Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

In vitro Regeneration of Multiple Shoots in Abelmoschus esculentus (L.) Moench (Okra) via Apical Shoot Meristem Culture

Author(s): Melvin A. Daniel, S. Maria Packiam and Duraipandiyan Veeramuthu*

Volume 12, Issue 3, 2023

Published on: 25 October, 2023

Page: [203 - 210] Pages: 8

DOI: 10.2174/0122115501261522231013100629

Price: $65

Abstract

Introduction: To develop the efficient protocol for multiple shoot regeneration of A.esculentus by apical root culture method. Abelmoschus esculentus L., commonly known as okra, is a member of the Malvaceae family, which is widely consumed due to its high nutrient content and potential therapeutic properties. Okra contains various bioactive compounds that exhibit antibacterial properties and may be useful in treating type-2 diabetes, digestive diseases, and liver detoxification. To select the plant for the present and prepare the efficient protocol for the development of multiple shoot regeneration culture method.

Methods: In this study, we developed an efficient protocol for multiple shoot regeneration of A. esculentus using the apical shoot culture method. Mature shoot apex explants of the germinated A. esculentus genotype CoBhH1 were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of cytokinins (BAP and TDZ) and auxins (IAA and NAA) to determine the optimal conditions for shoot induction.

Results: The highest number of multiple shoots (27.04 shoots) was obtained with 0.8 mg/L TDZ. Excised shoots were cultured on MS medium supplemented with GA3, which induced elongation of the shoots to a maximum of 8-10 cm. Regenerated plantlets were successfully transferred to soil, with a 100% survival rate and no differences in morphology or growth characteristics compared to control plants. Rooting was achieved with 1 mg/L IBA.

Conclusion: This study provides an efficient protocol for multiple shoot regeneration of A. esculentus through apical shoot culture, which has potential applications in plant breeding and genetic engineering.

« Previous
Graphical Abstract

[1]
Gemede HF, Ratta N. Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. J Food Process Technol 2015; 6(6): 16-25.
[http://dx.doi.org/10.4172/2157-7110.1000458]
[3]
Düzyaman E, Vural H. Evaluation of pod characteristics and nutritive value of okra genetic resources International Symposium on Sustainable Use of Plant Biodiversity to Promote New Opportunities for Horticultural Production. 103-10.
[http://dx.doi.org/10.17660/ActaHortic.2003.598.15]
[4]
Siemonsma J, Kouame C. In plant resources of tropical Africa Vegetable. J Nutr 2004; 7: 21-9.
[http://dx.doi.org/10.5897/IJPPB2015.0224]
[5]
Amin IM. Nutritional properties of Abelmoschus esculentus as remedy to manage diabetes mellitus: A literature review. Proceedings of International Conference on Biomedical Engineering and Technology (ICBET 2011). Kuala Lumpur, Malaysia 4-5 June. 2011.
[6]
Khomsug P, Thongjaroe W, Pakdeenaro N, Suttajit M, Chantirati P. Antioxidative activities and phenolic content of extracts from okra (Abelmoschus esculentus L.). Res J Biol Sci 2010; 5(4): 310-3.
[http://dx.doi.org/10.3923/rjbsci.2010.310.313]
[7]
Bansal SP. Healing Power of Foods: Nature’s prescription for common diseases. V&S Publishers 2012.
[8]
Ameena K, Dilip C, Saraswathi R, Krishnan PN, Sankar C, Simi SP. Isolation of the mucilages from Hibiscus rosasinensis linn. and Okra (Abelmoschus esculentus linn.) and studies of the binding effects of the mucilages. Asian Pac J Trop Med 2010; 3(7): 539-43.
[http://dx.doi.org/10.1016/S1995-7645(10)60130-7]
[9]
Collins EM. An AZ Guide to Healing Foods: A Shopper’s Reference. Conari Press 2010.
[10]
Rahaman Mollick MM, Bhowmick B, Mondal D, et al. Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Advances 2014; 4(71): 37838-48.
[http://dx.doi.org/10.1039/C4RA07285E]
[11]
Subrahmanyam G, Sushma M. Antidiabetic activity of Abelmoschus esculentus fruit extract. Int J Res Pharm Chem 2011; 1: 17-20.
[12]
Adelakun OE, Oyelade OJ, Ade-Omowaye BIO, Adeyemi IA, Van de Venter M. Chemical composition and the antioxidative properties of Nigerian Okra Seed (Abelmoschus esculentus Moench) Flour. Food Chem Toxicol 2009; 47(6): 1123-6.
[http://dx.doi.org/10.1016/j.fct.2009.01.036] [PMID: 19425185]
[13]
Kumar DS, Tony DE. A review on Abelmoschus esculentus (Okra). Int Res J Pharm Appl Sci 2013; 3: 129-32.
[14]
Camciuc M, Deplagne M, Vilarem G, Gaset A. Okra—Abelmoschus esculentus L. (Moench.) a crop with economic potential for set aside acreage in France. Ind Crops Prod 1998; 7(2-3): 257-64.
[http://dx.doi.org/10.1016/S0926-6690(97)00056-3]
[15]
Simela L, Merkel R. The contribution of chevon from Africa to global meat production. Meat Sci 2008; 80(1): 101-9.
[http://dx.doi.org/10.1016/j.meatsci.2008.05.037] [PMID: 22063175]
[16]
Dhande G, Patil VM. Regeneration of okra (Abelmoschus esculentus L.) via apical shoot culture system. Afr J Biotechnol 2012; 11: 15226-30.
[http://dx.doi.org/10.5897/AJB12.907]
[17]
Yarra R, Jin L, Zhao Z, Cao H. Progress in tissue culture and genetic transformation of oil palm: An overview. Int J Mol Sci 2019; 20(21): 5353.
[http://dx.doi.org/10.3390/ijms20215353] [PMID: 31661801]
[18]
Li L, Qu R, de Kochko A, Fauquet C, Beachy RN. An improved rice transformation system using the biolistic method. Plant Cell Rep 1993; 12(5): 250-5.
[http://dx.doi.org/10.1007/BF00237129] [PMID: 24197151]
[19]
Belkhodja L, Belkhodja M, Ghomari S. In vitro regeneration of okra [Abelmoschus esculentus (L.) moench] through nodal and shoot apex explants. Indian J Agric Res 2023; 57(2): 218-23.
[20]
Zhong H, Sun B, Warkentin D, et al. The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 1996; 110(4): 1097-107.
[http://dx.doi.org/10.1104/pp.110.4.1097] [PMID: 12226244]
[21]
Zapata C, Srivatanakul M, Park S-H, Lee B-M, Salas MG, Smith RH. Improvements in shoot apex regeneration of two fibre crops: Cotton and kenaf. Plant Cell Tissue Organ Cult 1999; 56(3): 185-91.
[http://dx.doi.org/10.1023/A:1006238924439]
[22]
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962; 15(3): 473-97.
[http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x]
[23]
Vasil IK, Vasil V. In vitro culture of cereals and grasses. Plant cell and tissue culture. Dordrecht: Springer 1994; pp. 293-312.
[http://dx.doi.org/10.1007/978-94-017-2681-8_12]
[24]
Thorpe TA. Morphogenesis and regeneration. Plant cell and tissue culture. Dordrecht: Springer 1994; pp. 17-36.
[http://dx.doi.org/10.1007/978-94-017-2681-8_2]
[25]
Grosser JW. In vitro culture of tropical fruits. Plant cell and tissue culture. Dordrecht: Springer 1994; pp. 475-96.
[http://dx.doi.org/10.1007/978-94-017-2681-8_19]
[26]
Krikorian AD. In vitro culture of plantation crops.Plant cell and tissue culture. Dordrecht Springer 1994; pp. 497-537.
[http://dx.doi.org/10.1007/978-94-017-2681-8_20]
[27]
Harry IS, Thorpe TA. In vitro culture of forest trees.Plant cell and tissue culture. Dordrecht Springer 1994; pp. 539-60.
[http://dx.doi.org/10.1007/978-94-017-2681-8_21]
[28]
Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 1968; 50(1): 151-8.
[http://dx.doi.org/10.1016/0014-4827(68)90403-5] [PMID: 5650857]
[29]
Ganesh Kumari K, Ganesan M, Jayabalan N. Somatic organogenesis and plant regeneration in Ricinus communis. Biol Plant 2008; 52(1): 17-25.
[http://dx.doi.org/10.1007/s10535-008-0003-x]
[30]
Ignacimuthu S, Premkumar A. Development of transgenic Sorghum bicolor (L.) Moench resistant to the Chilo partellus (Swinhoe) through Agrobacterium-mediated transformation. MBGE 2014; 2(1): 1.
[http://dx.doi.org/10.7243/2053-5767-2-1]
[31]
Mangat BS, Roy MK. Tissue culture and plant regeneration of okra (Abelmoshus esculentus). Plant Sci 1986; 47(1): 57-61.
[http://dx.doi.org/10.1016/0168-9452(86)90010-5]
[32]
Kartha KK, Michayluk MR, Kao KN, Gamborg OL, Constabel F. In vitro plant formation from stem explants of rape (Brassica napus cv. Zephyr). Physiol Plant 1974; 31: 217.
[http://dx.doi.org/10.1111/j.1399-3054.1974.tb03694.x]
[33]
Bajaj YPS, Ishimaru K. Genetic transformation of medicinal plantsTransgenic medicinal plants. Springer 1999; pp. 1-29.
[http://dx.doi.org/10.1007/978-3-642-58439-8_1]
[34]
Beck MJ, Caponetti JD. The effects of kinetin and naphthaleneacetic acid on in vitro shoot multiplication and rooting in the fishtail fern. Am J Bot 1983; 70(1): 1-7.
[http://dx.doi.org/10.1002/j.1537-2197.1983.tb12425.x] [PMID: 30139052]
[35]
Evans DA, Sharp WR. Plant tissue culture: Methods and application in agriculture, Growth and behavior of cell cultures: Embryogenesis and organogenesis 1981.
[36]
Satyavathi VV, Prasad V, Gita Lakshmi B, Lakshmi Sita G. High efficiency transformation protocol for three Indian cotton varieties viaAgrobacterium tumefaciens. Plant Sci 2002; 162(2): 215-23.
[http://dx.doi.org/10.1016/S0168-9452(01)00547-7]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy