Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

An Update on the Application of Nano Phytomedicine as an Emerging Therapeutic Tool for Neurodegenerative Diseases

Author(s): Md Sadique Hussain, Varunesh Chaturvedi, Saloni Goyal, Sandeep Singh and Reyaz Hassan Mir*

Volume 20, Issue 5, 2024

Published on: 25 October, 2023

Article ID: e251023222648 Pages: 14

DOI: 10.2174/0115734072258656231013085318

Price: $65

Abstract

The existence of the blood-brain barrier (BBB), a densely woven network of blood vessels and endothelial cells designed to prevent the infiltration of foreign substances into the brain, the methods employed in developing treatments for neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple sclerosis, Amyotrophic lateral sclerosis, and others, pose significant challenges and complexities. These illnesses have had a terrible impact on the human population's health. Because early detection of these problems is poor and no good therapy has been established, they have emerged as the biggest lifethreatening healthcare burden worldwide compared to other significant illnesses. Traditional drug delivery techniques do not offer efficient treatment for NDs due to constraints in the BBB design, efflux pumps, and metabolic enzyme expression. Nanotechnology has the potential to significantly enhance ND therapy by utilizing systems that have been bioengineered to engage with living organisms at the cellular range. Compared to traditional techniques, nanotechnological technologies have several potential ways for crossing the BBB and increasing therapeutic efficacy in the brain. The introduction and growth of nanotechnology indicate promising potential for overcoming this issue. Engineered nanoparticles coupled with therapeutic moieties and imaging agents with dimensions ranging from 1-100 nm can improve effectiveness, cellular uptake, selective transport, and drug delivery to the brain due to their changed physicochemical properties. Conjugates of nanoparticles and medicinal plants, or their constituents known as nano phytomedicine, have recently gained importance in developing cutting-edge neuro-therapeutics due to their abundant natural supply, promising targeted delivery to the brain, and lower potential for adverse effects. This study summarizes the common NDs, their prevalence and pathogenesis, and potential herbal nanoformulation for treating NDs.

[1]
Brettschneider, J.; Tredici, K.D.; Lee, V.M.Y.; Trojanowski, J.Q. Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat. Rev. Neurosci., 2015, 16(2), 109-120.
[http://dx.doi.org/10.1038/nrn3887] [PMID: 25588378]
[2]
Pagliosa, L.B.; Monteiro, S.C.; Silva, K.B.; de Andrade, J.P.; Dutilh, J.; Bastida, J.; Cammarota, M.; Zuanazzi, J.A.S. Effect of isoquinoline alkaloids from two hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine, 2010, 17(8-9), 698-701.
[http://dx.doi.org/10.1016/j.phymed.2009.10.003] [PMID: 19969445]
[3]
Mohi-ud-din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Mohi-Ud-Din, I.; Dar, M.A.; Pottoo, F.H. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders. Comb. Chem. High Throughput Screen., 2022, 25(4), 607-615.
[http://dx.doi.org/10.2174/1386207324666210705114058] [PMID: 34225614]
[4]
Gammon, K. Neurodegenerative disease: Brain windfall. Nature, 2014, 515(7526), 299-300.
[http://dx.doi.org/10.1038/nj7526-299a] [PMID: 25396246]
[5]
Shah, A.J.; Mir, R.H. Mohi-ud-din, R.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A. Depression: An insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2021, 19(11), 2020-2037.
[http://dx.doi.org/10.2174/1570159X19666210426115234] [PMID: 33902421]
[6]
da Rocha Lindner, G.; Bonfanti Santos, D.; Colle, D.; Gasnhar Moreira, E.L.; Daniel Prediger, R.; Farina, M.; Khalil, N.M.; Mara Mainardes, R. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine, 2015, 10(7), 1127-1138.
[http://dx.doi.org/10.2217/nnm.14.165] [PMID: 25929569]
[7]
Katsnelson, A.; De Strooper, B.; Zoghbi, H.Y. Neurodegeneration: From cellular concepts to clinical applications. Sci. Transl. Med., 2016, 8(364), 364ps18.
[http://dx.doi.org/10.1126/scitranslmed.aal2074] [PMID: 27831899]
[8]
Mohi-ud-din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Banday, N.; Pottoo, F.H. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb. Chem. High Throughput Screen., 2022, 25(4), 616-633.
[http://dx.doi.org/10.2174/1386207324666210804122539] [PMID: 34348611]
[9]
Mir, R.H.; Mir, P.A.; Mohi-Ud-Din, R.; Sabreen, S.; Maqbool, M.; Shah, A.J.; Shenmar, K.; Raza, S.N.; Pottoo, F.H. A comprehensive review on journey of pyrrole scaffold against multiple therapeutic targets. Anticancer. Agents Med. Chem., 2022, 22(19), 3291-3303.
[http://dx.doi.org/10.2174/1871520622666220613140607]
[10]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[11]
Mohi-ud-din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179-193.
[http://dx.doi.org/10.2174/1570159X19666210428120514] [PMID: 33913406]
[12]
Bandaranayake, W.M. Quality control, screening, toxicity, and regulation of herbal drugs. In: Modern phytomedicine: Turning medicinal plants into drugs; Wiley, 2006; pp. 25-57.
[http://dx.doi.org/10.1002/9783527609987.ch2]
[13]
Hassan, R.; Mohi-Ud-Din, R.; Dar, M.O.; Shah, A.J.; Mir, P.A.; Shaikh, M.; Pottoo, F.H. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A review. Anticancer. Agents Med. Chem., 2022, 22(3), 551-565.
[http://dx.doi.org/10.2174/1871520621666210901112954]
[14]
de Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[15]
Tanner, C.M.; Goldman, S.M. Epidemiology of parkinson’s disease. Neurol. Clin., 1996, 14(2), 317-335.
[http://dx.doi.org/10.1016/S0733-8619(05)70259-0] [PMID: 8827174]
[16]
Fu, H.; Hardy, J.; Duff, K.E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci., 2018, 21(10), 1350-1358.
[http://dx.doi.org/10.1038/s41593-018-0221-2] [PMID: 30250262]
[17]
Mohi-ud-Din. R.; Mir, R.H.; Mir, P.A.; Banday, N.; Shah, A.J.; Sawhney, G.; Bhat, M.M.; Batiha, G.E.; Pottoo, F.H. Dysfunction of ABC transporters at the surface of BBB: Potential implications in intractable epilepsy and applications of nanotechnology enabled drug delivery. Curr. Drug Metab., 2022, 23(9), 735-756.
[http://dx.doi.org/10.2174/1389200223666220817115003] [PMID: 35980054]
[18]
Bolam, J.P.; Pissadaki, E.K. Living on the edge with too many mouths to feed: Why dopamine neurons die. Mov. Disord., 2012, 27(12), 1478-1483.
[http://dx.doi.org/10.1002/mds.25135] [PMID: 23008164]
[19]
Mir, R.H.; Mir, P.A.; Maqbool, M.; Banday, N.; Farooq, S.; Raza, S.N.; Chawla, P.A. Therapeutic potential of plant-derived flavonoids against inflammation. In: Recent Developments in Anti-Inflammatory Therapy; Academic Press, 2023; pp. 279-293.
[http://dx.doi.org/10.1016/B978-0-323-99988-5.00019-X]
[20]
Mattson, M.P. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann. N. Y. Acad. Sci., 2004, 1012(1), 37-50.
[http://dx.doi.org/10.1196/annals.1306.004] [PMID: 15105254]
[21]
Mohi-ud-din, R.; Mir, R.H.; Wani, T.U.; Alsharif, K.F.; Alam, W.; Albrakati, A.; Saso, L.; Khan, H. The regulation of endoplasmic reticulum stress in Cancer: Special focuses on luteolin patents. Molecules, 2022, 27(8), 2471.
[http://dx.doi.org/10.3390/molecules27082471] [PMID: 35458669]
[22]
Guven, M.; Gölge, U.H.; Aslan, E.; Sehitoglu, M.H.; Aras, A.B.; Akman, T.; Cosar, M. The effect of aloe vera on ischemia-reperfusion injury of sciatic nerve in rats. Biomed. Pharmacother., 2016, 79, 201-207.
[http://dx.doi.org/10.1016/j.biopha.2016.02.023] [PMID: 27044829]
[23]
Khadilkar, S.V. Neurology: The scenario in India. J. Assoc. Physicians India, 2012, 60, 42-44.
[PMID: 22715545]
[24]
Gourie-Devi, M. Organization of neurology services in India: Unmet needs and the way forward. Neurol. India, 2008, 56(1), 4-12.
[http://dx.doi.org/10.4103/0028-3886.39304] [PMID: 18310829]
[25]
Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L.; Fitzmaurice, C.; Giussani, G.; Glennie, L.; James, S.L.; Johnson, C.O.; Kassebaum, N.J.; Logroscino, G.; Marin, B.; Mountjoy-Venning, W.C.; Nguyen, M.; Ofori-Asenso, R.; Patel, A.P.; Piccininni, M.; Roth, G.A.; Steiner, T.J.; Stovner, L.J.; Szoeke, C.E.I.; Theadom, A.; Vollset, S.E.; Wallin, M.T.; Wright, C.; Zunt, J.R.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Abdollahpour, I.; Aboyans, V.; Abraha, H.N.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adeoye, A.M.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Al-Eyadhy, A.; Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Karami, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mohammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[26]
Gotovac, K.; Hajnšek, S.; Pašić, M.B.; Pivac, N.; Borovečki, F. Personalized medicine in neurodegenerative diseases: How far away? Mol. Diagn. Ther., 2014, 18(1), 17-24.
[http://dx.doi.org/10.1007/s40291-013-0058-z] [PMID: 24122102]
[27]
Reddy, M.; Shetty, S.; Vannala, V. Embracing personalized medicine in dentistry. J. Pharm. Bioallied Sci., 2019, 11(6), 92.
[http://dx.doi.org/10.4103/JPBS.JPBS_297_18] [PMID: 31198319]
[28]
Allena, M.; Steiner, T.J.; Sances, G.; Carugno, B.; Balsamo, F.; Nappi, G.; Andrée, C.; Tassorelli, C. Impact of headache disorders in Italy and the public-health and policy implications: A population-based study within the Eurolight Project. J. Headache Pain, 2015, 16(1), 100.
[http://dx.doi.org/10.1186/s10194-015-0584-7] [PMID: 26627710]
[29]
Pandit, L.; Kundapur, R. Prevalence and patterns of demyelinating central nervous system disorders in urban Mangalore, South India. Mult. Scler., 2014, 20(12), 1651-1653.
[http://dx.doi.org/10.1177/1352458514521503] [PMID: 24493471]
[30]
Gourie-Devi, M. Epidemiology of neurological disorders in India: Review of background, prevalence and incidence of epilepsy, stroke, Parkinson′s disease and tremors. Neurol. India, 2014, 62(6), 588-598.
[http://dx.doi.org/10.4103/0028-3886.149365] [PMID: 25591669]
[31]
Yan, D.; Zhang, Y.; Liu, L.; Shi, N.; Yan, H. Pesticide exposure and risk of Parkinson’s disease: Dose-response meta-analysis of observational studies. Regul. Toxicol. Pharmacol., 2018, 96, 57-63.
[http://dx.doi.org/10.1016/j.yrtph.2018.05.005] [PMID: 29729297]
[32]
Gunnarsson, L.G.; Bodin, L. Parkinson’s disease and occupational exposures: A systematic literature review and meta-analyses. Scand. J. Work Environ. Health, 2017, 43(3), 197-209.
[http://dx.doi.org/10.5271/sjweh.3641] [PMID: 28379585]
[33]
Fischer, H.; Kheifets, L.; Huss, A.; Peters, T.L.; Vermeulen, R.; Ye, W.; Fang, F.; Wiebert, P.; Vergara, X.P.; Feychting, M. Occupational exposure to electric shocks and magnetic fields and amyotrophic lateral sclerosis in Sweden. Epidemiology, 2015, 26(6), 824-830.
[http://dx.doi.org/10.1097/EDE.0000000000000365] [PMID: 26414853]
[34]
Narayan, S.; Liew, Z.; Bronstein, J.M.; Ritz, B. Occupational pesticide use and Parkinson’s disease in the Parkinson Environment Gene (PEG) study. Environ. Int., 2017, 107, 266-273.
[http://dx.doi.org/10.1016/j.envint.2017.04.010] [PMID: 28779877]
[35]
Tiwary, S.; Hussain, M.S. Functional foods for prevention and treatment of cancer. Asian J. Pharm. Clin. Res., 2021, 14(3), 4-10.
[http://dx.doi.org/10.22159/ajpcr.2021.v14i3.40426]
[36]
Mir, R.H.; Wani, T.U.; Jan, R.; Shah, A.J.; Sabreen, S.; Mir, P.A.; Rasool, S.; Masoodi, M.H.; Bhat, Z.A. Nigella sativa as a therapeutic candidate for arthritis and related disorders. In: Black Seeds (Nigella Sativa); Elsevier, 2022; pp. 295-312.
[37]
Mohi-ud-din. R.; Chawla, A.; Sharma, P.; Mir, P.A.; Potoo, F.H.; Reiner, Ž.; Reiner, I.; Ateşşahin, D.A.; Sharifi-Rad, J.; Mir, R.H.; Calina, D. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects. Eur. J. Med. Res., 2023, 28(1), 345.
[http://dx.doi.org/10.1186/s40001-023-01275-4] [PMID: 37710280]
[38]
Eldin, A.B.; Ezzat, M.; Afifi, M.; Sabry, O.; Caprioli, G. Herbal medicine: The magic way crouching microbial resistance. Nat. Prod. Res., 2023, 1-10.
[http://dx.doi.org/10.1080/14786419.2023.2172009] [PMID: 36719419]
[39]
Hassan, R.; Masoodi, M.H. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6(1), 13-23.
[http://dx.doi.org/10.2174/2215083805666190626144909]
[40]
Hassan Mir, R.; Masoodi, M.H. Phytochemical screening and liquid chromatography-mass spectrometry studies of ethyl acetate extract of Origanum vulgare. Int. J. Pharm. Investig., 2020, 10(2), 132-135.
[http://dx.doi.org/10.5530/ijpi.2020.2.24]
[41]
Maqbool, M.; Shenmar, K.; Akther, A.; Mir, R.H.; Wali, A.F. Biochanin a chemistry, structural modifications, and therapeutic applications: An update. In: Bioprospecting of Tropical Medicinal Plants; Springer: Switzerland, 2023; pp. 789-805.
[42]
Braak, H.; Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging, 1997, 18(4), 351-357.
[http://dx.doi.org/10.1016/S0197-4580(97)00056-0] [PMID: 9330961]
[43]
Mir, R.H.; Sabreen, S. Isoflavones of soy: Chemistry and health benefits. In: Edible Plants in Health and Diseases; Springer: Singapore, 2022; 1, pp. 303-324.
[44]
Mohi-ud-din, R.H. Phytochemical and pharmacological properties of picrorhiza kurroa. In: Edible Plants in Health and Diseases; Springer: Singapore, 2022; II, pp. 399-423.
[45]
Mir, P.A.; Uppal, J.; Noor, A.; Dar, M.O.; Wali, A.F.; Ovais, S.; Mir, R.H. Recent advances of dihydropyrimidinone derivatives in cancer research. In: Dihydropyrimidinones as Potent Anticancer Agents; Elsevier, 2023; pp. 153-171.
[http://dx.doi.org/10.1016/B978-0-443-19094-0.00006-0]
[46]
Seidel, K.; Siswanto, S.; Brunt, E.R.P.; den Dunnen, W.; Korf, H.W.; Rüb, U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol., 2012, 124(1), 1-21.
[http://dx.doi.org/10.1007/s00401-012-1000-x] [PMID: 22684686]
[47]
Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; Jorm, A.; Mathers, C.; Menezes, P.R.; Rimmer, E.; Scazufca, M. Global prevalence of dementia: A Delphi consensus study. Lancet, 2005, 366(9503), 2112-2117.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[48]
Twelves, D.; Perkins, K.S.M.; Counsell, C. Systematic review of incidence studies of Parkinson’s disease. Mov. Disord., 2003, 18(1), 19-31.
[http://dx.doi.org/10.1002/mds.10305] [PMID: 12518297]
[49]
Liu, Z.; Ran, Y.; Huang, S.; Wen, S.; Zhang, W.; Liu, X.; Ji, Z.; Geng, X.; Ji, X.; Du, H.; Leak, R.K.; Hu, X. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front. Aging Neurosci., 2017, 9, 233.
[http://dx.doi.org/10.3389/fnagi.2017.00233] [PMID: 28785217]
[50]
Yohrling, G; Raimundo, K; Crowell, V; Lovecky, D; Vetter, L; Seeberger, L. Prevalence of Huntington’s disease in the US. Available from: HSG-2019-poster-yohrling-prevalence-of-huntington-s-disease-inthe-US.pdf
[51]
Sprenger, G.P.; Roos, R.A.C.; van Zwet, E.; Reijntjes, R.H.; Achterberg, W.P.; de Bot, S.T. The prevalence of pain in Huntington’s disease in a large worldwide cohort. Parkinsonism Relat. Disord., 2021, 89, 73-78.
[http://dx.doi.org/10.1016/j.parkreldis.2021.06.015] [PMID: 34243026]
[52]
Barrett, P.J.; Timothy Greenamyre, J. Post-translational modification of α-synuclein in Parkinsons disease. Brain Res., 2015, 1628(Pt B), 247-253.
[http://dx.doi.org/10.1016/j.brainres.2015.06.002] [PMID: 26080075]
[53]
Ravanidis, S.; Poulatsidou, K.N.; Lagoudaki, R.; Touloumi, O.; Polyzoidou, E.; Lourbopoulos, A.; Nousiopoulou, E.; Theotokis, P.; Kesidou, E.; Tsalikakis, D.; Karacostas, D.; Grigoriou, M.; Chlichlia, K.; Grigoriadis, N. Subcutaneous transplantation of neural precursor cells in experimental autoimmune encephalomyelitis reduces chemotactic signals in the central nervous system. Stem Cells Transl. Med., 2015, 4(12), 1450-1462.
[http://dx.doi.org/10.5966/sctm.2015-0068] [PMID: 26511651]
[54]
Savica, R.; Grossardt, B.R.; Bower, J.H.; Ahlskog, J.E.; Rocca, W.A. Time trends in the incidence of Parkinson disease. JAMA Neurol., 2016, 73(8), 981-989.
[http://dx.doi.org/10.1001/jamaneurol.2016.0947] [PMID: 27323276]
[55]
Singhal, A.; Bhatia, R.; Srivastava, M.V.P.; Prasad, K.; Singh, M.B. Multiple sclerosis in India: An institutional study. Mult. Scler. Relat. Disord., 2015, 4(3), 250-257.
[http://dx.doi.org/10.1016/j.msard.2015.03.002] [PMID: 26008942]
[56]
Thompson, A.J.; Chandraratna, D. Multiple sclerosis international federation: Stimulating International Cooperation in Research. Neurology, 2013, 81(20), 1793-1795.
[http://dx.doi.org/10.1212/01.wnl.0000435552.67953.c8] [PMID: 24218313]
[57]
Scalfari, A.; Neuhaus, A.; Daumer, M.; Muraro, P.A.; Ebers, G.C. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2014, 85(1), 67-75.
[http://dx.doi.org/10.1136/jnnp-2012-304333] [PMID: 23486991]
[58]
Lunde, H.M.B.; Assmus, J.; Myhr, K.M.; Bø, L.; Grytten, N. Survival and cause of death in multiple sclerosis: A 60-year longitudinal population study. J. Neurol. Neurosurg. Psychiatry, 2017, 88(8), 621-625.
[http://dx.doi.org/10.1136/jnnp-2016-315238] [PMID: 28365589]
[59]
Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet, 2011, 377(9769), 942-955.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[60]
Xu, L.; Liu, T.; Liu, L.; Yao, X.; Chen, L.; Fan, D.; Zhan, S.; Wang, S. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol., 2020, 267(4), 944-953.
[http://dx.doi.org/10.1007/s00415-019-09652-y] [PMID: 31797084]
[61]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M.Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[62]
Mortada, I.; Farah, R.; Nabha, S.; Ojcius, D.M.; Fares, Y.; Almawi, W.Y.; Sadier, N.S. Immunotherapies for neurodegenerative diseases. Front. Neurol., 2021, 12, 654739.
[http://dx.doi.org/10.3389/fneur.2021.654739] [PMID: 34163421]
[63]
Kumar, A.; Zhou, L.; Zhi, K.; Raji, B.; Pernell, S.; Tadrous, E.; Kodidela, S.; Nookala, A.; Kochat, H.; Kumar, S. Challenges in biomaterial-based drug delivery approach for the treatment of neurodegenerative diseases: Opportunities for extracellular vesicles. Int. J. Mol. Sci., 2020, 22(1), 138.
[http://dx.doi.org/10.3390/ijms22010138] [PMID: 33375558]
[64]
Monteiro, M.C.; Coleman, M.D.; Hill, E.J.; Prediger, R.D.; Maia, C.S.F. Neuroprotection in neurodegenerative disease: From basic science to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 1-3.
[http://dx.doi.org/10.1155/2017/2949102] [PMID: 28337247]
[65]
Safaei, M.; Taran, M. Optimal conditions for producing bactericidal sodium hyaluronate-TiO2 bionanocomposite and its characterization. Int. J. Biol. Macromol., 2017, 104(Pt A), 449-456.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.016] [PMID: 28619641]
[66]
Safaei, M.; Karimi, N.; Alavi, M.; Taran, M. Application of nanomaterial in nutrition and food sciences. J Adv Appl Sci Res., 2017, 1(12), 1-6.
[67]
Morigi, V.; Tocchio, A.; Bellavite Pellegrini, C.; Sakamoto, J.H.; Arnone, M.; Tasciotti, E. Nanotechnology in medicine: From inception to market domination. J. Drug Deliv., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/389485] [PMID: 22506121]
[68]
Shinji, S.; Yasukazu, T.; Hatsue, W.; Kazuo, K.; Machiko, I.; Naoki, M. Analysis of brain cell activation by nanosized particles of Ginkgo biloba extract. Int. J. Plant Physiol. Biochem., 2011, 3(3), 28-33.
[69]
Hussain, M.S. Nanotoxicology: Nano toxicity in humans; Academia Letters, 2021, p. 4331.
[70]
Kataria, T.; Hussain, S.; Kaur, G.; Deb, A. Emerging nanoparticles in the diagnosis of atherosclerosis. Int. J. Pharm. Sci. Rev. Res., 2021, 70(2), 46-57.
[http://dx.doi.org/10.47583/ijpsrr.2021.v70i02.008]
[71]
Hussain, M.S.; Sharma, P.; Dhanjal, D.S.; Khurana, N.; Vyas, M.; Sharma, N.; Mehta, M.; Tambuwala, M.M.; Satija, S.; Sohal, S.S.; Oliver, B.G.G.; Sharma, H.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem. Biol. Interact., 2021, 348, 109637.
[http://dx.doi.org/10.1016/j.cbi.2021.109637] [PMID: 34506765]
[72]
Vroegrijk, I.O.C.M.; van Diepen, J.A.; van den Berg, S.; Westbroek, I.; Keizer, H.; Gambelli, L.; Hontecillas, R.; Bassaganya-Riera, J.; Zondag, G.C.M.; Romijn, J.A.; Havekes, L.M.; Voshol, P.J. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem. Toxicol., 2011, 49(6), 1426-1430.
[http://dx.doi.org/10.1016/j.fct.2011.03.037] [PMID: 21440024]
[73]
Hussain, M.S.; Mohit, K.G.; Pamma, P. Overview of controlled drug delivery system. Adv. Biores., 2021, 12(3), 248-255.
[74]
Upadhyay, RK Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014, 869269.
[75]
Khatri, H.; Hussain, M.S. Tyagi, S Solubility enhancement techniques: An overview. World J. Pharm. Res., 2022, 11(05), 468-482.
[76]
Mizrahi, M.; Friedman-Levi, Y.; Larush, L.; Frid, K.; Binyamin, O.; Dori, D.; Fainstein, N.; Ovadia, H.; Ben-Hur, T.; Magdassi, S.; Gabizon, R. Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: The case of genetic CJD. Nanomedicine, 2014, 10(6), 1353-1363.
[http://dx.doi.org/10.1016/j.nano.2014.03.015] [PMID: 24704590]
[77]
Gabizon, R.; Mizrahi, M.; Friedman-Levy, Y.; Larush, L.; Frid, K.; Binyamin, O.; Feinstein, N.; Dori, D.; Ovadia, H.; Ben-Hur, T.; Magdassi, S. Novel pomegranate oil nano-emulsions for the prevention and treatment of neurodegenerative diseases: The case of genetic CJD. Prion, 2014, 8, 131.
[78]
Alam, S.; Mustafa, G.; Khan, Z.I.; Islam, F.; Bhatnagar, A.; Ahmad, F. Kumar, Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study. Int. J. Nanomedicine, 2012, 7, 5705-5718.
[http://dx.doi.org/10.2147/IJN.S35329] [PMID: 23180965]
[79]
Ismail, N.; Ismail, M.; Azmi, N.H.; Bakar, M.F.A.; Yida, Z.; Stanslas, J.; Sani, D.; Basri, H.; Abdullah, M.A. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rats. Chem. Biol. Interact., 2017, 275, 61-73.
[http://dx.doi.org/10.1016/j.cbi.2017.07.014] [PMID: 28734741]
[80]
Rosenstock, T.R. Lysine (K)-deacetylase inhibitors: The real next step to neuropsychiatric and neurodegenerative disorders. Cell Biol., 2013, 2, 8.
[81]
Zang, C.X.; Bao, X.Q.; Li, L.; Yang, H.Y.; Wang, L.; Yu, Y.; Wang, X.L.; Yao, X.S.; Zhang, D. The protective effects of Gardenia jasminoides (Fructus Gardenia) on amyloid-β-induced mouse cognitive impairment and neurotoxicity. Am. J. Chin. Med., 2018, 46(2), 389-405.
[http://dx.doi.org/10.1142/S0192415X18500192] [PMID: 29433392]
[82]
Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Lee, H.; Shin, H.M.; Oh, S.R.; Kim, H. Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int. J. Biol. Macromol., 2017, 97, 598-605.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.080] [PMID: 28109809]
[83]
Zanforlin, E.; Zagotto, G.; Ribaudo, G. The medicinal chemistry of natural and semisynthetic compounds against Parkinson’s and Huntington’s diseases. ACS Chem. Neurosci., 2017, 8(11), 2356-2368.
[http://dx.doi.org/10.1021/acschemneuro.7b00283] [PMID: 28862431]
[84]
Kaufmann, D.; Kaur Dogra, A.; Tahrani, A.; Herrmann, F.; Wink, M. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules, 2016, 21(9), 1161.
[http://dx.doi.org/10.3390/molecules21091161] [PMID: 27589716]
[85]
Javaid, N.; Shah, M.A.; Rasul, A.; Chauhdary, Z.; Saleem, U.; Khan, H.; Ahmed, N.; Uddin, M.S.; Mathew, B.; Behl, T.; Blundell, R. Neuroprotective effects of Ellagic acid in Alzheimer’s disease: Focus on underlying molecular mechanisms of therapeutic potential. Curr. Pharm. Des., 2021, 27(34), 3591-3601.
[http://dx.doi.org/10.2174/18734286MTExnNDYgx] [PMID: 33183192]
[86]
Jing, Y.; Yang, D.X.; Wang, W.; Yuan, F.; Chen, H.; Ding, J.; Geng, Z.; Tian, H.L. Aloin protects against blood-brain barrier damage after traumatic brain injury in mice. Neurosci. Bull., 2020, 36(6), 625-638.
[http://dx.doi.org/10.1007/s12264-020-00471-0] [PMID: 32100248]
[87]
Abdul Manap, A.S.; Vijayabalan, S.; Madhavan, P.; Chia, Y.Y.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S. Bacopa monnieri, a neuroprotective lead in Alzheimer disease: A review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights, 2019, 13, 1177392819866412.
[http://dx.doi.org/10.1177/1177392819866412] [PMID: 31391778]
[88]
Kang, Y.S.; Risbud, S.; Rabolt, J.F.; Stroeve, P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater., 1996, 8(9), 2209-2211.
[http://dx.doi.org/10.1021/cm960157j]
[89]
Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. Nanoscale, 2018, 10(36), 16962-16983.
[http://dx.doi.org/10.1039/C8NR04073G] [PMID: 30182106]
[90]
Zheng, W.; Wei, M.; Li, S.; Le, W. Nanomaterial-modulated autophagy: Underlying mechanisms and functional consequences. Nanomedicine, 2016, 11(11), 1417-1430.
[http://dx.doi.org/10.2217/nnm-2016-0040] [PMID: 27193191]
[91]
Hu, C.M.J.; Kaushal, S.; Cao, H.S.T.; Aryal, S.; Sartor, M.; Esener, S.; Bouvet, M.; Zhang, L. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol. Pharm., 2010, 7(3), 914-920.
[http://dx.doi.org/10.1021/mp900316a] [PMID: 20394436]
[92]
Mottaghitalab, F.; Farokhi, M.; Fatahi, Y.; Atyabi, F.; Dinarvand, R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J. Control. Release, 2019, 295, 250-267.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.009] [PMID: 30639691]
[93]
Sancini, G.; Gregori, M.; Salvati, E.; Cambianica, I.; Re, F.; Ornaghi, F.; Canovi, M.; Fracasso, C.; Cagnotto, A.; Colombo, M.; Zona, C. Functionalization with TAT-peptide enhances blood-brain barrier crossing in vitro of nanoliposomes carrying a curcumin-derivative to bind amyloid-β peptide. J. Nanomed. Nanotechnol., 2013, 4(3), 1-8.
[94]
Vedagiri, A.; Thangarajan, S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides, 2016, 58, 111-125.
[http://dx.doi.org/10.1016/j.npep.2016.03.002] [PMID: 27021394]
[95]
Wang, Z.H.; Wang, Z.Y.; Sun, C.S.; Wang, C.Y.; Jiang, T.Y.; Wang, S.L. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials, 2010, 31(5), 908-915.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.104] [PMID: 19853292]
[96]
Zhou, X.; Sun, J.; Yin, T.; Le, F.; Yang, L.; Liu, Y.; Liu, J. Enantiomers of cysteine-modified SeNPs (D / L SeNPs) as inhibitors of metal-induced Aβ aggregation in Alzheimer’s disease. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7764-7774.
[http://dx.doi.org/10.1039/C5TB00731C] [PMID: 32264585]
[97]
Romero, G.B.; Keck, C.M.; Müller, R.H. Simple low-cost miniaturization approach for pharmaceutical nanocrystals production. Int. J. Pharm., 2016, 501(1-2), 236-244.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.047] [PMID: 26642945]
[98]
kheradmand, E.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed. Pharmacother., 2018, 97, 1096-1101.
[http://dx.doi.org/10.1016/j.biopha.2017.11.047] [PMID: 29136946]
[99]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[100]
Maden, M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat. Rev. Neurosci., 2007, 8(10), 755-765.
[http://dx.doi.org/10.1038/nrn2212] [PMID: 17882253]
[101]
Lohan, S.; Raza, K.; Mehta, S.K.; Bhatti, G.K.; Saini, S.; Singh, B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm., 2017, 530(1-2), 263-278.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.080] [PMID: 28774853]
[102]
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater., 2015, 25, 172-183.
[http://dx.doi.org/10.1016/j.actbio.2015.06.035] [PMID: 26143603]
[103]
Yang, X.; Zheng, T.; Hong, H.; Cai, N.; Zhou, X.; Sun, C.; Wu, L.; Liu, S.; Zhao, Y.; Zhu, L.; Fan, M.; Zhou, X.; Jin, F. Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen–glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model. Front. Med., 2018, 12(3), 307-318.
[http://dx.doi.org/10.1007/s11684-017-0547-2] [PMID: 29058254]
[104]
Luo, Y. Ginkgo biloba neuroprotection: Therapeutic implications in Alzheimer’s disease. J. Alzheimers Dis., 2001, 3(4), 401-407.
[http://dx.doi.org/10.3233/JAD-2001-3407] [PMID: 12214044]
[105]
Jin, Y.; Wen, J.; Garg, S. Zhang; Teng LR; Liu; Zhou, Development of a novel niosomal system for oral delivery of Ginkgo biloba extract. Int. J. Nanomedicine, 2013, 8, 421-430.
[http://dx.doi.org/10.2147/IJN.S37984] [PMID: 23378764]
[106]
Sekhar, V.C.; Viswanathan, G.; Baby, S. Insights into the molecular aspects of neuroprotective bacoside A and bacopaside I. Curr. Neuropharmacol., 2019, 17(5), 438-446.
[http://dx.doi.org/10.2174/1570159X16666180419123022] [PMID: 29676230]
[107]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[108]
Mir, R.H.; Masoodi, M.H.; Shah, A.J.; Mohi-ud-din, R.; Sabreen, S.; Wani, T.U.; Jan, R.; Javed, M.N.; Mir, P.A. Clinical biomarkers and novel drug targets to cut gordian knots of alzheimer’s disease. Curr. Mol. Pharmacol., 2023, 16(3), 254-279.
[http://dx.doi.org/10.2174/1874467215666220903095837] [PMID: 36056834]
[109]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/1875533XMTA4aNzUBx] [PMID: 32744957]
[110]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[111]
Mohi-ud-din, R.; Lone, N.A.; Malik, T.A.; Sharma, R.R.; Mir, R.H.; Abdullah, T.S.; Singh, I.P.; Bhat, Z.A. Bioactivity guided isolation and characterization of anti-hepatotoxic markers from Berberis pachyacantha Koehne. Pharmacol. Res. -.Modern Chinese Med., 2022, 4, 100144.
[http://dx.doi.org/10.1016/j.prmcm.2022.100144]
[112]
Mir, R.H.; Mohi-ud-din, R.; Mir, P.A.; Shah, A.J.; Banday, N.; Sabreen, S.; Maqbool, M.; Jan, R.; Shafi, N.; Masoodi, M.H. Curcumin as a privileged scaffold molecule for various biological targets in drug development. Stud. Nat. Prod. Chem., 2022, 73, 405-434.
[http://dx.doi.org/10.1016/B978-0-323-91097-2.00010-8]
[113]
Mohi-Ud-Din, R.; Mir, R.H.; Sabreen, S.; Jan, R.; Pottoo, F.H.; Singh, I.P. Recent insights into therapeutic potential of plant-derived flavonoids against cancer. Anticancer. Agents Med. Chem., 2022, 22(20), 3343-3369.
[http://dx.doi.org/10.2174/1871520622666220421094055]
[114]
Mohi-ud-din. R.; Mir, R.H.; Banday, N.; Sabreen, S.; Shah, A.J.; Jan, R.; Wani, T.U.; Farooq, S.; Bhat, Z.A. Resveratrol: A potential drug candidate with multispectrum therapeutic application. Stud. Nat. Prod. Chem., 2022, 73, 99-137.
[http://dx.doi.org/10.1016/B978-0-323-91097-2.00009-1]
[115]
Mohi-ud-din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Masoodi, M.H.; Singh, I.P.; Bhat, Z.A. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus berberis linn: A comprehensive review. Comb. Chem. High Throughput Screen., 2021, 24(5), 624-644.
[http://dx.doi.org/10.2174/1386207323999201102141206] [PMID: 33143603]
[116]
Wani, S.U.; Ali, M.; Masoodi, M.H.; Khan, N.A.; Zargar, M.I.; Hassan, R.; Mir, S.A.; Gautam, S.P.; Gangadharappa, H.V.; Osmani, R.A. A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vib. Spectrosc., 2022, 121, 103407.
[http://dx.doi.org/10.1016/j.vibspec.2022.103407]
[117]
Mir, P.A.; Mohi-Ud-Din, R.; Banday, N.; Maqbool, M.; Raza, S.N.; Farooq, S.; Afzal, S.; Mir, R.H. Anticancer potential of thymoquinone: A novel bioactive natural compound from nigella sativa L. Anticancer. Agents Med. Chem., 2022, 22(20), 3401-3415.
[118]
Ratheesh, G.; Tian, L.; Venugopal, J.R.; Ezhilarasu, H.; Sadiq, A.; Fan, T.P.; Ramakrishna, S. Role of medicinal plants in neurodegenerative diseases. Biomanufact. Rev., 2017, 2(1), 2.
[http://dx.doi.org/10.1007/s40898-017-0004-7]
[119]
Mishra, A.; Mishra, P.S.; Bandopadhyay, R.; Khurana, N.; Angelopoulou, E.; Paudel, Y.N.; Piperi, C. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders. Molecules, 2021, 26(21), 6456.
[http://dx.doi.org/10.3390/molecules26216456] [PMID: 34770864]
[120]
Yang, X.; Zhang, Y.; Xu, H.; Luo, X.; Yu, J.; Liu, J.; Chuen-Chung, R. Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr. Top. Med. Chem., 2015, 16(8), 858-866.
[http://dx.doi.org/10.2174/1568026615666150827095252] [PMID: 26311425]
[121]
Markoutsa, E.; Xu, P. Redox potential-sensitive N-acetyl cysteine-prodrug nanoparticles inhibit the activation of microglia and improve neuronal survival. Mol. Pharm., 2017, 14(5), 1591-1600.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01028] [PMID: 28335600]
[122]
Mizuno, Y. Recent research progress in and future perspective on treatment of Parkinson’s disease. Integr. Med. Int., 2015, 1(2), 67-79.
[http://dx.doi.org/10.1159/000365571]
[123]
Tizabi, Y.; Hurley, L.; Qualls, Z.; Akinfiresoye, L. Relevance of the anti-inflammatory properties of curcumin in neurodegenerative diseases and depression. Molecules, 2014, 19(12), 20864-20879.
[http://dx.doi.org/10.3390/molecules191220864] [PMID: 25514226]
[124]
Cavaleri, F. Review of Amyotrophic Lateral Sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med. Hypotheses, 2015, 85(6), 779-790.
[http://dx.doi.org/10.1016/j.mehy.2015.10.009] [PMID: 26604027]
[125]
Lu, J.H.; Ardah, M.T.; Durairajan, S.S.K.; Liu, L.F.; Xie, L.X.; Fong, W.F.D.; Hasan, M.Y.; Huang, J.D.; El-Agnaf, O.M.A.; Li, M. Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents Aβ peptide fibrillation and oligomerisation. ChemBioChem, 2011, 12(4), 615-624.
[http://dx.doi.org/10.1002/cbic.201000604] [PMID: 21271629]
[126]
Ramezani, M.; Darbandi, N.; Khodagholi, F.; Hashemi, A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural Regen. Res., 2016, 11(12), 1976-1980.
[http://dx.doi.org/10.4103/1673-5374.197141] [PMID: 28197195]
[127]
Priprem, A.; Watanatorn, J.; Sutthiparinyanont, S.; Phachonpai, W.; Muchimapura, S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine, 2008, 4(1), 70-78.
[http://dx.doi.org/10.1016/j.nano.2007.12.001] [PMID: 18249157]
[128]
Tang, Y.; Huang, D.; Zhang, M.H.; Zhang, W.S.; Tang, Y.X.; Shi, Z.X.; Deng, L.; Zhou, D.H.; Lu, X.Y. Salvianolic acid B inhibits Aβ generation by modulating BACE1 activity in SH-SY5Y-APPsw cells. Nutrients, 2016, 8(6), 333.
[http://dx.doi.org/10.3390/nu8060333] [PMID: 27258307]
[129]
Ghaffari, F.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of parkinson disease: Biochemical and behavioral evidence. Basic Clin. Neurosci., 2018, 9(5), 317-324.
[http://dx.doi.org/10.32598/bcn.9.5.317] [PMID: 30719246]
[130]
Min, J.B.; Kim, E.S.; Lee, J.S.; Lee, H.G. Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles. Food Sci. Biotechnol., 2017, 27(2), 441-450.
[http://dx.doi.org/10.1007/s10068-017-0272-2] [PMID: 30263768]
[131]
Etman, S.M.; Elnaggar, Y.S.R.; Abdelmonsif, D.A.; Abdallah, O.Y. Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer’s disease therapy: In vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech, 2018, 19(8), 3698-3711.
[http://dx.doi.org/10.1208/s12249-018-1180-3] [PMID: 30238305]
[132]
Mohammad-Beigi, H.; Morshedi, D.; Shojaosadati, S.A.; Pedersen, J.N.; Marvian, A.T.; Aliakbari, F.; Christiansen, G.; Pedersen, J.S.; Otzen, D.E. Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes α-synuclein in the unfolded conformation and inhibits aggregation. RSC Advances, 2016, 6(88), 85312-85323.
[http://dx.doi.org/10.1039/C6RA08502D]
[133]
Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J., 2015, 15(1), 60.
[http://dx.doi.org/10.1186/s12937-016-0179-4] [PMID: 27268025]
[134]
Hassanzadeh, P.; Arbabi, E.; Atyabi, F.; Dinarvand, R. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries. Life Sci., 2018, 193, 64-76.
[http://dx.doi.org/10.1016/j.lfs.2017.11.046] [PMID: 29196052]
[135]
Dolati, S.; Babaloo, Z.; Ayromlou, H.; Ahmadi, M.; Rikhtegar, R.; Rostamzadeh, D.; Roshangar, L.; Nouri, M.; Mehdizadeh, A.; Younesi, V.; Yousefi, M. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J. Neuroimmunol., 2019, 327, 15-21.
[http://dx.doi.org/10.1016/j.jneuroim.2019.01.007] [PMID: 30683426]
[136]
Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438.
[http://dx.doi.org/10.1007/s13311-018-0606-7] [PMID: 29352425]
[137]
Samudre, S.; Tekade, A.; Thorve, K.; Jamodkar, A.; Parashar, G.; Chaudhari, N. Xanthan gum coated mucoadhesive liposomes for efficient nose to brain delivery of curcumin. Drug Deliv. Lett., 2016, 5(3), 201-207.
[http://dx.doi.org/10.2174/2210303106666160120215857]
[138]
Yancheva, S.; Ihl, R.; Nikolova, G.; Panayotov, P.; Schlaefke, S.; Hoerr, R. Ginkgo biloba extract EGb 761®, donepezil or both combined in the treatment of Alzheimer’s disease with neuropsychiatric features: A randomised, double-blind, exploratory trial. Aging Ment. Health, 2009, 13(2), 183-190.
[http://dx.doi.org/10.1080/13607860902749057] [PMID: 19347685]
[139]
Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol., 2011, 10(9), 819-828.
[http://dx.doi.org/10.1016/S1474-4422(11)70072-2] [PMID: 21775213]
[140]
Youn, K.; Jun, M. Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients, 2019, 11(3), 662.
[http://dx.doi.org/10.3390/nu11030662] [PMID: 30893825]
[141]
James, S.; Aparna, J.S.; Paul, A.M.; Lankadasari, M.B.; Mohammed, S.; Binu, V.S.; Santhoshkumar, T.R.; Reshmi, G.; Harikumar, K.B. Cardamonin inhibits colonic neoplasia through modulation of MicroRNA expression. Sci. Rep., 2017, 7(1), 13945.
[http://dx.doi.org/10.1038/s41598-017-14253-8] [PMID: 29066742]
[142]
Cao, G.; Su, P.; Zhang, S.; Guo, L.; Zhang, H.; Liang, Y.; Qin, C.; Zhang, W. Ginsenoside Re reduces Aβ production by activating PPARγ to inhibit BACE1 in N2a/APP695 cells. Eur. J. Pharmacol., 2016, 793, 101-108.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.006] [PMID: 27840193]
[143]
Gutierrez Alvarez, A.; Yachelevich, N.; Kohn, B.; Brar, P.C. Genotype - phenotype correlation in an adolescent girl with pathogenic PPARy genetic variation that caused severe hypertriglyceridemia and early onset type 2 diabetes. Ann. Pediatr. Endocrinol. Metab., 2021, 26(4), 284-289.
[http://dx.doi.org/10.6065/apem.2142056.028] [PMID: 34991302]
[144]
Descamps, O.; Spilman, P.; Zhang, Q.; Libeu, C.P.; Poksay, K.; Gorostiza, O.; Campagna, J.; Jagodzinska, B.; Bredesen, D.E.; John, V. AβPP-selective BACE inhibitors (ASBI): Novel class of therapeutic agents for alzheimer’s disease. J. Alzheimers Dis., 2013, 37(2), 343-355.
[http://dx.doi.org/10.3233/JAD-130578] [PMID: 23948888]
[145]
Lindsay, C.B.; Zolezzi, J.M.; Rivera, D.S.; Cisternas, P.; Bozinovic, F.; Inestrosa, N.C. Andrographolide reduces neuroinflammation and oxidative stress in aged Octodon degus. Mol. Neurobiol., 2020, 57(2), 1131-1145.
[http://dx.doi.org/10.1007/s12035-019-01784-6] [PMID: 31701436]
[146]
Serrano, F.G.; Tapia-Rojas, C.; Carvajal, F.J.; Hancke, J.; Cerpa, W.; Inestrosa, N.C. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol. Neurodegener., 2014, 9(1), 61.
[http://dx.doi.org/10.1186/1750-1326-9-61] [PMID: 25524173]
[147]
Abedi, Z.; Basri, H.; Hassan, Z.; Mat, L.N.I.; Khaza’ai, H.; Mohamad, N.A. A review of the neuroprotective effects of andrographolide in Alzheimer’s disease. Adv. Trad. Med., 2021, 21(2), 253-266.
[http://dx.doi.org/10.1007/s13596-021-00573-8]
[148]
Khan, S.U.; Malik, F.; Hamza, B.; Mir, R.H.; Fatima, K. Lavender plant: Farming and health benefits. Curr. Mol. Med., 2023, 23.
[http://dx.doi.org/10.2174/1566524023666230518114027] [PMID: 37202896]
[149]
Van Dyke, M.W. Lysine deacetylase (KDAC) regulatory pathways: An alternative approach to selective modulation. ChemMedChem, 2014, 9(3), 511-522.
[http://dx.doi.org/10.1002/cmdc.201300444] [PMID: 24449617]
[150]
Kwatra, B.; Hussain, M.S.; Bhowmik, R.; Manoharan, S. Reviewing therapeutic and immuno-pathological applications of vitamins and carotenoids. Int. J. Sci. Res. Sci. Technol., 2020, 7(4), 287-313.
[http://dx.doi.org/10.32628/IJSRST207473]
[151]
Mohi-ud-din, R.; Mir, R.H.; Pottoo, F.H.; Sawhney, G.; Masoodi, M.H.; Bhat, Z.A. Nanophytomedicine ethical issues, regulatory aspects, and challenges. In: Nanophytomedicine; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-4909-0_10]
[152]
Guedes-Dias, P.; Oliveira, J.M.A. Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(8), 1345-1359.
[http://dx.doi.org/10.1016/j.bbadis.2013.04.005] [PMID: 23579074]
[153]
Doolaanea, A.A.; Mansor, N.I.; Mohd Nor, N.H.; Mohamed, F. Co-encapsulation of Nigella sativa oil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. J. Microencapsul., 2016, 33(2), 114-126.
[http://dx.doi.org/10.3109/02652048.2015.1134689] [PMID: 26982435]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy