, M.R.; Khalili-Shirazi, A.; Lowdell, M.W.; Brundin, P.; Bates, G.P.; Leavitt, B.R.; Möller, T.; Tabrizi, S.J. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med., 2008, 205(8), 1869-1877.
[http://dx.doi.org/10.1084/jem.20080178] [PMID: 18625748]
[102]
Hsiao, H.Y.; Chen, Y.C.; Chen, H.M.; Tu, P.H.; Chern, Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Hum. Mol. Genet., 2013, 22(9), 1826-1842.
[http://dx.doi.org/10.1093/hmg/ddt036] [PMID: 23372043]
[103]
Dhakal, A.; Bobrin, B.D. Cognitive Deficits. StatPearls; StatPearls Publishing, 2021.
[104]
Belanoff, J.K.; Gross, K.; Yager, A.; Schatzberg, A.F. Corticosteroids and cognition. J. Psychiatr. Res., 2001, 35(3), 127-145.
[http://dx.doi.org/10.1016/S0022-3956(01)00018-8] [PMID: 11461709]
[105]
Kalachnik, J.E.; Hanzel, T.E.; Sevenich, R.; Harder, S.R. Benzodiazepine behavioral side effects: Review and implications for individuals with mental retardation. Am. J. Ment. Retard., 2002, 107(5), 376-410.
[http://dx.doi.org/10.1352/0895-8017(2002)107<0376:BBSERA>2.0.CO;2] [PMID: 12186578]
[106]
Fitzpatrick, J.L.; Mize, A.L.; Wade, C.B.; Harris, J.A.; Shapiro, R.A.; Dorsa, D.M. Estrogen-mediated neuroprotection against β-amyloid toxicity requires expression of estrogen receptor α or β and activation of the MAPK pathway. J. Neurochem., 2002, 82(3), 674-682.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01000.x] [PMID: 12153491]
[107]
Aguirre, C.; Jayaraman, A.; Pike, C.; Baudry, M. Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β. J. Neurochem., 2010, 115(5), 1277-1287.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07038.x] [PMID: 20977477]
[108]
Moyano, P.; Sanjuan, J.; García, J.M.; Anadon, M.J.; Lobo, M.; Pelayo, A.; García, J.; Frejo, M.T.; del Pino, J. Primary hippocampal estrogenic dysfunction induces synaptic proteins alteration and neuronal cell death after single and repeated paraquat exposure. Food Chem. Toxicol., 2020, 136, 110961.
[http://dx.doi.org/10.1016/j.fct.2019.110961] [PMID: 31715309]
[109]
Iwasaki, Y.; Hosoya, T.; Takebayashi, H.; Ogawa, Y.; Hotta, Y.; Ikenaka, K. The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes. Development, 2003, 130(24), 6027-6035.
[110]
Fekri, K.; Mahmoudi, J.; Sadigh-Eteghad, S.; Farajdokht, F.; Mohajjel Nayebi, A. Coumestrol alleviates oxidative stress, apoptosis and cognitive impairments through hippocampal estrogen receptor-beta in male mouse model of chronic restraint stress. Ulum-i Daruyi, 2021, 28(2), 260-274.
[http://dx.doi.org/10.34172/PS.2021.44]
[111]
Linford, N.J.; Dorsa, D.M. 17β-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids, 2002, 67(13-14), 1029-1040.
[http://dx.doi.org/10.1016/S0039-128X(02)00062-4] [PMID: 12441188]
[112]
Zhao, P.; Yue-wei LEE, D.; Ma, Z.; Huang, L.; Sun, L.; Li, Y.; Chen, J.; Niu, J. The antioxidant effect of carnosol in bovine aortic endothelial cells is mainly mediated via estrogen receptor α pathway. Biol. Pharm. Bull., 2012, 35(11), 1947-1955.
[http://dx.doi.org/10.1248/bpb.b12-00325] [PMID: 22971524]
[113]
Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett., 2018, 592(5), 692-702.
[http://dx.doi.org/10.1002/1873-3468.12964] [PMID: 29292494]
[114]
Bebbington, P.; Hurry, J.; Tennant, C.; Sturt, E.; Wing, J.K. Epidemiology of mental disorders in Camberwell. Psychol. Med., 1981, 11(3), 561-579.
[http://dx.doi.org/10.1017/S0033291700052879] [PMID: 6973770]
[115]
Jenkins, R. Sex differences in depression. Br. J. Hosp. Med., 1987, 38(5), 485-486.
[PMID: 3690086]
[116]
Walf, A.A.; Frye, C.A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology, 2006, 31(6), 1097-1111.
[http://dx.doi.org/10.1038/sj.npp.1301067] [PMID: 16554740]
[117]
Walf, A.A.; Koonce, C.J.; Frye, C.A. Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice. Behav. Neurosci., 2008, 122(5), 974-981.
[http://dx.doi.org/10.1037/a0012749] [PMID: 18823154]
[118]
Fekri, K.; Mohajjel Nayebi, A.; Mahmoudi, J.; Sadigh-Eteghad, S. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions. Ulum-i Daruyi, 2023, 29(2), 135-143.
[http://dx.doi.org/10.34172/PS.2022.22]
[119]
Nitatori, T.; Sato, N.; Waguri, S.; Karasawa, Y.; Araki, H.; Shibanai, K.; Kominami, E.; Uchiyama, Y. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci., 1995, 15(2), 1001-1011.
[http://dx.doi.org/10.1523/JNEUROSCI.15-02-01001.1995] [PMID: 7869078]
[120]
de Souza Wyse, A.T.; Streck, E.L.; Worm, P.; Wajner, A.; Ritter, F.; Netto, C.A. Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem. Res., 2000, 25(7), 971-975.
[http://dx.doi.org/10.1023/A:1007504525301] [PMID: 10959493]
[121]
Blomgren, K.; Hagberg, H. Free radicals, mitochondria, and hypoxia–ischemia in the developing brain. Free Radic. Biol. Med., 2006, 40(3), 388-397.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.08.040] [PMID: 16443153]
[122]
Silachev, D.; Plotnikov, E.; Pevzner, I.; Zorova, L.; Balakireva, A.; Gulyaev, M.; Pirogov, Y.; Skulachev, V.; Zorov, D. Neuroprotective effects of mitochondria-targeted plastoquinone in a rat model of neonatal hypoxic–ischemic brain injury. Molecules, 2018, 23(8), 1871.
[http://dx.doi.org/10.3390/molecules23081871] [PMID: 30060443]
[123]
Canal Castro, C.; Pagnussat, A.S.; Orlandi, L.; Worm, P.; Moura, N.; Etgen, A.M.; Alexandre Netto, C. Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats. Brain Res., 2012, 1474, 82-90.
[http://dx.doi.org/10.1016/j.brainres.2012.07.025] [PMID: 22824334]
[124]
Castro, C. C.; de Souza, P.A.; Munhoz, C. D. Coumestrol pre-treatment improves spatial learning and memory deficits following transient cerebral ischemia recruiting hippocampal GluR2 AMPA receptors. Hippocampus, 2022, 32(6), 413-418.
[125]
Sharma, V.; Singh, T.; Garg, N.; Dhiman, S.; Gupta, S.; Rahman, M.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.; Akhtar, M.; Saleem, A.; Altyar, A.; Abdel-Daim, M. Dysbiosis and Alzheimer’s Disease: A role for chronic stress? Biomolecules, 2021, 11(5), 678.
[http://dx.doi.org/10.3390/biom11050678] [PMID: 33946488]
[126]
Vishwas, S.; Gulati, M.; Kapoor, B.; Gupta, S.; Singh, S.K.; Awasthi, A.; Khan, A.; Goyal, A.; Bansal, A.; Baishnab, S.; Singh, T.G.; Arora, S.; Porwal, O.; Kumar, A.; Kumar, V. Expanding the arsenal against Huntington’s disease-herbal drugs and their nanoformulations. Curr. Neuropharmacol., 2021, 19(7), 957-989.
[http://dx.doi.org/10.2174/1570159X18666201109090824] [PMID: 33167841]
[127]
Gupta, S.; Khan, A.; Vishwas, S.; Gulati, M.; Gurjeet Singh, T.; Dua, K.; Kumar Singh, S.; Najda, A.; Sayed, A.A.; Almeer, R.; Abdel-Daim, M.M. Demethyleneberberine: A possible treatment for Huntington’s disease. Med. Hypotheses, 2021, 153, 110639.
[http://dx.doi.org/10.1016/j.mehy.2021.110639] [PMID: 34229236]
[128]
Saklani, P.; Khan, H.; Singh, T.G.; Gupta, S.; Grewal, A.K. Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: A proposed mechanistic insight. Mol. Biol. Rep., 2022, 49(10), 10101-10113.
[http://dx.doi.org/10.1007/s11033-022-07594-9] [PMID: 35657450]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy