Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Roles of Endogenous D2R Dopamine and μ-opioid Receptors of the Brain in Alcohol Use Disorder

In Press, (this is not the final "Version of Record"). Available online 26 October, 2023
Author(s): Kamila Khikhmetova, Yuliya Semenova* and Geir Bjørklund*
Published on: 26 October, 2023

DOI: 10.2174/0109298673248999231013043249

Price: $95

Abstract

Alcohol use disorder (AUD) affects millions of people worldwide. It is characterized by a strong physiological and psychological craving to consume large amounts of alcohol despite adverse consequences. Alcohol use disorder carries a large health and economic burden on society. Despite its prevalence, AUD is still severely undertreated. The precise molecular mechanisms of how alcohol addiction forms are yet unknown. However, previous studies on animal models show that along with the μ-opioid receptors, the D2R dopamine receptors may also be involved in alcohol craving and reward pathways. Currently, there is a limited number of treatment strategies for alcohol use disorder, which include several medications and therapy. By understanding the limitations of current treatment options and exploring new potential targets, it could be possible to find more effective ways of treating AUD in the future.

[1]
Sudhinaraset, M.; Wigglesworth, C.; Takeuchi, D.T. Social and cultural contexts of alcohol use: Influences in a social-ecological framework. Alcohol Res., 2016, 38(1), 35-45.
[PMID: 27159810]
[2]
Morris, H.; Larsen, J.; Catterall, E.; Moss, A.C.; Dombrowski, S.U. Peer pressure and alcohol consumption in adults living in the UK: A systematic qualitative review. BMC Public Health, 2020, 20(1), 1014.
[http://dx.doi.org/10.1186/s12889-020-09060-2] [PMID: 32631278]
[3]
Moreno, M.A.; Whitehill, J.M. Influence of social media on alcohol use in adolescents and young adults. Alcohol Res., 2014, 36(1), 91-100.
[PMID: 26259003]
[4]
Tucker, J.S.; Rodriguez, A.; Green, H.D., Jr; Pollard, M.S. Trajectories of alcohol use and problems during the COVID-19 pandemic: The role of social stressors and drinking motives for men and women. Drug Alcohol Depend., 2022, 232, 109285.
[http://dx.doi.org/10.1016/j.drugalcdep.2022.109285] [PMID: 35033955]
[5]
Rehm, J. The risks associated with alcohol use and alcoholism. Alcohol Res. Health, 2011, 34(2), 135-143.
[PMID: 22330211]
[6]
Singh, S.K.; Ramanan, V.V. A study on alcohol use and its related health and social problems in rural Puducherry, India. J. Family Med. Prim. Care, 2016, 5(4), 804-808.
[http://dx.doi.org/10.4103/2249-4863.201175] [PMID: 28348995]
[7]
Kassym, L.; Kussainova, A.; Semenova, Y.; Kussainov, A.; Marapov, D.; Zhanaspayev, M.; Urazalina, Z.; Akhmetova, A.; Tokanov, M.; Smail, Y.; Bjørklund, G. Worldwide prevalence of alcohol use in non-fatally injured motor vehicle drivers: A systematic review and meta-analysis. Healthcare, 2023, 11(5), 758.
[http://dx.doi.org/10.3390/healthcare11050758] [PMID: 36900763]
[8]
Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and cancer: Epidemiology and biological mechanisms. Nutrients, 2021, 13(9), 3173.
[http://dx.doi.org/10.3390/nu13093173] [PMID: 34579050]
[9]
Xie, X.; Feng, K.; Wang, J.; Zhang, M.; Hong, J.; Zhang, H. Comprehensive visual electrophysiological measurements discover crucial changes caused by alcohol addiction in humans: Clinical values in early prevention of alcoholic vision decline. Front. Neural Circuits, 2022, 16, 912883.
[http://dx.doi.org/10.3389/fncir.2022.912883] [PMID: 36034334]
[10]
Sutherland, G.T.; Sheedy, D.; Kril, J.J. Neuropathology of alcoholism. Handb. Clin. Neurol., 2014, 125, 603-615.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00035-5] [PMID: 25307599]
[11]
Banerjee, N. Neurotransmitters in alcoholism: A review of neurobiological and genetic studies. Indian J. Hum. Genet., 2014, 20(1), 20-31.
[http://dx.doi.org/10.4103/0971-6866.132750] [PMID: 24959010]
[12]
Wackernah, R.C.; Minnick, M.J.; Clapp, P. Alcohol use disorder: Pathophysiology, effects, and pharmacologic options for treatment. Subst. Abuse Rehabil., 2014, 5, 1-12.
[PMID: 24648792]
[13]
Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci., 2018, 8(9), 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[14]
Martinez, J.A.; Steinley, D.; Sher, K.J. Deliberate induction of alcohol tolerance: Empirical introduction to a novel health risk. Addiction, 2010, 105(10), 1767-1770.
[http://dx.doi.org/10.1111/j.1360-0443.2010.03042.x] [PMID: 20840199]
[15]
Haass-Koffler, C.L.; Perciballi, R. Alcohol tolerance in human laboratory studies for development of medications to treat alcohol use disorder. Alcohol Alcohol., 2020, 55(2), 129-135.
[http://dx.doi.org/10.1093/alcalc/agz103] [PMID: 31950152]
[16]
Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis., 2012, 16(4), 667-685.
[http://dx.doi.org/10.1016/j.cld.2012.08.002] [PMID: 23101976]
[17]
Yang, W.; Singla, R.; Maheshwari, O.; Fontaine, C.J.; Gil-Mohapel, J. Alcohol use disorder: Neurobiology and therapeutics. Biomedicines, 2022, 10(5), 1192.
[http://dx.doi.org/10.3390/biomedicines10051192] [PMID: 35625928]
[18]
Diagnostic and statistical manual of mental disorders; American Psychiatric Association, 2013.
[19]
Ritchie, H.; Roser, M. Alcohol Consumption 2018. Available from: https://ourworldindata.org/alcohol-consumption
[20]
McCrady, B.S.; Flanagan, J.C. The role of the family in alcohol use disorder recovery for adults. Alcohol Res, 2021, 41(1), 06.
[21]
Huebner, R.B.; Kantor, L.W. Advances in alcoholism treatment. Alcohol Res. Health, 2011, 33(4), 295-299.
[PMID: 23580014]
[22]
Carroll, K.M.; Kiluk, B.D. Cognitive behavioral interventions for alcohol and drug use disorders: Through the stage model and back again. Psychol. Addict. Behav., 2017, 31(8), 847-861.
[http://dx.doi.org/10.1037/adb0000311] [PMID: 28857574]
[23]
Flanagan, J.C.; Jones, J.L.; Jarnecke, A.M.; Back, S.E. Behavioral treatments for alcohol use disorder and post-traumatic stress disorder. Alcohol Res., 2018, 39(2), 181-192.
[PMID: 31198657]
[24]
Winslow, B.T.; Onysko, M.; Hebert, M. Medications for alcohol use disorder. Am. Fam. Physician, 2016, 93(6), 457-465.
[PMID: 26977830]
[25]
Mason, B.J.; Heyser, C.J. Alcohol use disorder: The role of medication in recovery. Alcohol Res, 2021, 41(1), 07.
[26]
Anton, R.F.; O’Malley, S.S.; Ciraulo, D.A.; Cisler, R.A.; Couper, D.; Donovan, D.M.; Gastfriend, D.R.; Hosking, J.D.; Johnson, B.A.; LoCastro, J.S.; Longabaugh, R.; Mason, B.J.; Mattson, M.E.; Miller, W.R.; Pettinati, H.M.; Randall, C.L.; Swift, R.; Weiss, R.D.; Williams, L.D.; Zweben, A. Combined pharmacotherapies and behavioral interventions for alcohol dependence: The COMBINE study: A randomized controlled trial. JAMA, 2006, 295(17), 2003-2017.
[http://dx.doi.org/10.1001/jama.295.17.2003] [PMID: 16670409]
[27]
Wang, S. Historical review: Opiate addiction and opioid receptors. Cell Transplant., 2019, 28(3), 233-238.
[http://dx.doi.org/10.1177/0963689718811060] [PMID: 30419763]
[28]
Pathan, H.; Williams, J. Basic opioid pharmacology: An update. Br. J. Pain, 2012, 6(1), 11-16.
[http://dx.doi.org/10.1177/2049463712438493] [PMID: 26516461]
[29]
Le Merrer, J.; Becker, J.A.J.; Befort, K.; Kieffer, B.L. Reward processing by the opioid system in the brain. Physiol. Rev., 2009, 89(4), 1379-1412.
[http://dx.doi.org/10.1152/physrev.00005.2009] [PMID: 19789384]
[30]
Dhaliwal, A.; Gupta, M. In StatPearls; StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[31]
Koehl, A.; Hu, H.; Maeda, S.; Zhang, Y.; Qu, Q.; Paggi, J.M.; Latorraca, N.R.; Hilger, D.; Dawson, R.; Matile, H.; Schertler, G.F.X.; Granier, S.; Weis, W.I.; Dror, R.O.; Manglik, A.; Skiniotis, G.; Kobilka, B.K. Structure of the µ-opioid receptor–Gi protein complex. Nature, 2018, 558(7711), 547-552.
[http://dx.doi.org/10.1038/s41586-018-0219-7] [PMID: 29899455]
[32]
Pasternak, G.W. Opioids and their receptors: Are we there yet? Neuropharmacology, 2014, 76(Pt B), 198-203.
[33]
Crist, R.C.; Berrettini, W.H. Pharmacogenetics of OPRM1. Pharmacol. Biochem. Behav., 2014, 123, 25-33.
[http://dx.doi.org/10.1016/j.pbb.2013.10.018] [PMID: 24201053]
[34]
Feng, Y.; He, X.; Yang, Y.; Chao, D.; Lazarus, L.H.; Xia, Y. Current research on opioid receptor function. Curr. Drug Targets, 2012, 13(2), 230-246.
[http://dx.doi.org/10.2174/138945012799201612] [PMID: 22204322]
[35]
Bello, M. Molecular basis of inhibitory mechanism of naltrexone and its metabolites through structural and energetic analyses. Molecules, 2022, 27(15), 4919.
[http://dx.doi.org/10.3390/molecules27154919] [PMID: 35956868]
[36]
Siuda, E.R.; Copits, B.A.; Schmidt, M.J.; Baird, M.A.; Al-Hasani, R.; Planer, W.J.; Funderburk, S.C.; McCall, J.G.; Gereau, R.W., IV; Bruchas, M.R. Spatiotemporal control of opioid signaling and behavior. Neuron, 2015, 86(4), 923-935.
[http://dx.doi.org/10.1016/j.neuron.2015.03.066] [PMID: 25937173]
[37]
Bera, I.; Laskar, A.; Ghoshal, N. Exploring the structure of opioid receptors with homology modeling based on single and multiple templates and subsequent docking: A comparative study. J. Mol. Model., 2011, 17(5), 1207-1221.
[http://dx.doi.org/10.1007/s00894-010-0803-8] [PMID: 20661609]
[38]
Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Mathiesen, J.M.; Sunahara, R.K.; Pardo, L.; Weis, W.I.; Kobilka, B.K.; Granier, S. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature, 2012, 485(7398), 321-326.
[http://dx.doi.org/10.1038/nature10954] [PMID: 22437502]
[39]
Arimont, M.; Hoffmann, C.; de Graaf, C.; Leurs, R. Chemokine receptor crystal structures: What Can be learned from them? Mol. Pharmacol., 2019, 96(6), 765-777.
[http://dx.doi.org/10.1124/mol.119.117168] [PMID: 31266800]
[40]
Ben Hamida, S.; Boulos, L.J.; McNicholas, M.; Charbogne, P.; Kieffer, B.L. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict. Biol., 2019, 24(1), 28-39.
[http://dx.doi.org/10.1111/adb.12576] [PMID: 29094432]
[41]
Hermann, D.; Hirth, N.; Reimold, M.; Batra, A.; Smolka, M.N.; Hoffmann, S.; Kiefer, F.; Noori, H.R.; Sommer, W.H.; Reischl, G.; la Fougère, C.; Mann, K.; Spanagel, R.; Hansson, A.C. Low μ-opioid receptor status in alcohol dependence identified by combined positron emission tomography and post-mortem brain analysis. Neuropsychopharmacology, 2017, 42(3), 606-614.
[http://dx.doi.org/10.1038/npp.2016.145] [PMID: 27510425]
[42]
Li, L; Chen, J; Li, YQ The downregulation of opioid receptors and neuropathic pain. Int J Mol Sci., 2023, 24(6), 5981.
[http://dx.doi.org/10.3390/ijms24065981]
[43]
Ohgi, Y. Alcohol dependence and opioid receptor —Pharmacological profile of nalmefene—. Nippon Yakurigaku Zasshi, 2020, 155(3), 145-148.
[http://dx.doi.org/10.1254/fpj.19139] [PMID: 32378631]
[44]
Mitchell, J.M.; O’Neil, J.P.; Janabi, M.; Marks, S.M.; Jagust, W.J.; Fields, H.L. Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci. Transl. Med., 2012, 4(116), 116ra6.
[http://dx.doi.org/10.1126/scitranslmed.3002902] [PMID: 22238334]
[45]
Singh, D.; Saadabadi, A. In StatPearls; StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[46]
Srivastava, A.B.; Gold, M.S. Naltrexone: A history and future directions. Cerebrum, 2018, 2018
[47]
Malone, M.; McDonald, R.; Vittitow, A.; Chen, J.; Obi, R.; Schatz, D.; Tofighi, B.; Garment, A.; Kermack, A.; Goldfeld, K.; Gold, H.; Laska, E.; Rotrosen, J.; Lee, J.D. Extended-release vs. oral naltrexone for alcohol dependence treatment in primary care (XON). Contemp. Clin. Trials, 2019, 81, 102-109.
[http://dx.doi.org/10.1016/j.cct.2019.04.006] [PMID: 30986535]
[48]
Heilig, M.; Goldman, D.; Berrettini, W.; O’Brien, C.P. Pharmacogenetic approaches to the treatment of alcohol addiction. Nat. Rev. Neurosci., 2011, 12(11), 670-684.
[http://dx.doi.org/10.1038/nrn3110] [PMID: 22011682]
[49]
Mikus, N.; Korb, S.; Massaccesi, C.; Gausterer, C.; Graf, I.; Willeit, M.; Eisenegger, C.; Lamm, C.; Silani, G.; Mathys, C. Effects of dopamine D2/3 and opioid receptor antagonism on the trade-off between model-based and model-free behaviour in healthy volunteers. eLife, 2022, 11, e79661.
[http://dx.doi.org/10.7554/eLife.79661] [PMID: 36468832]
[50]
Dolan, R.J.; Dayan, P. Goals and habits in the brain. Neuron, 2013, 80(2), 312-325.
[http://dx.doi.org/10.1016/j.neuron.2013.09.007] [PMID: 24139036]
[51]
Juárez Olguín, H.; Calderón Guzmán, D.; Hernández García, E.; Barragán Mejía, G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid. Med. Cell. Longev., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/9730467] [PMID: 26770661]
[52]
Franco, R.; Reyes-Resina, I.; Navarro, G. Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines, 2021, 9(2), 109.
[http://dx.doi.org/10.3390/biomedicines9020109] [PMID: 33499192]
[53]
Baik, J.H. Dopamine signaling in reward-related behaviors. Front. Neural Circuits, 2013, 7, 152.
[http://dx.doi.org/10.3389/fncir.2013.00152] [PMID: 24130517]
[54]
Yang, S.; Boudier-Revéret, M.; Choo, Y.J.; Chang, M.C. Association between chronic pain and alterations in the mesolimbic dopaminergic system. Brain Sci., 2020, 10(10), 701.
[http://dx.doi.org/10.3390/brainsci10100701] [PMID: 33023226]
[55]
Taylor, A.M.W.; Becker, S.; Schweinhardt, P.; Cahill, C. Mesolimbic dopamine signaling in acute and chronic pain. Pain, 2016, 157(6), 1194-1198.
[http://dx.doi.org/10.1097/j.pain.0000000000000494] [PMID: 26797678]
[56]
Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. J. Exp. Neurosci., 2018, 12
[http://dx.doi.org/10.1177/1179069518779829] [PMID: 29899667]
[57]
Prasad, P.; Ambekar, A.; Vaswani, M. Dopamine D2 receptor polymorphisms and susceptibility to alcohol dependence in Indian males: A preliminary study. BMC Med. Genet., 2010, 11(1), 24.
[http://dx.doi.org/10.1186/1471-2350-11-24] [PMID: 20146828]
[58]
Ma, H.; Zhu, G. The dopamine system and alcohol dependence. Shanghai Jingshen Yixue, 2014, 26(2), 61-68.
[PMID: 25092951]
[59]
Feltmann, K.; Borroto-Escuela, D.O.; Rüegg, J.; Pinton, L.; de Oliveira Sergio, T.; Narváez, M.; Jimenez-Beristain, A.; Ekström, T.J.; Fuxe, K.; Steensland, P. Effects of long-term alcohol drinking on the dopamine d2 receptor: Gene expression and heteroreceptor complexes in the striatum in rats. Alcohol. Clin. Exp. Res., 2018, 42(2), 338-351.
[http://dx.doi.org/10.1111/acer.13568] [PMID: 29205397]
[60]
Bocarsly, M.E.; da Silva e Silva, D.; Kolb, V.; Luderman, K.D.; Shashikiran, S.; Rubinstein, M.; Sibley, D.R.; Dobbs, L.K.; Alvarez, V.A. A mechanism linking two known vulnerability factors for alcohol abuse: Heightened alcohol stimulation and low striatal dopamine D2 receptors. Cell Rep., 2019, 29(5), 1147-1163.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.09.059] [PMID: 31665630]
[61]
Kamp, F.; Proebstl, L.; Penzel, N.; Adorjan, K.; Ilankovic, A.; Pogarell, O.; Koller, G.; Soyka, M.; Falkai, P.; Koutsouleris, N.; Kambeitz, J. Effects of sedative drug use on the dopamine system: A systematic review and meta-analysis of in vivo neuroimaging studies. Neuropsychopharmacology, 2019, 44(4), 660-667.
[http://dx.doi.org/10.1038/s41386-018-0191-9] [PMID: 30188512]
[62]
Gleich, T.; Spitta, G.; Butler, O.; Zacharias, K.; Aydin, S.; Sebold, M.; Garbusow, M.; Rapp, M.; Schubert, F.; Buchert, R.; Heinz, A.; Gallinat, J. Dopamine D2/3 receptor availability in alcohol use disorder and individuals at high risk: Towards a dimensional approach. Addict. Biol., 2021, 26(2), e12915.
[http://dx.doi.org/10.1111/adb.12915] [PMID: 32500613]
[63]
Missale, C. Nerve growth factor, D2 receptor isoforms, and pituitary tumors. Endocrine, 2012, 42(3), 466-467.
[http://dx.doi.org/10.1007/s12020-012-9756-2] [PMID: 22833430]
[64]
Salinas, A.G.; Mateo, Y.; Carlson, V.C.C.; Stinnett, G.S.; Luo, G.; Seasholtz, A.F.; Grant, K.A.; Lovinger, D.M. Long-term alcohol consumption alters dorsal striatal dopamine release and regulation by D2 dopamine receptors in rhesus macaques. Neuropsychopharmacology, 2021, 46(8), 1432-1441.
[http://dx.doi.org/10.1038/s41386-020-00938-8] [PMID: 33452430]
[65]
Tice, A.L.; Laudato, J.A.; Rossetti, M.L.; Wolff, C.A.; Esser, K.A.; Lee, C.; Lang, C.H.; Vied, C.; Gordon, B.S.; Steiner, J.L. Binge alcohol disrupts skeletal muscle core molecular clock independent of glucocorticoids. Am. J. Physiol. Endocrinol. Metab., 2021, 321(5), E606-E620.
[http://dx.doi.org/10.1152/ajpendo.00187.2021] [PMID: 34541876]
[66]
Sharma, R.; Parikh, M.; Mishra, V.; Sahota, P.; Thakkar, M. Activation of dopamine D2 receptors in the medial shell region of the nucleus accumbens increases Per1 expression to enhance alcohol consumption. Addict. Biol., 2022, 27(2), e13133.
[http://dx.doi.org/10.1111/adb.13133] [PMID: 35032086]
[67]
Ramchandani, V.A.; Umhau, J.; Pavon, F.J.; Ruiz-Velasco, V.; Margas, W.; Sun, H.; Damadzic, R.; Eskay, R.; Schoor, M.; Thorsell, A.; Schwandt, M.L.; Sommer, W.H.; George, D.T.; Parsons, L.H.; Herscovitch, P.; Hommer, D.; Heilig, M. A genetic determinant of the striatal dopamine response to alcohol in men. Mol. Psychiatry, 2011, 16(8), 809-817.
[http://dx.doi.org/10.1038/mp.2010.56] [PMID: 20479755]
[68]
Hillemacher, T.; Rhein, M.; Burkert, A.; Heberlein, A.; Wilhelm, J.; Glahn, A.; Muschler, M.A.N.; Kahl, K.G.; Kornhuber, J.; Bleich, S.; Frieling, H. DNA-methylation of the dopamin receptor 2 gene is altered during alcohol withdrawal. Eur. Neuropsychopharmacol., 2019, 29(11), 1250-1257.
[http://dx.doi.org/10.1016/j.euroneuro.2019.09.002] [PMID: 31530416]
[69]
Swift, R.M.; Aston, E.R. Pharmacotherapy for alcohol use disorder: Current and emerging therapies. Harv. Rev. Psychiatry, 2015, 23(2), 122-133.
[http://dx.doi.org/10.1097/HRP.0000000000000079] [PMID: 25747925]
[70]
Kelly, J.F.; Humphreys, K.; Ferri, M. Alcoholics Anonymous and other 12-step programs for alcohol use disorder. Cochrane Database Syst. Rev., 2020, 3(3), CD012880.
[PMID: 32159228]
[71]
Wnuk, M. The beneficial role of involvement in alcoholics anonymous for existential and subjective well-being of alcohol-dependent individuals? the model verification. Int. J. Environ. Res. Public Health, 2022, 19(9), 5173.
[http://dx.doi.org/10.3390/ijerph19095173] [PMID: 35564567]
[72]
Srivastava, A.B.; Sanchez-Peña, J.; Levin, F.R.; Mariani, J.J.; Patel, G.H.; Naqvi, N.H. Drinking reduction during cognitive behavioral therapy for alcohol use disorder is associated with a reduction in anterior insula-bed nucleus of the stria terminalis resting-state functional connectivity. Alcohol. Clin. Exp. Res., 2021, 45(8), 1596-1606.
[http://dx.doi.org/10.1111/acer.14661] [PMID: 34342012]
[73]
Cornelius, J.R.; Douaihy, A.B.; Kirisci, L.; Daley, D.C. Longer-term effectiveness of cbt in treatment of comorbid aud/mdd adolescents. Int. J. Med. Biol. Front., 2013, 19(2)
[PMID: 25339844]
[74]
Witkiewitz, K.; Litten, R.Z.; Leggio, L. Advances in the science and treatment of alcohol use disorder. Sci. Adv., 2019, 5(9), eaax4043.
[http://dx.doi.org/10.1126/sciadv.aax4043] [PMID: 31579824]
[75]
Wilson, A.D.; Roos, C.R.; Robinson, C.S.; Stein, E.R.; Manuel, J.A.; Enkema, M.C.; Bowen, S.; Witkiewitz, K. Mindfulness-based interventions for addictive behaviors: Implementation issues on the road ahead. Psychol. Addict. Behav., 2017, 31(8), 888-896.
[http://dx.doi.org/10.1037/adb0000319] [PMID: 29072477]
[76]
Korecki, J.R.; Schwebel, F.J.; Votaw, V.R.; Witkiewitz, K. Mindfulness-based programs for substance use disorders: A systematic review of manualized treatments. Subst. Abuse Treat. Prev. Policy, 2020, 15(1), 51.
[http://dx.doi.org/10.1186/s13011-020-00293-3] [PMID: 32727559]
[77]
Kranzler, H.R.; Soyka, M. Diagnosis and pharmacotherapy of alcohol use disorder. JAMA, 2018, 320(8), 815-824.
[http://dx.doi.org/10.1001/jama.2018.11406] [PMID: 30167705]
[78]
Brünen, S.; Bekier, N.K.; Hiemke, C.; Korf, F.; Wiedemann, K.; Jahn, H.; Kiefer, F. Therapeutic drug monitoring of naltrexone and 6β-naltrexol during anti-craving treatment in alcohol dependence: Reference ranges. Alcohol Alcohol., 2019, 54(1), 51-55.
[http://dx.doi.org/10.1093/alcalc/agy067] [PMID: 30260366]
[79]
Rösner, S.; Hackl-Herrwerth, A.; Leucht, S.; Lehert, P.; Vecchi, S.; Soyka, M. Acamprosate for alcohol dependence. Cochrane Database Syst. Rev., 2010, (9), CD004332.
[PMID: 20824837]
[80]
Kalk, N.J.; Lingford-Hughes, A.R. The clinical pharmacology of acamprosate. Br. J. Clin. Pharmacol., 2014, 77(2), 315-323.
[http://dx.doi.org/10.1111/bcp.12070] [PMID: 23278595]
[81]
Carpenter, J.E.; LaPrad, D.; Dayo, Y.; DeGrote, S.; Williamson, K. An overview of pharmacotherapy options for alcohol use disorder. Fed. Pract., 2018, 35(10), 48-58.
[PMID: 30766325]
[82]
Pedersen, B.; Askgaard, G.; Jørgensen, C.; Oppedal, K.; Tønnesen, H. In Cochrane Database Syst Rev; Copyright © 2018 The Cochrane Collaboration; John Wiley & Sons, Ltd., 2018, Vol. 2018, .
[83]
Heikkinen, M.; Taipale, H.; Tanskanen, A.; Mittendorfer-Rutz, E.; Lähteenvuo, M.; Tiihonen, J. Real-world effectiveness of pharmacological treatments of alcohol use disorders in a Swedish nation-wide cohort of 125 556 patients. Addiction, 2021, 116(8), 1990-1998.
[http://dx.doi.org/10.1111/add.15384] [PMID: 33394527]
[84]
Edelman, E.J.; Moore, B.A.; Holt, S.R.; Hansen, N.; Kyriakides, T.C.; Virata, M.; Brown, S.T.; Justice, A.C.; Bryant, K.J.; Fiellin, D.A.; Fiellin, L.E. Efficacy of extended-release naltrexone on HIV-related and drinking outcomes among HIV-positive patients: A randomized-controlled trial. AIDS Behav., 2019, 23(1), 211-221.
[http://dx.doi.org/10.1007/s10461-018-2241-z] [PMID: 30073637]
[85]
Santos, G.M.; Ikeda, J.; Coffin, P.; Walker, J.; Matheson, T.; Ali, A.; McLaughlin, M.; Jain, J.; Arenander, J.; Vittinghoff, E.; Batki, S. Targeted oral naltrexone for mild to moderate alcohol use disorder among sexual and gender minority men: A randomized trial. Am. J. Psychiatry, 2022, 179(12), 915-926.
[http://dx.doi.org/10.1176/appi.ajp.20220335] [PMID: 36285404]
[86]
Higuchi, S. Efficacy of acamprosate for the treatment of alcohol dependence long after recovery from withdrawal syndrome: A randomized, double-blind, placebo-controlled study conducted in Japan (Sunrise Study). J. Clin. Psychiatry, 2015, 76(2), 181-188.
[http://dx.doi.org/10.4088/JCP.13m08940] [PMID: 25742205]
[87]
Maisel, N.C.; Blodgett, J.C.; Wilbourne, P.L.; Humphreys, K.; Finney, J.W. Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders: When are these medications most helpful? Addiction, 2013, 108(2), 275-293.
[http://dx.doi.org/10.1111/j.1360-0443.2012.04054.x] [PMID: 23075288]
[88]
Skinner, M.D.; Lahmek, P.; Pham, H.; Aubin, H.J. Disulfiram efficacy in the treatment of alcohol dependence: A meta-analysis. PLoS One, 2014, 9(2), e87366.
[http://dx.doi.org/10.1371/journal.pone.0087366] [PMID: 24520330]
[89]
Yoshimura, A.; Kimura, M.; Nakayama, H.; Matsui, T.; Okudaira, F.; Akazawa, S.; Ohkawara, M.; Cho, T.; Kono, Y.; Hashimoto, K.; Kumagai, M.; Sahashi, Y.; Roh, S.; Higuchi, S. Efficacy of disulfiram for the treatment of alcohol dependence assessed with a multicenter randomized controlled trial. Alcohol. Clin. Exp. Res., 2014, 38(2), 572-578.
[http://dx.doi.org/10.1111/acer.12278] [PMID: 24117666]
[90]
Li, J.; Wang, H.; Li, M.; Shen, Q.; Li, X.; Rong, X.; Peng, Y. Efficacy of pharmacotherapeutics for patients comorbid with alcohol use disorders and depressive symptoms—A bayesian network meta-analysis. CNS Neurosci. Ther., 2020, 26(11), 1185-1197.
[http://dx.doi.org/10.1111/cns.13437] [PMID: 32686291]
[91]
Mintz, C.M.; Hartz, S.M.; Fisher, S.L.; Ramsey, A.T.; Geng, E.H.; Grucza, R.A.; Bierut, L.J. A cascade of care for alcohol use disorder: Using 2015–2019 National Survey on Drug Use and Health data to identify gaps in past 12-month care. Alcohol. Clin. Exp. Res., 2021, 45(6), 1276-1286.
[http://dx.doi.org/10.1111/acer.14609] [PMID: 33993541]
[92]
Finn, S.W.; Mejldal, A.; Nielsen, A.S. Public stigma and treatment preferences for alcohol use disorders. BMC Health Serv. Res., 2023, 23(1), 76.
[http://dx.doi.org/10.1186/s12913-023-09037-y] [PMID: 36694198]
[93]
Jones, K.O.; Lopes, S.; Chen, L.; Zhang, L.; Zinzow, H.; Jindal, M.; Mclain, M.; Shi, L. Perceptions about mindfulness-based interventions among individuals recovering from opioid and alcohol use disorders: Findings from focus groups. Complement. Ther. Med., 2019, 46, 131-135.
[http://dx.doi.org/10.1016/j.ctim.2019.07.013] [PMID: 31519269]
[94]
Burnette, E.M.; Nieto, S.J.; Grodin, E.N.; Meredith, L.R.; Hurley, B.; Miotto, K.; Gillis, A.J.; Ray, L.A. Novel agents for the pharmacological treatment of alcohol use disorder. Drugs, 2022, 82(3), 251-274.
[http://dx.doi.org/10.1007/s40265-021-01670-3] [PMID: 35133639]
[95]
Yang, L.H.; Wong, L.Y.; Grivel, M.M.; Hasin, D.S. Stigma and substance use disorders. Curr. Opin. Psychiatry, 2017, 30(5), 378-388.
[http://dx.doi.org/10.1097/YCO.0000000000000351] [PMID: 28700360]
[96]
Park, Y.S.; Park, S.M.; Jun, J.Y.; Kim, S.J. Psychiatry in former socialist countries: Implications for north korean psychiatry. Psychiatry Investig., 2014, 11(4), 363-370.
[http://dx.doi.org/10.4306/pi.2014.11.4.363] [PMID: 25395966]
[97]
Hammarlund, R.A.; Crapanzano, K.A.; Luce, L.; Mulligan, L.A.; Ward, K.M. Review of the effects of self-stigma and perceived social stigma on the treatment-seeking decisions of individuals with drug- and alcohol-use disorders. Subst. Abuse Rehabil., 2018, 9, 115-136.
[http://dx.doi.org/10.2147/SAR.S183256] [PMID: 30538599]
[98]
Walker, J.R.; Korte, J.E.; McRae-Clark, A.L.; Hartwell, K.J. Adherence across FDA-approved medications for alcohol use disorder in a veterans administration population. J. Stud. Alcohol Drugs, 2019, 80(5), 572-577.
[http://dx.doi.org/10.15288/jsad.2019.80.572] [PMID: 31603760]
[99]
Hell, M.E.; Nielsen, A.S. Does patient involvement in treatment planning improve adherence, enrollment and other treatment outcome in alcohol addiction treatment? A systematic review. Addict. Res. Theory, 2020, 28(6), 537-545.
[http://dx.doi.org/10.1080/16066359.2020.1723083]
[100]
Ray, L.A.; Bujarski, S.; Grodin, E.; Hartwell, E.; Green, R.; Venegas, A.; Lim, A.C.; Gillis, A.; Miotto, K. State-of-the-art behavioral and pharmacological treatments for alcohol use disorder. Am. J. Drug Alcohol Abuse, 2019, 45(2), 124-140.
[http://dx.doi.org/10.1080/00952990.2018.1528265] [PMID: 30373394]
[101]
van Amsterdam, J.; Blanken, P.; Spijkerman, R.; van den Brink, W.; Hendriks, V. The added value of pharmacotherapy to cognitive behavior therapy and vice versa in the treatment of alcohol use disorders: A systematic review. Alcohol Alcohol., 2022, 57(6), agac043.
[http://dx.doi.org/10.1093/alcalc/agac043] [PMID: 36085572]
[102]
Segher, K.; Huys, L.; Desmet, T.; Steen, E.; Chys, S.; Buylaert, W.; De Paepe, P. Recognition of a disulfiram ethanol reaction in the emergency department is not always straightforward. PLoS One, 2020, 15(12), e0243222.
[http://dx.doi.org/10.1371/journal.pone.0243222] [PMID: 33270785]
[103]
Li, Q.; Okada, Y.; Marczak, E.; Wilson, W.A.; Lazarus, L.H.; Swartzwelder, H.S. The novel micro-opioid receptor antagonist, [N-allyl-Dmt(1)]endomorphin-2, attenuates the enhancement of GABAergic neurotransmission by ethanol. Alcohol Alcohol., 2008, 44(1), 13-19.
[http://dx.doi.org/10.1093/alcalc/agn085] [PMID: 18971291]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy