Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Insight into Early Diagnosis of Multiple Sclerosis by Targeting Prognostic Biomarkers

Author(s): Nidhi Puranik, Dhananjay Yadav and Minseok Song*

Volume 29, Issue 32, 2023

Published on: 25 October, 2023

Page: [2534 - 2544] Pages: 11

DOI: 10.2174/0113816128247471231018053737

Price: $65

Abstract

Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.

[1]
Khan S, Vandermorris A, Shepherd J, et al. Embracing uncertainty, managing complexity: Applying complexity thinking principles to transformation efforts in healthcare systems. BMC Health Serv Res 2018; 18(1): 192.
[http://dx.doi.org/10.1186/s12913-018-2994-0] [PMID: 29562898]
[2]
Villoslada P. Biomarkers for multiple sclerosis. Drug News Perspect 2010; 23(9): 585-95.
[http://dx.doi.org/10.1358/dnp.2010.23.9.1472300] [PMID: 21152453]
[3]
Dorsett M, Liang SY. Diagnosis and treatment of central nervous system infections in the emergency department. Emerg Med Clin North Am 2016; 34(4): 917-42.
[http://dx.doi.org/10.1016/j.emc.2016.06.013] [PMID: 27741995]
[4]
Baldacci F, Mazzucchi S, Della Vecchia A, et al. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn 2020; 20(4): 421-41.
[http://dx.doi.org/10.1080/14737159.2020.1731306] [PMID: 32066283]
[5]
Gaetani L, Paolini Paoletti F, Bellomo G, et al. CSF and blood biomarkers in neuroinflammatory and neurodegenerative diseases: Implications for treatment. Trends Pharmacol Sci 2020; 41(12): 1023-37.
[http://dx.doi.org/10.1016/j.tips.2020.09.011] [PMID: 33127098]
[6]
Palanichamy A, Apeltsin L, Kuo TC, et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2014; 6(248): 248ra106.
[http://dx.doi.org/10.1126/scitranslmed.3008930]
[7]
Tavakolpour S. Towards personalized medicine for patients with autoimmune diseases: Opportunities and challenges. Immunol Lett 2017; 190: 130-8.
[http://dx.doi.org/10.1016/j.imlet.2017.08.002] [PMID: 28797806]
[8]
Buyse M, Molenberghs G, Paoletti X, et al. Statistical evaluation of surrogate endpoints with examples from cancer clinical trials. Biom J 2016; 58(1): 104-32.
[http://dx.doi.org/10.1002/bimj.201400049] [PMID: 25682941]
[9]
Katsavos S, Anagnostouli M. Biomarkers in multiple sclerosis: An up-to-date overview. Mult Scler Int 2013; 2013
[http://dx.doi.org/10.1155/2013/340508]
[10]
Sandmann T, Heskes T, Abbas S. Relevant biomarkers in the prediction of good and bad days for multiple sclerosis patients. Bachelor Thesis, Radboud University. 2016.
[11]
Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood) 2018; 243(3): 213-21.
[http://dx.doi.org/10.1177/1535370217750088] [PMID: 29405771]
[12]
Anderson DC, Kodukula K. Biomarkers in pharmacology and drug discovery. Biochem Pharmacol 2014; 87(1): 172-88.
[http://dx.doi.org/10.1016/j.bcp.2013.08.026] [PMID: 24001556]
[13]
Ottervald J, Franzén B, Nilsson K, et al. Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J Proteomics 2010; 73(6): 1117-32.
[http://dx.doi.org/10.1016/j.jprot.2010.01.004] [PMID: 20093204]
[14]
Macaron G, Ontaneda D. Diagnosis and management of progressive multiple sclerosis. Biomedicines 2019; 7(3): 56.
[http://dx.doi.org/10.3390/biomedicines7030056] [PMID: 31362384]
[15]
Inojosa H, Proschmann U, Akgün K, Ziemssen T. A focus on secondary progressive multiple sclerosis (SPMS): Challenges in diagnosis and definition. J Neurol 2021; 268(4): 1210-21.
[http://dx.doi.org/10.1007/s00415-019-09489-5] [PMID: 31363847]
[16]
Tremlett H, Yinshan Zhao , Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler 2008; 14(3): 314-24.
[http://dx.doi.org/10.1177/1352458507084264] [PMID: 18208898]
[17]
Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med 2018; 8(3): a028936.
[http://dx.doi.org/10.1101/cshperspect.a028936] [PMID: 29358320]
[18]
Dobson R, Giovannoni G. Multiple sclerosis – A review. Eur J Neurol 2019; 26(1): 27-40.
[http://dx.doi.org/10.1111/ene.13819] [PMID: 30300457]
[19]
Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: Clinical aspects. Curr Opin Neurol 2018; 31(6): 752-9.
[http://dx.doi.org/10.1097/WCO.0000000000000622] [PMID: 30300239]
[20]
Solaro C, Gamberini G, Masuccio FG. Depression in multiple sclerosis: Epidemiology, aetiology, diagnosis and treatment. CNS Drugs 2018; 32(2): 117-33.
[http://dx.doi.org/10.1007/s40263-018-0489-5] [PMID: 29417493]
[21]
Kalb R, Beier M, Benedict RHB, et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler 2018; 24(13): 1665-80.
[http://dx.doi.org/10.1177/1352458518803785] [PMID: 30303036]
[22]
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: Mechanisms and immunotherapy. Neuron 2018; 97(4): 742-68.
[http://dx.doi.org/10.1016/j.neuron.2018.01.021] [PMID: 29470968]
[23]
Goldenberg MM. Multiple sclerosis review. P&T 2012; 37(3): 175-84.
[PMID: 22605909]
[24]
Natalizumab: AN 100226, anti-4alpha integrin monoclonal antibody. Drugs R D 2004; 5(2): 102-7.
[http://dx.doi.org/10.2165/00126839-200405020-00007] [PMID: 15293871]
[25]
Multiple Sclerosis Agents. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[26]
Garcia-Montojo M, Rodriguez-Martin E, Ramos-Mozo P, et al. Syncytin-1/HERV-W envelope is an early activation marker of leukocytes and is upregulated in multiple sclerosis patients. Eur J Immunol 2020; 50(5): 685-94.
[http://dx.doi.org/10.1002/eji.201948423] [PMID: 32012247]
[27]
Chatterjee S, Haque R, Raza SS. Stem cells and gene therapy. Handbook of Biotechnology. 503.
[28]
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm Sin B 2020; 10(8): 1347-59.
[http://dx.doi.org/10.1016/j.apsb.2020.01.015] [PMID: 32963936]
[29]
Puranik N, Arukha AP, Yadav SK, Yadav D, Jin JO. Exploring the role of stem cell therapy in treating neurodegenerative diseases: Challenges and current perspectives. Curr Stem Cell Res Ther 2022; 17(2): 113-25.
[http://dx.doi.org/10.2174/1574888X16666210810103838] [PMID: 35135462]
[30]
Harroud A, Stridh P, McCauley JL, et al. International Multiple Sclerosis Genetics Consortium; MultipleMS Consortium. Locus for severity implicates CNS resilience in progression of multiple sclerosis. Nature 2023; 619(7969): 323-31.
[http://dx.doi.org/10.1038/s41586-023-06250-x] [PMID: 37380766]
[31]
Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: Progress and challenges. Lancet 2017; 389(10076): 1336-46.
[http://dx.doi.org/10.1016/S0140-6736(16)30959-X] [PMID: 27889190]
[32]
Mathur D, Rout S, Mishra BK, et al. Potential pathological biomarkers in multiple sclerosis. Preprints 2020; 2020090293.
[http://dx.doi.org/10.20944/preprints202009.0293.v1]
[33]
Walecki J, Barcikowska M, Ćwikła JB, Gabryelewicz T. N-acetylaspartate, choline, myoinositol, glutamine and glutamate (glx) concentration changes in proton MR spectroscopy (1H MRS) in patients with mild cognitive impairment (MCI). Med Sci Monit 2011; 17(12): MT105-11.
[http://dx.doi.org/10.12659/MSM.882112] [PMID: 22129910]
[34]
Matthews PM, Datta G. Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis. Expert Opin Drug Discov 2015; 10(5): 557-70.
[http://dx.doi.org/10.1517/17460441.2015.1032240] [PMID: 25843125]
[35]
Zhou Z, Xiong H, Xie F, Wu Z, Feng Y. A meta-analytic review of the value of miRNA for multiple sclerosis diagnosis. Front Neurol 2020; 11: 132.
[http://dx.doi.org/10.3389/fneur.2020.00132] [PMID: 32158427]
[36]
Tiu VE, Enache I, Panea CA, Tiu C, Popescu BO. Predictive MRI biomarkers in MS-a critical review. Medicina (Kaunas) 2022; 58(3): 377.
[http://dx.doi.org/10.3390/medicina58030377] [PMID: 35334554]
[37]
Toscano S, Patti F. CSF biomarkers in multiple sclerosis: Beyond neuroinflammation. Neuroimmunol Neuroinflamm 2021; 8(1): 14-41.
[38]
Deisenhammer F, Zetterberg H, Fitzner B, Zettl UK. The cerebrospinal fluid in multiple sclerosis. Front Immunol 2019; 10: 726.
[http://dx.doi.org/10.3389/fimmu.2019.00726] [PMID: 31031747]
[39]
Harris V, Tuddenham J, Sadiq S. Biomarkers of multiple sclerosis: Current findings. Degener Neurol Neuromuscul Dis 2017; 7: 19-29.
[http://dx.doi.org/10.2147/DNND.S98936] [PMID: 30050375]
[40]
Huang J, Khademi M, Fugger L, et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc Natl Acad Sci USA 2020; 117(23): 12952-60.
[http://dx.doi.org/10.1073/pnas.1912839117] [PMID: 32457139]
[41]
Presslauer S, Milosavljevic D, Hübl W, et al. Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: A multicenter study. Mult Scler 2015; 22(4): 502-10.
[PMID: 26199348]
[42]
Menéndez-Valladares P, García-Sánchez MI, Cuadri Benítez P, et al. Free kappa light chains in cerebrospinal fluid as a biomarker to assess risk conversion to multiple sclerosis. Mult Scler J Exp Transl Clin 2015; 1: 2055217315620935.
[http://dx.doi.org/10.1177/2055217315620935] [PMID: 28607709]
[43]
Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis. Clin Immunol 2015; 161(1): 51-8.
[http://dx.doi.org/10.1016/j.clim.2015.06.015] [PMID: 26143623]
[44]
Momtazmanesh S, Shobeiri P, Saghazadeh A, et al. Neuronal and glial CSF biomarkers in multiple sclerosis: A systematic review and meta-analysis. Rev Neurosci 2021; 32(6): 573-95.
[http://dx.doi.org/10.1515/revneuro-2020-0145] [PMID: 33594840]
[45]
Floro S, Carandini T, Pietroboni AM, De Riz MA, Scarpini E, Galimberti D. Role of chitinase 3–like 1 as a biomarker in multiple sclerosis: A systematic review and meta-analysis. Neurol: Neuroimmunol Neuroinflammation 2022; 9(4): e1164.
[46]
Du J, Yi M, Zhou F, et al. S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS. Mol Brain 2021; 14(1): 154.
[http://dx.doi.org/10.1186/s13041-021-00865-9] [PMID: 34615523]
[47]
Sorci G, Bianchi R, Riuzzi F, et al. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc Psychiatry Neurol 2010; 2010.
[48]
Barateiro A, Afonso V, Santos G, et al. S100B as a potential biomarker and therapeutic target in multiple sclerosis. Mol Neurobiol 2016; 53(6): 3976-91.
[http://dx.doi.org/10.1007/s12035-015-9336-6] [PMID: 26184632]
[49]
Harris VK, Sadiq SA. Biomarkers of therapeutic response in multiple sclerosis: Current status. Mol Diagn Ther 2014; 18(6): 605-17.
[http://dx.doi.org/10.1007/s40291-014-0117-0] [PMID: 25164543]
[50]
Kapoor R, Smith KE, Allegretta M, et al. Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology 2020; 95(10): 436-44.
[http://dx.doi.org/10.1212/WNL.0000000000010346] [PMID: 32675076]
[51]
Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021; 144(10): 2954-63.
[http://dx.doi.org/10.1093/brain/awab241] [PMID: 34180982]
[52]
Correale J, Farez MF. Does helminth activation of toll-like receptors modulate immune response in multiple sclerosis patients? Front Cell Infect Microbiol 2012; 2: 112.
[http://dx.doi.org/10.3389/fcimb.2012.00112] [PMID: 22937527]
[53]
Hossain MJ, Morandi E, Tanasescu R, et al. The soluble form of toll-like receptor 2 is elevated in serum of multiple sclerosis patients: A novel potential disease biomarker. Front Immunol 2018; 9: 457.
[http://dx.doi.org/10.3389/fimmu.2018.00457] [PMID: 29593720]
[54]
Keane RW, Dietrich WD, de Rivero Vaccari JP. Inflammasome proteins as biomarkers of multiple sclerosis. Front Neurol 2018; 9: 135.
[http://dx.doi.org/10.3389/fneur.2018.00135] [PMID: 29615953]
[55]
Inoue M, Shinohara ML. Nlrp3 inflammasome and MS/EAE. Autoimmune Dis 2013; 2013.
[56]
Zhang HL, Wu J, Zhu J. The immune-modulatory role of apolipoprotein E with emphasis on multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Dev Immunol 2010; 2010: 1-10.
[http://dx.doi.org/10.1155/2010/186813] [PMID: 20613949]
[57]
Gebregiworgis T, Nielsen HH, Massilamany C, et al. A urinary metabolic signature for multiple sclerosis and neuromyelitis optica. J Proteome Res 2016; 15(2): 659-66.
[http://dx.doi.org/10.1021/acs.jproteome.5b01111] [PMID: 26759122]
[58]
Gebregiworgis T, Massilamany C, Gangaplara A, et al. Potential of urinary metabolites for diagnosing multiple sclerosis. ACS Chem Biol 2013; 8(4): 684-90.
[http://dx.doi.org/10.1021/cb300673e] [PMID: 23369377]
[59]
Dobson R, Topping J, Davis A, Thompson E, Giovannoni G. Cerebrospinal fluid and urinary biomarkers in multiple sclerosis. Acta Neurol Scand 2013; 128(5): 321-7.
[http://dx.doi.org/10.1111/ane.12119] [PMID: 23465040]
[60]
Jafari A, Babajani A, Rezaei-Tavirani M. Multiple sclerosis biomarker discoveries by proteomics and metabolomics approaches. Biomark Insights 2021; 16: 11772719211013352.
[http://dx.doi.org/10.1177/11772719211013352] [PMID: 34017167]
[61]
Devos D, Forzy G, de Seze J, et al. Silver stained isoelectrophoresis of tears and cerebrospinal fluid in multiple sclerosis. J Neurol 2001; 248(8): 672-5.
[http://dx.doi.org/10.1007/PL00007833] [PMID: 11569895]
[62]
Herman S, Khoonsari PE, Tolf A, et al. Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis. Theranostics 2018; 8(16): 4477-90.
[http://dx.doi.org/10.7150/thno.26249] [PMID: 30214633]
[63]
Cicalini I, Rossi C, Pieragostino D, et al. Integrated lipidomics and metabolomics analysis of tears in multiple sclerosis: An insight into diagnostic potential of lacrimal fluid. Int J Mol Sci 2019; 20(6): 1265.
[http://dx.doi.org/10.3390/ijms20061265] [PMID: 30871169]
[64]
Pieragostino D, Lanuti P, Cicalini I, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteomics 2019; 204: 103403.
[http://dx.doi.org/10.1016/j.jprot.2019.103403] [PMID: 31170500]
[65]
Manconi B, Liori B, Cabras T, et al. Top-down proteomic profiling of human saliva in multiple sclerosis patients. J Proteomics 2018; 187: 212-22.
[http://dx.doi.org/10.1016/j.jprot.2018.07.019] [PMID: 30086402]
[66]
Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation 2019; 16(1): 272.
[http://dx.doi.org/10.1186/s12974-019-1674-2] [PMID: 31870389]
[67]
Martin SJ, McGlasson S, Hunt D, Overell J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: A meta-analysis of case–control studies. J Neurol Neurosurg Psychiatry 2019; 90(9): 1059-67.
[http://dx.doi.org/10.1136/jnnp-2018-319190] [PMID: 31123141]
[68]
Varhaug KN, Torkildsen Ø, Myhr KM, Vedeler CA. Neurofilament light chain as a biomarker in multiple sclerosis. Front Neurol 2019; 10: 338.
[http://dx.doi.org/10.3389/fneur.2019.00338] [PMID: 31024432]
[69]
Olesen MN, Soelberg K, Debrabant B, et al. Cerebrospinal fluid biomarkers for predicting development of multiple sclerosis in acute optic neuritis: A population-based prospective cohort study. J Neuroinflammation 2019; 16(1): 59.
[http://dx.doi.org/10.1186/s12974-019-1440-5] [PMID: 30857557]
[70]
Domingues RB, Fernandes GBP, Leite FBVM, Senne C. Neurofilament light chain in the assessment of patients with multiple sclerosis. Arq Neuropsiquiatr 2019; 77(6): 436-41.
[http://dx.doi.org/10.1590/0004-282x20190060] [PMID: 31314847]
[71]
Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis. Mult Scler 2012; 18(5): 552-6.
[http://dx.doi.org/10.1177/1352458512443092] [PMID: 22492131]
[72]
Cai L, Huang J. Neurofilament light chain as a biological marker for multiple sclerosis: A meta-analysis study. Neuropsychiatr Dis Treat 2018; 14: 2241-54.
[http://dx.doi.org/10.2147/NDT.S173280] [PMID: 30214214]
[73]
Khalil M, Pirpamer L, Hofer E, et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat Commun 2020; 11(1): 812.
[http://dx.doi.org/10.1038/s41467-020-14612-6] [PMID: 32041951]
[74]
Siller N, Kuhle J, Muthuraman M, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler 2019; 25(5): 678-86.
[http://dx.doi.org/10.1177/1352458518765666] [PMID: 29542376]
[75]
Thebault S, Abdoli M, Fereshtehnejad SM, Tessier D, Tabard-Cossa V, Freedman MS. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci Rep 2020; 10(1): 10381.
[http://dx.doi.org/10.1038/s41598-020-67504-6] [PMID: 32587320]
[76]
Bischof A, Manigold T, Barro C, et al. Serum neurofilament light chain: A biomarker of neuronal injury in vasculitic neuropathy. Ann Rheum Dis 2018; 77(7): 1093-4.
[http://dx.doi.org/10.1136/annrheumdis-2017-212045] [PMID: 28743789]
[77]
Oldoni E, Smets I, Mallants K, et al. CHIT1 at diagnosis reflects long-term multiple sclerosis disease activity. Ann Neurol 2020; 87(4): 633-45.
[http://dx.doi.org/10.1002/ana.25691] [PMID: 31997416]
[78]
Novakova L, Zetterberg H, Sundström P, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology 2017; 89(22): 2230-7.
[http://dx.doi.org/10.1212/WNL.0000000000004683] [PMID: 29079686]
[79]
Preziosa P, Rocca MA, Filippi M. Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. Expert Rev Neurother 2020; 20(8): 747-69.
[http://dx.doi.org/10.1080/14737175.2020.1760846] [PMID: 32326770]
[80]
Puranik N, Yadav D, Yadav SK, Chavda VK, Jin JO. Proteomics and neurodegenerative disorders: Advancements in the diagnostic analysis. Curr Protein Pept Sci 2020; 21(12): 1174-83.
[http://dx.doi.org/10.2174/1389203721666200511094222] [PMID: 32392110]
[81]
Hinsinger G, Galéotti N, Nabholz N, et al. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult Scler 2015; 21(10): 1251-61.
[http://dx.doi.org/10.1177/1352458514561906] [PMID: 25698171]
[82]
Fitzner B, Hecker M, Zettl UK. Molecular biomarkers in cerebrospinal fluid of multiple sclerosis patients. Autoimmun Rev 2015; 14(10): 903-13.
[http://dx.doi.org/10.1016/j.autrev.2015.06.001] [PMID: 26071103]
[83]
Verberk IMW, Laarhuis MB, van den Bosch KA, et al. Serum glial fibrillary acidic protein and neurofilament light as prognostic biomarkers for clinical progression in subjective cognitive decline: The SCIENCe project. Alzheimers Dement 2020; 16(S5): e044783.
[http://dx.doi.org/10.1002/alz.044783]
[84]
D’Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14(12): 1097-110.
[http://dx.doi.org/10.1016/j.autrev.2015.07.014] [PMID: 26226413]
[85]
Corso G, Cristofano A, Sapere N, et al. Serum amino acid profiles in normal subjects and in patients with or at risk of alzheimer dementia. Dement Geriatr Cogn Disord Extra 2017; 7(1): 143-59.
[http://dx.doi.org/10.1159/000466688] [PMID: 28626469]
[86]
Socha E, Koba M, Kośliński P. Amino acid profiling as a method of discovering biomarkers for diagnosis of neurodegenerative diseases. Amino Acids 2019; 51(3): 367-71.
[http://dx.doi.org/10.1007/s00726-019-02705-6] [PMID: 30725224]
[87]
Socha E, Kośliński P, Koba M, et al. Amino acid levels as potential biomarker of elderly patients with dementia. Brain Sci 2020; 10(12): 914.
[http://dx.doi.org/10.3390/brainsci10120914] [PMID: 33260889]
[88]
Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat 2015; 9: 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[89]
Figura M, Kuśmierska K, Bucior E, et al. Serum amino acid profile in patients with Parkinson’s disease. PLoS One 2018; 13(1): e0191670.
[http://dx.doi.org/10.1371/journal.pone.0191670] [PMID: 29377959]
[90]
Cocco E, Murgia F, Lorefice L, et al. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3(1): e185.
[http://dx.doi.org/10.1212/NXI.0000000000000185] [PMID: 26740964]
[91]
Kasakin MF, Rogachev AD, Predtechenskaya EV, Zaigraev VJ, Koval VV, Pokrovsky AG. Changes in amino acid and acylcarnitine plasma profiles for distinguishing patients with multiple sclerosis from healthy controls. Mult Scler Inf 2020; 2020.
[http://dx.doi.org/10.1155/2020/9010937]
[92]
Poser CM, Sylwester DL, Ho B, Alpert A. Amino acid residues of serum and CSF protein in multiple sclerosis. Clinical application of statistical discriminant analysis. Arch Neurol 1975; 32(5): 308-14.
[http://dx.doi.org/10.1001/archneur.1975.00490470052007] [PMID: 1094992]
[93]
Berghoff SA, Spieth L, Saher G. Local cholesterol metabolism orchestrates remyelination. Trends Neurosci 2022; 45(4): 272-83.
[http://dx.doi.org/10.1016/j.tins.2022.01.001] [PMID: 35153084]
[94]
Ferreira HB, Melo T, Monteiro A, Paiva A, Domingues P, Domingues MR. Serum phospholipidomics reveals altered lipid profile and promising biomarkers in multiple sclerosis. Arch Biochem Biophys 2021; 697: 108672.
[http://dx.doi.org/10.1016/j.abb.2020.108672] [PMID: 33189653]
[95]
Vejux A, Ghzaiel I, Nury T, et al. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210: 105870.
[http://dx.doi.org/10.1016/j.jsbmb.2021.105870] [PMID: 33684483]
[96]
Raphael I, Forsthuber T. Identification of predictive protein biomarkers for treatment efficacy and clinical relapses of multiple sclerosis (THER7P.950). J Immunol 2015; 194(1 Supplement): 208-10.
[97]
Quintana FJ, Yeste A, Weiner HL, Covacu R. Lipids and lipid-reactive antibodies as biomarkers for multiple sclerosis. J Neuroimmunol 2012; 248(1-2): 53-7.
[http://dx.doi.org/10.1016/j.jneuroim.2012.01.002] [PMID: 22579051]
[98]
Bakshi R, Yeste A, Patel B, et al. Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3(2): e200.
[http://dx.doi.org/10.1212/NXI.0000000000000200] [PMID: 26894204]
[99]
Nogueras L, Gonzalo H, Jové M, et al. Lipid profile of cerebrospinal fluid in multiple sclerosis patients: A potential tool for diagnosis. Sci Rep 2019; 9(1): 11313.
[http://dx.doi.org/10.1038/s41598-019-47906-x] [PMID: 31383928]
[100]
Peschl P, Schanda K, Zeka B, et al. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. J Neuroinflammation 2017; 14(1): 208.
[http://dx.doi.org/10.1186/s12974-017-0984-5] [PMID: 29070051]
[101]
Srivastava R, Aslam M, Kalluri SR, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med 2012; 367(2): 115-23.
[http://dx.doi.org/10.1056/NEJMoa1110740] [PMID: 22784115]
[102]
Paul A, Comabella M, Gandhi R. Biomarkers in multiple sclerosis. Cold Spring Harb Perspect Med 2019; 9(3): a029058.
[http://dx.doi.org/10.1101/cshperspect.a029058] [PMID: 29500303]
[103]
DeMarshall C, Goldwaser EL, Sarkar A, et al. Autoantibodies as diagnostic biomarkers for the detection and subtyping of multiple sclerosis. J Neuroimmunol 2017; 309: 51-7.
[http://dx.doi.org/10.1016/j.jneuroim.2017.05.010] [PMID: 28601288]
[104]
Yu X, Graner M, Kennedy PGE, Liu Y. The role of antibodies in the pathogenesis of multiple sclerosis. Front Neurol 2020; 11: 533388.
[http://dx.doi.org/10.3389/fneur.2020.533388] [PMID: 33192968]
[105]
Gharesouran J, Taheri M, Sayad A, Ghafouri-Fard S, Mazdeh M, Omrani MD. A novel regulatory function of long non-coding RNAs at different levels of gene expression in multiple sclerosis. J Mol Neurosci 2019; 67(3): 434-40.
[http://dx.doi.org/10.1007/s12031-018-1248-2] [PMID: 30610590]
[106]
Piket E, Zheleznyakova GY, Kular L, Jagodic M. Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: A comprehensive overview. J Autoimmun 2019; 101: 17-25.
[http://dx.doi.org/10.1016/j.jaut.2019.04.002] [PMID: 31014917]
[107]
Yang X, Wu Y, Zhang B, Ni B. Noncoding RNAs in multiple sclerosis. Clin Epigenetics 2018; 10(1): 149.
[http://dx.doi.org/10.1186/s13148-018-0586-9] [PMID: 30497529]
[108]
Elkhodiry AA, El Tayebi HM. Scavenging the hidden impacts of non-coding RNAs in multiple sclerosis. Noncoding RNA Res 2021; 6(4): 187-99.
[http://dx.doi.org/10.1016/j.ncrna.2021.12.002] [PMID: 34938929]
[109]
Mycko MP, Baranzini SE. microRNA and exosome profiling in multiple sclerosis. Mult Scler 2020; 26(5): 599-604.
[http://dx.doi.org/10.1177/1352458519879303] [PMID: 31965891]
[110]
Yousuf A, Qurashi A. Non-coding RNAs in the pathogenesis of multiple sclerosis. Front Genet 2021; 12: 717922.
[http://dx.doi.org/10.3389/fgene.2021.717922] [PMID: 34659340]
[111]
Jalaiei A, Asadi MR, Sabaie H, et al. Long Non-Coding RNAs, novel offenders or guardians in multiple sclerosis: A scoping review. Front Immunol 2021; 12: 774002.
[http://dx.doi.org/10.3389/fimmu.2021.774002] [PMID: 34950142]
[112]
Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long noncoding RNAs and circular RNAs in autoimmune diseases. Biomolecules 2020; 10(7): 1044.
[http://dx.doi.org/10.3390/biom10071044] [PMID: 32674342]
[113]
Peplow PV, Martinez B. MicroRNAs as disease progression biomarkers and therapeutic targets in experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regen Res 2020; 15(10): 1831-7.
[http://dx.doi.org/10.4103/1673-5374.280307] [PMID: 32246624]
[114]
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in neurodegeneration: From disease cause to tools of biomarker discovery and therapeutics. Genes (Basel) 2022; 13(3): 425.
[http://dx.doi.org/10.3390/genes13030425] [PMID: 35327979]
[115]
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: Biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183: 101694.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101694] [PMID: 31542363]
[116]
Mansoor SR, Ghasemi-Kasman M, Yavarpour-Bali H. The role of microRNAs in multiple sclerosis. Int Rev Immunol 2022; 41(2): 57-71.
[http://dx.doi.org/10.1080/08830185.2020.1826474] [PMID: 32997552]
[117]
Peplow PV, Martinez B. MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural Regen Res 2020; 15(4): 606-19.
[http://dx.doi.org/10.4103/1673-5374.266905] [PMID: 31638082]
[118]
Haghikia A, Haghikia A, Hellwig K, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: A case-control study. Neurology 2012; 79(22): 2166-70.
[http://dx.doi.org/10.1212/WNL.0b013e3182759621] [PMID: 23077021]
[119]
Vistbakka J, Elovaara I, Lehtimäki T, Hagman S. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult Scler 2017; 23(3): 403-12.
[http://dx.doi.org/10.1177/1352458516651141] [PMID: 27246141]
[120]
Lee G. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 2018; 19(3): 730.
[http://dx.doi.org/10.3390/ijms19030730] [PMID: 29510522]
[121]
Martinez GJ, Nurieva RI, Yang XO, Dong C. Regulation and function of proinflammatory TH17 cells. Ann N Y Acad Sci 2008; 1143(1): 188-211.
[http://dx.doi.org/10.1196/annals.1443.021] [PMID: 19076351]
[122]
Dolati S, Marofi F, Babaloo Z, et al. Dysregulated network of miRNAs involved in the pathogenesis of multiple sclerosis. Biomed Pharmacother 2018; 104: 280-90.
[http://dx.doi.org/10.1016/j.biopha.2018.05.050] [PMID: 29775896]
[123]
Gandhi R. miRNA in multiple sclerosis: Search for novel biomarkers. Mult Scler 2015; 21(9): 1095-103.
[http://dx.doi.org/10.1177/1352458515578771] [PMID: 25921051]
[124]
Pietrasik S, Dziedzic A, Miller E, Starosta M, Saluk-Bijak J. Circulating miRNAs as potential biomarkers distinguishing relapsing–remitting from secondary progressive multiple sclerosis. A review. Int J Mol Sci 2021; 22(21): 11887.
[http://dx.doi.org/10.3390/ijms222111887] [PMID: 34769314]
[125]
Kramer S, Haghikia A, Bang C, et al. Elevated levels of miR-181c and miR-633 in the CSF of patients with MS. Neurol Neuroimmunol Neuroinflamm 2019; 6(6): e623.
[http://dx.doi.org/10.1212/NXI.0000000000000623] [PMID: 31575652]
[126]
Muñoz-San Martín M, Reverter G, Robles-Cedeño R, et al. Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J Neuroinflammation 2019; 16(1): 220.
[http://dx.doi.org/10.1186/s12974-019-1590-5] [PMID: 31727077]
[127]
Minutti-Zanella C, Bojalil-Álvarez L, García-Villaseñor E, et al. miRNAs in multiple sclerosis: A clinical approach. Mult Scler Relat Disord 2022; 63: 103835.
[http://dx.doi.org/10.1016/j.msard.2022.103835] [PMID: 35533548]
[128]
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9(1): 19.
[http://dx.doi.org/10.1186/s13578-019-0282-2] [PMID: 30815248]
[129]
Zhou B, Xu K, Zheng X, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 2020; 5(1): 144.
[http://dx.doi.org/10.1038/s41392-020-00258-9] [PMID: 32747657]
[130]
Manna I, De Benedittis S, Quattrone A, Maisano D, Iaccino E, Quattrone A. Exosomal miRNAs as potential diagnostic biomarkers in Alzheimer’s disease. Pharmaceuticals (Basel) 2020; 13(9): 243.
[http://dx.doi.org/10.3390/ph13090243] [PMID: 32932746]
[131]
Komlakh K, Aghamiri SH, Farshadmoghadam H. The role and therapeutic applications of exosomes in multiple sclerosis disease. Clin Exp Pharmacol Physiol 2022; 49(12): 1249-56.
[http://dx.doi.org/10.1111/1440-1681.13710] [PMID: 35918850]
[132]
Petracca M, Pontillo G, Moccia M, et al. Neuroimaging correlates of cognitive dysfunction in adults with multiple sclerosis. Brain Sci 2021; 11(3): 346.
[http://dx.doi.org/10.3390/brainsci11030346] [PMID: 33803287]
[133]
Inglese M, Oesingmann N, Casaccia P, Fleysher L. Progressive multiple sclerosis and gray matter pathology: An MRI perspective. Mt Sinai J Med 2011; 78(2): 258-67.
[http://dx.doi.org/10.1002/msj.20247] [PMID: 21425269]
[134]
Zhu L, Chen D, Lu X, et al. An ultrasensitive flow cytometric immunoassay based on bead surface-initiated template-free DNA extension. Chem Sci (Camb) 2018; 9(32): 6605-13.
[http://dx.doi.org/10.1039/C8SC02752H] [PMID: 30310592]
[135]
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27(1): 18.
[http://dx.doi.org/10.1186/s12929-019-0609-7] [PMID: 31906949]
[136]
Comabella M, Sastre-Garriga J, Montalban X. Precision medicine in multiple sclerosis. Curr Opin Neurol 2016; 29(3): 254-62.
[http://dx.doi.org/10.1097/WCO.0000000000000336] [PMID: 27075495]
[137]
Sapko K, Jamroz-Wiśniewska A, Marciniec M, Kulczyński M, Szczepańska-Szerej A, Rejdak K. Biomarkers in multiple sclerosis: A review of diagnostic and prognostic factors. Neurol Neurochir Pol 2020; 54(3): 252-8.
[http://dx.doi.org/10.5603/PJNNS.a2020.0037] [PMID: 32462652]
[138]
Mayeux R. Biomarkers: Potential uses and limitations. NeuroRx 2004; 1(2): 182-8.
[http://dx.doi.org/10.1602/neurorx.1.2.182] [PMID: 15717018]
[139]
Kahn M, Schuierer L, Bartenschlager C, et al. Performance of antigen testing for diagnosis of COVID-19: A direct comparison of a lateral flow device to nucleic acid amplification based tests. BMC Infect Dis 2021; 21(1): 798.
[http://dx.doi.org/10.1186/s12879-021-06524-7] [PMID: 34376187]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy