Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

LncRNA SH3BP5-AS1 Regulates the Proliferation and Cell Cycle of Non-Small Cell Lung Cancer Cells

Author(s): Xiaowu Fan*

Volume 20, Issue 3, 2023

Published on: 25 October, 2023

Page: [158 - 168] Pages: 11

DOI: 10.2174/0115701646253656231013141100

Price: $65

Abstract

Background: Non-small cell lung cancer (NSCLC) consists of a class of heterogeneous diseases.

Objective: LncRNAs are exceedingly implicated in the pathogenesis of NSCLC. Herein, the current study set out to illustrate the molecular mechanism of SH3BP5-AS1 in NSCLC cells.

Methods: SH3BP5-AS1 expression in clinical NSCLC tissues and its impact on prognosis were analyzed by bioinformatics database. SH3BP5-AS1 expression patterns in NSCLC cell lines (A549/H1299/H1975/H460) and human normal lung epithelial cell lines (BEAS-2B) were examined by RT-qPCR. SH3BP5-AS1 was overexpressed in A549 or silenced in H1975 cells through transfection to assess its effect on proliferation, cell cycle distribution, and apoptosis, apoptosisrelated protein (Cleaved Caspase-3, Bax, Bcl-2) levels, invasive, migratory, and healing capacity through CCK-8, colony formation assay, flow cytometry, Western blot, Transwell, and cell scratch test.

Results: SH3BP5-AS1 was under-expressed in NSCLC clinical tissues, and NSCLC patients with low SH3BP5-AS1 expression showed poor prognosis. A549/H1299/H1975/H460 cells had reduced levels of SH3BP5-AS1, with the relative level lowest/highest expression in A549/H1975 cells, respectively. SH3BP5-AS1 overexpression repressed A549 cell proliferation, slowed down cell cycle progression, enhanced apoptosis, elevated Cleared Caspase-3, Bax, suppressed Bcl-2 protein levels, and inhibited migratory, invasive, and scratch healing capacities, while SH3BP5-AS1 silencing brought about the opposite results in H1975 cells.

Conclusion: SH3BP5-AS1 could suppress NSCLC cell proliferation, slow down cell cycle progression, stimulate apoptosis, and limit invasion and migration.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Houston, K.A.; Henley, S.J.; Li, J.; White, M.C.; Richards, T.B. Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004–2009. Lung Cancer, 2014, 86(1), 22-28.
[http://dx.doi.org/10.1016/j.lungcan.2014.08.001] [PMID: 25172266]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Bajbouj, K.; Al-Ali, A.; Ramakrishnan, R.K.; Saber-Ayad, M.; Hamid, Q. Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int. J. Mol. Sci., 2021, 22(21), 11701.
[http://dx.doi.org/10.3390/ijms222111701] [PMID: 34769131]
[5]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[6]
Dahariya, S.; Paddibhatla, I.; Kumar, S.; Raghuwanshi, S.; Pallepati, A.; Gutti, R.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol., 2017, 112, 82-92.
[7]
Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B, 2021, 11(2), 340-354.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[8]
Chen, R.; Li, W.; Sun, Y.; Duan, Y.; Li, Q.; Zhang, A.; Hu, J.; Wang, Y.; Gao, Y. Comprehensive analysis of lncRNA and mRNA expression profiles in lung cancer. Clin. Lab., 2017, 63(02/2017), 313-320.
[http://dx.doi.org/10.7754/Clin.Lab.2016.160812] [PMID: 28182363]
[9]
Ginn, L.; Shi, L.; La Montagna, M.; Garofalo, M. LncRNAs in non-small-cell lung cancer. Noncoding RNA, 2020, 6(3), 25.
[http://dx.doi.org/10.3390/ncrna6030025] [PMID: 32629922]
[10]
Lu, T.; Wang, Y.; Chen, D.; Liu, J.; Jiao, W. Potential clinical application of lncRNAs in non-small cell lung cancer. OncoTargets Ther., 2018, 11, 8045-8052.
[http://dx.doi.org/10.2147/OTT.S178431]
[11]
Sulewska, A.; Niklinski, J.; Charkiewicz, R.; Karabowicz, P.; Biecek, P.; Baniecki, H.; Kowalczuk, O.; Kozlowski, M.; Modzelewska, P.; Majewski, P.; Tryniszewska, E.; Reszec, J.; Dzieciol-Anikiej, Z.; Piwkowski, C.; Gryczka, R.; Ramlau, R. A signature of 14 long non-coding RNAs (lncRNAs) as a step towards precision diagnosis for NSCLC. Cancers, 2022, 14(2), 439.
[http://dx.doi.org/10.3390/cancers14020439] [PMID: 35053601]
[12]
Li, M.; Hao, S.; Li, C.; Xiao, H.; Sun, L.; Yu, Z.; Zhang, N.; Xiong, Y.; Zhao, D.; Yin, Y. Elevated SH3BP5 correlates with poor outcome and contributes to the growth of acute myeloid leukemia cells. Biomolecules, 2019, 9(9), 505.
[http://dx.doi.org/10.3390/biom9090505] [PMID: 31546831]
[13]
Qiao, R.; Zhong, R.; Liu, C.; Di, F.; Zhang, Z.; Wang, L.; Xu, T.; Wang, Y.; Dai, L.; Gu, W.; Han, B.; Yang, R. Novel blood-based hypomethylation of SH3BP5 is associated with very early-stage lung adenocarcinoma. Genes Genomics, 2022, 44(4), 445-453.
[http://dx.doi.org/10.1007/s13258-021-01190-0] [PMID: 34783986]
[14]
Lin, C.; Wang, Y.; Dong, Y.; Lai, S.; Wang, L.; Weng, S.; Zhang, X. N6-methyladenosine-mediated SH3BP5-AS1 upregulation promotes GEM chemoresistance in pancreatic cancer by activating the Wnt signaling pathway. Biol. Direct, 2022, 17(1), 33.
[http://dx.doi.org/10.1186/s13062-022-00347-5] [PMID: 36397058]
[15]
Cao, R.; Yuan, L.; Ma, B.; Wang, G.; Tian, Y. Immune-related long non-coding RNA signature identified prognosis and immunotherapeutic efficiency in bladder cancer (BLCA). Cancer Cell Int., 2020, 20, 276.
[16]
Fang, X.; Huang, E.; Xie, X.; Yang, K.; Wang, S.; Huang, X.; Song, M. A novel senescence-related lncRNA signature that predicts prognosis and the tumor microenvironment in patients with lung adenocarcinoma. Front. Genet., 2022, 13, 951311.
[http://dx.doi.org/10.3389/fgene.2022.951311]
[17]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[18]
Brown, S.; Banfill, K.; Aznar, M.C.; Whitehurst, P.; Faivre Finn, C. The evolving role of radiotherapy in non-small cell lung cancer. Br. J. Radiol., 2019, 92(1104), 20190524.
[http://dx.doi.org/10.1259/bjr.20190524] [PMID: 31535580]
[19]
Wu, C.; Song, W.; Wang, Z.; Wang, B. Functions of lncRNA DUXAP8 in non-small cell lung cancer. Mol. Biol. Rep., 2022, 49(3), 2531-2542.
[http://dx.doi.org/10.1007/s11033-021-07066-6] [PMID: 35031926]
[20]
Ku, G.W.; Kang, Y.; Yu, S.L.; Park, J.; Park, S.; Jeong, I.B.; Kang, M.W.; Son, J.W.; Kang, J. LncRNA LINC00240 suppresses invasion and migration in non-small cell lung cancer by sponging miR-7-5p. BMC Cancer, 2021, 21(1), 44.
[http://dx.doi.org/10.1186/s12885-020-07755-8] [PMID: 33422052]
[21]
Zhuang, J.; Chen, Z.; Chen, Z.; Chen, J.; Liu, M.; Xu, X.; Liu, Y.; Yang, S.; Hu, Z.; He, F. Construction of an immune-related lncRNA signature pair for predicting oncologic outcomes and the sensitivity of immunosuppressor in treatment of lung adenocarcinoma. Respir. Res., 2022, 23(1), 123.
[http://dx.doi.org/10.1186/s12931-022-02043-4] [PMID: 35562727]
[22]
Chen, P.; Qin, Z.; Sun, X.; Yang, J.; Lv, J.; Diao, M. Expression and Clinical Significance of lncRNA OSER1-AS1 in Peripheral Blood of Patients with Non-Small Cell Lung Cancer. Cells Tissues Organs, 2022, 211(5), 589-600.
[http://dx.doi.org/10.1159/000519529] [PMID: 34525476]
[23]
Cheng, Z.; Lu, C.; Wang, H.; Wang, N.; Cui, S.; Yu, C.; Wang, C.; Zuo, Q.; Wang, S.; Lv, Y.; Yao, M.; Jiang, L.; Qin, W. Long noncoding RNA LHFPL3-AS2 suppresses metastasis of non-small cell lung cancer by interacting with SFPQ to regulate TXNIP expression. Cancer Lett., 2022, 531, 1-13.
[http://dx.doi.org/10.1016/j.canlet.2022.01.031]
[24]
Liang, M.; Wang, L.; Cao, C.; Song, S.; Wu, F. LncRNA SNHG10 is downregulated in non-small cell lung cancer and predicts poor survival. BMC Pulm. Med., 2020, 20(1), 273.
[http://dx.doi.org/10.1186/s12890-020-01281-w] [PMID: 33081752]
[25]
Kornienko, A.E.; Guenzl, P.M.; Barlow, D.P.; Pauler, F.M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol., 2013, 11, 59.
[http://dx.doi.org/10.1186/1741-7007-11-59]
[26]
Chen, F.; Yang, J.; Fang, M.; Wu, Y.; Su, D.; Sheng, Y. Necroptosis‐related lncRNA to establish novel prognostic signature and predict the immunotherapy response in breast cancer. J. Clin. Lab. Anal., 2022, 36(4), e24302.
[http://dx.doi.org/10.1002/jcla.24302] [PMID: 35229919]
[27]
Tan, J.; Mao, W.; Long, S.; Zhang, T. Metastasis-related long non-coding RNAs AL359220.1, SH3BP5-AS1 and ZF-AS1 are significant for prognostic assessment of lung adenocarcinoma. Aging, 2023, 15(15), 7551-7564.
[http://dx.doi.org/10.18632/aging.204923] [PMID: 37566767]
[28]
Zhu, Q.; Zhang, C.; Qu, T.; Lu, X.; He, X.; Li, W.; Yin, D.; Han, L.; Guo, R.; Zhang, E. MNX1-AS1 promotes phase separation of IGF2BP1 to drive c-Myc–mediated cell-cycle progression and proliferation in lung cancer. Cancer Res., 2022, 82(23), 4340-4358.
[http://dx.doi.org/10.1158/0008-5472.CAN-22-1289] [PMID: 36214649]
[29]
Geng, W.; Qiu, M.; Zhang, D.; Li, P.; Sun, G.; Zhou, X. LncRNA PCAT7 promotes non-small cell lung cancer progression by activating miR-486-5p/CDK4 axis-mediated cell cycle. Am. J. Transl. Res., 2022, 14(5), 3003-3016.
[PMID: 35702078]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy