Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Activation and Denitrosylation of Procaspase-3 in KA-induced Excitotoxicity

Author(s): Yong Liu, Hui Yan, Jia Zhang, Yu-Ting Cai, Xiao-Hui Yin, Feng Lu, Ying-Kui Liu and Chong Li*

Volume 30, Issue 10, 2023

Published on: 25 October, 2023

Page: [854 - 867] Pages: 14

DOI: 10.2174/0109298665261164231019043521

Price: $65

Abstract

Background: It has been reported that activation of glutamate kainate receptor subunit 2 (GluK2) subunit-containing glutamate receptors and the following Fas ligand(FasL) up-regulation, caspase-3 activation, result in delayed apoptosis-like neuronal death in hippocampus CA1 subfield after cerebral ischemia and reperfusion. Nitric oxide-mediated S-nitrosylation might inhibit the procaspase activation, whereas denitrosylation might contribute to cleavage and activation of procaspases.

Objectives: The study aimed to elucidate the molecular mechanisms underlying procaspase-3 denitrosylation and activation following kainic acid (KA)-induced excitotoxicity in rat hippocampus.

Methods: S-nitrosylation of procaspase-3 was detected by biotin-switch method. Activation of procaspase-3 was shown as cleavage of procaspase-3 detected by immunoblotting. FasL expression was detected by immunoblotting. Cresyl violets and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were used to detect apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields.

Results: KA led to the activation of procaspase-3 in a dose- and time-dependent manner, and the activation was inhibited by KA receptor antagonist NS102. Procaspase-3 was denitrosylated at 3 h after kainic acid administration, and the denitrosylation was reversed by SNP and GSNO. FasL ASODNs inhibited the procaspase-3 denitrosylation and activation. Moreover, thioredoxin reductase (TrxR) inhibitor auranofin prevented the denitrosylation and activation of procaspase-3 in rat hippocampal CA1 and CA3 subfields. NS102, FasL AS-ODNs, and auranofin reversed the KAinduced apoptosis and cell death in hippocampal CA1 and CA3 subfields.

Conclusions: KA led to denitrosylation and activation of procaspase-3 via FasL and TrxR. Inhibition of procaspase-3 denitrosylation by auranofin, SNP, and GSNO played protective effects against KA-induced apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields. These investigations revealed that the procaspase-3 undergoes an initial denitrosylation process before becoming activated, providing valuable insights into the underlying mechanisms and possible treatment of excitotoxicity.

Graphical Abstract

[1]
Heit, B.S.; Chu, A.; Sane, A.; Featherstone, D.E.; Park, T.J.; Larson, J. Tonic extracellular glutamate and ischaemia: glutamate antiporter system xc− regulates anoxic depolarization in hippocampus. J. Physiol., 2023, 601(3), 607-629.
[http://dx.doi.org/10.1113/JP283880] [PMID: 36321247]
[2]
Liu, Y.; Ding, S.; Luan, Y.; Zhu, Z.; Cai, Y.; Liu, Y. Ginkgo biloba extracts inhibit post-ischemic LTP through attenuating EPSCs in rat hippocampus. Metab. Brain Dis., 2021, 36(8), 2299-2311.
[http://dx.doi.org/10.1007/s11011-021-00830-4] [PMID: 34463942]
[3]
Zhang, J.; Qiao, N.; Wang, J.; Li, B. Nuclear translocation of GluA2/GAPDH promotes neurotoxicity after pilocarpine-induced epilepsy. Epilepsy Res., 2022, 183, 106945.
[http://dx.doi.org/10.1016/j.eplepsyres.2022.106945] [PMID: 35636277]
[4]
Yu, S.P.; Jiang, M.Q.; Shim, S.S.; Pourkhodadad, S.; Wei, L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer’s disease. Mol. Neurodegener., 2023, 18(1), 43.
[http://dx.doi.org/10.1186/s13024-023-00636-1] [PMID: 37400870]
[5]
Negrete-Díaz, J.V.; Falcón-Moya, R.; Rodríguez-Moreno, A. Kainate receptors: From synaptic activity to disease. FEBS J., 2022, 289(17), 5074-5088.
[http://dx.doi.org/10.1111/febs.16081] [PMID: 34143566]
[6]
Dhingra, S.; Yadav, J.; Kumar, J. Structure, function, and regulation of the kainate receptor. Subcell. Biochem., 2022, 99, 317-350.
[http://dx.doi.org/10.1007/978-3-031-00793-4_10] [PMID: 36151381]
[7]
Wang, L.; Liu, Y.; Lu, R.; Dong, G.; Chen, X.; Yun, W.; Zhou, X. The role of S‐nitrosylation of kainate‐type of ionotropic glutamate receptor 2 in epilepsy induced by kainic acid. J. Neurochem., 2018, 144(3), 255-270.
[http://dx.doi.org/10.1111/jnc.14266] [PMID: 29193067]
[8]
Hwang, Y.; Kim, H.C.; Shin, E.J. Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology, 2021, 460, 152887.
[http://dx.doi.org/10.1016/j.tox.2021.152887] [PMID: 34352349]
[9]
Mulle, C. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluK2-deficient mice. Nature, 1998, 392(6676), 601-605.
[http://dx.doi.org/10.1038/33408] [PMID: 9580260]
[10]
Sun, N.; Hao, J.R.; Li, X.Y.; Yin, X.H.; Zong, Y.Y.; Zhang, G.Y.; Gao, C. GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats. Cell Death Dis., 2013, 4(8), e771.
[http://dx.doi.org/10.1038/cddis.2013.299] [PMID: 23949220]
[11]
Liu, X.M.; Pei, D.S.; Guan, Q.H.; Sun, Y.F.; Wang, X.T.; Zhang, Q.X.; Zhang, G.Y. Neuroprotection of Tat-GluR6-9c against neuronal death induced by kainate in rat hippocampus via nuclear and non-nuclear pathways. J. Biol. Chem., 2006, 281(25), 17432-17445.
[http://dx.doi.org/10.1074/jbc.M513490200] [PMID: 16624817]
[12]
García de la Cadena, S.; Massieu, L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis, 2016, 21(7), 763-777.
[http://dx.doi.org/10.1007/s10495-016-1247-0] [PMID: 27142195]
[13]
Baranov, S.V.; Jauhari, A.; Carlisle, D.L.; Friedlander, R.M. Two hit mitochondrial-driven model of synapse loss in neurode-generation. Neurobiol. Dis., 2021, 158, 105451.
[http://dx.doi.org/10.1016/j.nbd.2021.105451] [PMID: 34298088]
[14]
Li, C.; Xu, B.; Wang, W.W.; Yu, X.J.; Zhu, J.; Yu, H.M.; Han, D.; Pei, D.S.; Zhang, G.Y. Coactivation of GABA receptors inhibits the JNK3 apoptotic pathway via disassembly of GluR6-PSD-95-MLK3 signaling module in KA-induced seizure. Epilepsia, 2010, 51(3), 391-403.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02270.x] [PMID: 19694794]
[15]
Liu, T.; Feng, J.; Sun, Z.; He, M.; Sun, L.; Dong, S.; Guo, Z.; Zhang, G. Inhibition of miR-141-3p attenuates apoptosis of neural stem cells via targeting PBX1 to regulate PROK2 transcription in MCAO mice. Cell Cycle, 2023, 22(4), 403-418.
[http://dx.doi.org/10.1080/15384101.2022.2121358] [PMID: 36548024]
[16]
Sircar, E.; Rai, S.R.; Wilson, M.A.; Schlossmacher, M.G.; Sengupta, R. Neurodegeneration: Impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson’s disease. Arch. Biochem. Biophys., 2021, 704, 108869.
[http://dx.doi.org/10.1016/j.abb.2021.108869] [PMID: 33819447]
[17]
Jiang, Z.L.; Fletcher, N.M.; Diamond, M.P.; Abu-Soud, H.M.; Saed, G.M. S -nitrosylation of caspase-3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair Regen., 2009, 17(2), 224-229.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00459.x] [PMID: 19320891]
[18]
Fernando, V.; Zheng, X.; Walia, Y.; Sharma, V.; Letson, J.; Furuta, S. S-Nitrosylation: An emerging paradigm of redox signaling. Antioxidants, 2019, 8(9), 404.
[http://dx.doi.org/10.3390/antiox8090404] [PMID: 31533268]
[19]
Benhar, M.; Forrester, M.T.; Hess, D.T.; Stamler, J.S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science, 2008, 320(5879), 1050-1054.
[http://dx.doi.org/10.1126/science.1158265] [PMID: 18497292]
[20]
Mannick, J.B.; Schonhoff, C.; Papeta, N.; Ghafourifar, P.; Szibor, M.; Fang, K.; Gaston, B. S-Nitrosylation of mitochondrial caspases. J. Cell Biol., 2001, 154(6), 1111-1116.
[http://dx.doi.org/10.1083/jcb.200104008] [PMID: 11551979]
[21]
Mannick, J.B.; Hausladen, A.; Liu, L.; Hess, D.T.; Zeng, M.; Miao, Q.X.; Kane, L.S.; Gow, A.J.; Stamler, J.S. Fas-induced caspase denitrosylation. Science, 1999, 284(5414), 651-654.
[http://dx.doi.org/10.1126/science.284.5414.651] [PMID: 10213689]
[22]
Mitchell, D.A.; Marletta, M.A. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat. Chem. Biol., 2005, 1(3), 154-158.
[http://dx.doi.org/10.1038/nchembio720] [PMID: 16408020]
[23]
Yoon, S.; Eom, G.H.; Kang, G. Nitrosative stress and human disease: Therapeutic potential of denitrosylation. Int. J. Mol. Sci., 2021, 22(18), 9794.
[http://dx.doi.org/10.3390/ijms22189794] [PMID: 34575960]
[24]
Benhar, M.; Forrester, M.T.; Stamler, J.S. Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol., 2009, 10(10), 721-732.
[http://dx.doi.org/10.1038/nrm2764] [PMID: 19738628]
[25]
Liu, Y.; Lu, Y.; Xu, Z.; Ma, X.; Chen, X.; Liu, W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov. Today, 2022, 27(7), 1961-1973.
[http://dx.doi.org/10.1016/j.drudis.2022.02.010] [PMID: 35192926]
[26]
Steers, G.J.; Chen, G.Y.; O’Leary, B.R.; Du, J.; Van Beek, H.; Cullen, J.J. Auranofin and pharmacologic ascorbate as radiomodulators in the treatment of pancreatic cancer. Antioxidants, 2022, 11(5), 971.
[http://dx.doi.org/10.3390/antiox11050971] [PMID: 35624835]
[27]
Liu, Y.; Yan, J.Z.; Gu, Y.H.; Wang, W.; Zong, Y.Y.; Hou, X.Y.; Zhang, G.Y. Depolarization induces NR2A tyrosine phosphory-lation and neuronal apoptosis. Can. J. Neurol. Sci., 2011, 38(6), 880-886.
[http://dx.doi.org/10.1017/S0317167100012476] [PMID: 22030427]
[28]
Hsieh, M.J.; Ho, H.Y.; Lo, Y.S.; Lin, C.C.; Chuang, Y.C.; Abomughaid, M.M.; Hsieh, M.C.; Chen, M.K.; Semilicoisoflavone, B. Semilicoisoflavone B induces apoptosis of oral cancer cells by inducing ROS production and downregulating MAPK and Ras/Raf/MEK signaling. Int. J. Mol. Sci., 2023, 24(5), 4505.
[http://dx.doi.org/10.3390/ijms24054505] [PMID: 36901935]
[29]
McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a008656.
[http://dx.doi.org/10.1101/cshperspect.a008656] [PMID: 23545416]
[30]
Qian, Z.; Ru, X.; Liu, C.; Huang, X.; Sun, Q. Fraxin prevents knee osteoarthritis through inhibiting chondrocyte apoptosis in an experimental rat osteoarthritis model. Protein Pept. Lett., 2021, 28(11), 1298-1302.
[http://dx.doi.org/10.2174/0929866528666211022152556] [PMID: 34719360]
[31]
Zhang, X.; Tang, J.; Kou, X.; Huang, W.; Zhu, Y.; Jiang, Y.; Yang, K.; Li, C.; Hao, M.; Qu, Y.; Ma, L.; Chen, C.; Shi, S.; Zhou, Y. Proteomic analysis of MSC‐derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. J. Extracell. Vesicles, 2022, 11(7), e12240.
[http://dx.doi.org/10.1002/jev2.12240] [PMID: 36856683]
[32]
Qiao, J.; Luo, Q.; Liu, N.; Wei, G.; Wu, X.; Lu, J.; Tang, K.; Wu, Y.; Zi, J.; Li, X.; Liu, Y.; Ju, W.; Qi, K.; Yan, Z.; Li, Z.; Zeng, L.; Xu, K. Increased ADAM10 expression in patients with immune thrombocytopenia. Int. Immunopharmacol., 2018, 55, 63-68.
[http://dx.doi.org/10.1016/j.intimp.2017.12.004] [PMID: 29223855]
[33]
Otçu, S.; Ozgokce, Ç. Evaluation of FAS and eNOS expression in COVID-19 placenta: histopathological and immunohistochemical study. Eur. Rev. Med. Pharmacol. Sci., 2023, 27(4), 1681-1688.
[http://dx.doi.org/10.26355/eurrev_202302_31411] [PMID: 36876702]
[34]
Fain-Shmueli, T.R.M.S METHODS OF ANTI-TUMOR THERAPY. 2022.
[35]
Serrano, B.P.; Hardy, J.A. Phosphorylation by protein kinase A disassembles the caspase-9 core. Cell Death Differ., 2018, 25(6), 1025-1039.
[http://dx.doi.org/10.1038/s41418-017-0052-9] [PMID: 29352269]
[36]
Kalabova, D.; Smidova, A.; Petrvalska, O.; Alblova, M.; Kosek, D.; Man, P.; Obsil, T.; Obsilova, V. Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding. Biochem. Biophys. Res. Commun., 2017, 493(2), 940-945.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.116] [PMID: 28943433]
[37]
Voss, O.H.; Kim, S.; Wewers, M.D.; Doseff, A.I. Regulation of monocyte apoptosis by the protein kinase Cdelta-dependent phosphorylation of caspase-3. J. Biol. Chem., 2005, 280(17), 17371-17379.
[http://dx.doi.org/10.1074/jbc.M412449200] [PMID: 15716280]
[38]
Nakamura, T.; Oh, C.; Zhang, X.; Tannenbaum, S.R.; Lipton, S.A. Protein transnitrosylation signaling networks contribute to inflammaging and neurodegenerative disorders. Antioxid. Redox Signal., 2021, 35(7), 531-550.
[http://dx.doi.org/10.1089/ars.2021.0081] [PMID: 33957758]
[39]
Román-Anguiano, N.G.; Correa, F.; Cano-Martínez, A.; de la Peña-Díaz, A.; Zazueta, C. Cardioprotective effects of Prolame and SNAP are related with nitric oxide production and with diminution of caspases and calpain-1 activities in reperfused rat hearts. PeerJ, 2019, 7, e7348.
[http://dx.doi.org/10.7717/peerj.7348] [PMID: 31392096]
[40]
Kneeshaw, S.; Spoel, S.H. Thioredoxin-dependent decomposition of protein S-nitrosothiols. Methods Mol. Biol., 2018, 1747, 281-297.
[http://dx.doi.org/10.1007/978-1-4939-7695-9_22] [PMID: 29600467]
[41]
Mata-Pérez, C.; Spoel, S.H. Thioredoxin-mediated redox signalling in plant immunity. Plant Sci., 2019, 279, 27-33.
[http://dx.doi.org/10.1016/j.plantsci.2018.05.001] [PMID: 30709489]
[42]
Benhar, M. Nitric oxide and the thioredoxin system: A complex interplay in redox regulation. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(12), 2476-2484.
[http://dx.doi.org/10.1016/j.bbagen.2015.09.010] [PMID: 26388496]
[43]
Yang, H.; Zhao, N.; Lv, L.; Yan, X.; Hu, S.; Xu, T. Functional research and molecular mechanism of Kainic acid-induced denitrosylation of thioredoxin-1 in rat hippocampus. Neurochem. Int., 2017, 108, 448-456.
[http://dx.doi.org/10.1016/j.neuint.2017.06.004] [PMID: 28603024]
[44]
Liu, S.; Zheng, H.; Yu, W.; Ramakrishnan, V.; Shah, S.; Gonzalez, L.F.; Singh, I.; Graffagnino, C.; Feng, W. Investigation of S-Nitrosoglutathione in stroke: A systematic review and meta-analysis of literature in pre-clinical and clinical research. Exp. Neurol., 2020, 328, 113262.
[http://dx.doi.org/10.1016/j.expneurol.2020.113262] [PMID: 32119935]
[45]
Freire Boullosa, L.; Van Loenhout, J.; Flieswasser, T.; Hermans, C.; Merlin, C.; Lau, H.W.; Marcq, E.; Verschuuren, M.; De Vos, W.H.; Lardon, F.; Smits, E.L.J.; Deben, C. Auranofin synergizes with the PARP inhibitor olaparib to induce ros-mediated cell death in mutant p53 cancers. Antioxidants, 2023, 12(3), 667.
[http://dx.doi.org/10.3390/antiox12030667] [PMID: 36978917]
[46]
Mertens, R.T.; Gukathasan, S.; Arojojoye, A.S.; Olelewe, C.; Awuah, S.G. Next generation gold drugs and probes: Chemistry and biomedical applications. Chem. Rev., 2023, 123(10), 6612-6667.
[http://dx.doi.org/10.1021/acs.chemrev.2c00649] [PMID: 37071737]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy