Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Mini-Review Article

Modulation of Plant MicroRNA Expression: Its Potential Usability in Wheat (Triticum aestivum L.) Improvement

Author(s): Louie Cris Lopos, Urbashi Panthi, Igor Kovalchuk and Andriy Bilichak*

Volume 24, Issue 4, 2023

Published on: 24 October, 2023

Page: [197 - 206] Pages: 10

DOI: 10.2174/0113892029264886231016050547

Price: $65

Abstract

Wheat, a crucial crop for the pursuit of food security, is faced with a plateauing yield projected to fall short of meeting the demands of the exponentially increasing human population. To raise global wheat productivity levels, strong efforts must be made to overcome the problems of (1) climate change-induced heat and drought stress and (2) the genotype-dependent amenability of wheat to tissue culture, which limits the success of recovering genetically engineered plants, especially in elite cultivars. Unfortunately, the mainstream approach of genetically engineering plant protein-coding genes may not be effective in solving these problems as it is difficult to map, annotate, functionally verify, and modulate all existing homeologs and paralogs within wheat’s large, complex, allohexaploid genome. Additionally, the quantitative, multi-genic nature of most agronomically important traits furthers the complications faced by this approach. miRNAs are small, noncoding RNAs (sncRNAs) that repress gene expression at the post-transcriptional level, regulating various aspects of plant growth and development. They are gaining popularity as alternative targets of genetic engineering efforts for crop improvement due to their (1) highly conserved nature, which facilitates reasonable prediction of their gene targets and phenotypic effects under different expression levels, and (2) the capacity to target multiple genes simultaneously, making them suitable for enhancing complex and multigenic agronomic traits. In this mini-review, we will discuss the biogenesis, manipulation, and potential applications of plant miRNAs in improving wheat’s yield, somatic embryogenesis, thermotolerance, and drought-tolerance in response to the problems of plateauing yield, genotype-dependent amenability to tissue culture, and susceptibility to climate change-induced heat and drought stress.

Next »
Graphical Abstract

[1]
Grafton, R.Q.; Daugbjerg, C.; Qureshi, M.E. Towards food security by 2050. Food Secur., 2015, 7(2), 179-183.
[http://dx.doi.org/10.1007/s12571-015-0445-x]
[2]
Hawkesford, M.J.; Araus, J.L.; Park, R.; Calderini, D.; Miralles, D.; Shen, T.; Zhang, J.; Parry, M.A.J. Prospects of doubling global wheat yields. Food Energy Secur., 2013, 2(1), 34-48.
[http://dx.doi.org/10.1002/fes3.15]
[3]
Jaggi, V.; Sahgal, M. Biotic Constraints to Wheat Production in Tropics: Microbial Control Strategies and Mechanism; Springer: Singapore, 2021, pp. 177-201.
[4]
Shewry, P. What is gluten—why is it special? Front. Nutr., 2019, 6, 101.
[http://dx.doi.org/10.3389/fnut.2019.00101] [PMID: 31334243]
[5]
Chand, R.C.R. Challenges to ensuring food security through wheat; CABI, 2009, pp. 1-13.
[6]
Ali, N.; Mujeeb-Kazi, A. Food production: Global challenges to mitigate climate change.Physiological, Molecular, and Genetic Perspectives of Wheat Improvement; Wani, S.H. Mohan, A; Singh, G.P., Ed.; Springer International Publishing: Cham, 2021, pp. 1-13.
[http://dx.doi.org/10.1007/978-3-030-59577-7_1]
[7]
Shrawat, A.K.; Armstrong, C.L. Development and application of genetic engineering for wheat improvement. Crit. Rev. Plant Sci., 2018, 37(5), 335-421.
[http://dx.doi.org/10.1080/07352689.2018.1514718]
[8]
Hayta, S.; Smedley, M.A.; Demir, S.U.; Blundell, R.; Hinchliffe, A.; Atkinson, N.; Harwood, W.A. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 2019, 15(1), 121.
[http://dx.doi.org/10.1186/s13007-019-0503-z] [PMID: 31673278]
[9]
Debernardi, J.M.; Tricoli, D.M.; Ercoli, M.F.; Hayta, S.; Ronald, P.; Palatnik, J.F.; Dubcovsky, J. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol., 2020, 38(11), 1274-1279.
[http://dx.doi.org/10.1038/s41587-020-0703-0] [PMID: 33046875]
[10]
Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; Klymiuk, V.; Byrns, B.; Gundlach, H.; Bandi, V.; Siri, J.N.; Nilsen, K.; Aquino, C.; Himmelbach, A.; Copetti, D.; Ban, T.; Venturini, L.; Bevan, M.; Clavijo, B.; Koo, D.H.; Ens, J.; Wiebe, K.; N’Diaye, A.; Fritz, A.K.; Gutwin, C.; Fiebig, A.; Fosker, C.; Fu, B.X.; Accinelli, G.G.; Gardner, K.A.; Fradgley, N.; Gutierrez-Gonzalez, J.; Halstead-Nussloch, G.; Hatakeyama, M.; Koh, C.S.; Deek, J.; Costamagna, A.C.; Fobert, P.; Heavens, D.; Kanamori, H.; Kawaura, K.; Kobayashi, F.; Krasileva, K.; Kuo, T.; McKenzie, N.; Murata, K.; Nabeka, Y.; Paape, T.; Padmarasu, S.; Percival-Alwyn, L.; Kagale, S.; Scholz, U.; Sese, J.; Juliana, P.; Singh, R.; Shimizu-Inatsugi, R.; Swarbreck, D.; Cockram, J.; Budak, H.; Tameshige, T.; Tanaka, T.; Tsuji, H.; Wright, J.; Wu, J.; Steuernagel, B.; Small, I.; Cloutier, S.; Keeble-Gagnère, G.; Muehlbauer, G.; Tibbets, J.; Nasuda, S.; Melonek, J.; Hucl, P.J.; Sharpe, A.G.; Clark, M.; Legg, E.; Bharti, A.; Langridge, P.; Hall, A.; Uauy, C.; Mascher, M.; Krattinger, S.G.; Handa, H.; Shimizu, K.K.; Distelfeld, A.; Chalmers, K.; Keller, B.; Mayer, K.F.X.; Poland, J.; Stein, N.; McCartney, C.A.; Spannagl, M.; Wicker, T.; Pozniak, C.J. Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588(7837), 277-283.
[http://dx.doi.org/10.1038/s41586-020-2961-x] [PMID: 33239791]
[11]
Jones-Rhoades, M.W.; Bartel, D.P.; Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol., 2006, 57(1), 19-53.
[http://dx.doi.org/10.1146/annurev.arplant.57.032905.105218] [PMID: 16669754]
[12]
Zhou, M.; Luo, H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol. Biol., 2013, 83(1-2), 59-75.
[http://dx.doi.org/10.1007/s11103-013-0089-1] [PMID: 23771582]
[13]
Šečić, E.; Kogel, K.H.; Ladera-Carmona, M.J. Biotic stress-associated microRNA families in plants. J. Plant Physiol., 2021, 263, 153451.
[http://dx.doi.org/10.1016/j.jplph.2021.153451] [PMID: 34119743]
[14]
Chauhan, S.; Yogindran, S.; Rajam, M.V. Role of miRNAs in biotic stress reactions in plants. Indian J. Plant. Physiol., 2017, 22(4), 514-529.
[http://dx.doi.org/10.1007/s40502-017-0347-3]
[15]
Achkar, N.P.; Cambiagno, D.A.; Manavella, P.A. miRNA biogenesis: A dynamic pathway. Trends Plant Sci., 2016, 21(12), 1034-1044.
[http://dx.doi.org/10.1016/j.tplants.2016.09.003] [PMID: 27793495]
[16]
Mencia, R.; Gonzalo, L.; Tossolini, I.; Manavella, P.A. Keeping up with the miRNAs: Current paradigms of the biogenesis pathway. J. Exp. Bot., 2023, 74(7), 2213-2227.
[http://dx.doi.org/10.1093/jxb/erac322] [PMID: 35959860]
[17]
Gao, Z.; Nie, J.; Wang, H. MicroRNA biogenesis in plant. Plant Growth Regul., 2021, 93(1), 1-12.
[http://dx.doi.org/10.1007/s10725-020-00654-9]
[18]
Wang, J.; Mei, J.; Ren, G. Plant microRNAs: Biogenesis, homeostasis, and degradation. Front. Plant Sci., 2019, 10, 360.
[http://dx.doi.org/10.3389/fpls.2019.00360] [PMID: 30972093]
[19]
Armenta-Medina, A.; Gillmor, C.S. An introduction to methods for discovery and functional analysis of MicroRNAs in plants.Plant MicroRNAs: Methods and Protocols; de Folter, S. Ed; Springer New York: New York, NY, 2019, pp. 1-14.
[http://dx.doi.org/10.1007/978-1-4939-9042-9_1]
[20]
Wang, X.; Wang, Y.; Dou, Y.; Chen, L.; Wang, J.; Jiang, N.; Guo, C.; Yao, Q.; Wang, C.; Liu, L.; Yu, B.; Zheng, B.; Chekanova, J.A.; Ma, J.; Ren, G. Degradation of unmethylated miRNA/miRNA*s by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis. Proc. Natl. Acad. Sci., 2018, 115(28), E6659-E6667.
[http://dx.doi.org/10.1073/pnas.1721917115] [PMID: 29941559]
[21]
Park, M.Y.; Wu, G.; Gonzalez-Sulser, A.; Vaucheret, H.; Poethig, R.S. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci., 2005, 102(10), 3691-3696.
[http://dx.doi.org/10.1073/pnas.0405570102] [PMID: 15738428]
[22]
Cambiagno, D.A.; Giudicatti, A.J.; Arce, A.L.; Gagliardi, D.; Li, L.; Yuan, W.; Lundberg, D.S.; Weigel, D.; Manavella, P.A. HASTY modulates miRNA biogenesis by linking pri-miRNA transcription and processing. Mol. Plant, 2021, 14(3), 426-439.
[http://dx.doi.org/10.1016/j.molp.2020.12.019] [PMID: 33385584]
[23]
Bologna, N.G.; Iselin, R.; Abriata, L.A.; Sarazin, A.; Pumplin, N.; Jay, F.; Grentzinger, T.; Dal Peraro, M.; Voinnet, O. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant MicroRNA pathway. Mol. Cell, 2018, 69(4), 709-719.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.01.007] [PMID: 29398448]
[24]
Tomassi, A.H.; Re, D.A.; Romani, F.; Cambiagno, D.A.; Gonzalo, L.; Moreno, J.E.; Arce, A.L.; Manavella, P.A. The intrinsically disordered protein CARP9 bridges HYL1 to AGO1 in the nucleus to promote MicroRNA activity. Plant Physiol., 2020, 184(1), 316-329.
[http://dx.doi.org/10.1104/pp.20.00258] [PMID: 32636339]
[25]
Zhang, B.; You, C.; Zhang, Y.; Zeng, L.; Hu, J.; Zhao, M.; Chen, X. Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat. Plants, 2020, 6(8), 957-969.
[http://dx.doi.org/10.1038/s41477-020-0726-z] [PMID: 32690891]
[26]
Budak, H.; Akpinar, B.A. Plant miRNAs: Biogenesis, organization and origins. Funct. Integr. Genomics, 2015, 15(5), 523-531.
[http://dx.doi.org/10.1007/s10142-015-0451-2] [PMID: 26113396]
[27]
Sablok, G.; Pérez-Quintero, Á.L.; Hassan, M.; Tatarinova, T.V.; López, C. Artificial microRNAs (amiRNAs) engineering: On how microRNA-based silencing methods have affected current plant silencing research. Biochem. Biophys. Res. Commun., 2011, 406(3), 315-319.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.045] [PMID: 21329663]
[28]
Fahlgren, N.; Hill, S.T.; Carrington, J.C.; Carbonell, A. P-SAMS: A web site for plant artificial microRNA and synthetic trans -acting small interfering RNA design. Bioinformatics, 2016, 32(1), 157-158.
[http://dx.doi.org/10.1093/bioinformatics/btv534] [PMID: 26382195]
[29]
Mickiewicz, A.; Rybarczyk, A.; Sarzynska, J.; Figlerowicz, M.; Blazewicz, J. AmiRNA Designer: New method of artificial miRNA design. Acta Biochim. Pol., 2016, 63(1), 71-77.
[http://dx.doi.org/10.18388/abp.2015_989] [PMID: 26784022]
[30]
Eamens, A.L.; Wang, M.B. Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana. Plant Signal. Behav., 2011, 6(3), 349-359.
[http://dx.doi.org/10.4161/psb.6.3.14340] [PMID: 21358288]
[31]
Franco-Zorrilla, J.M.; Valli, A.; Todesco, M.; Mateos, I.; Puga, M.I.; Rubio-Somoza, I.; Leyva, A.; Weigel, D.; García, J.A.; Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet., 2007, 39(8), 1033-1037.
[http://dx.doi.org/10.1038/ng2079] [PMID: 17643101]
[32]
Tiwari, M.; Sharma, D.; Trivedi, P.K. Artificial microRNA mediated gene silencing in plants: Progress and perspectives. Plant Mol. Biol., 2014, 86(1-2), 1-18.
[http://dx.doi.org/10.1007/s11103-014-0224-7] [PMID: 25022825]
[33]
Eamens, A.L.; Agius, C.; Smith, N.A.; Waterhouse, P.M.; Wang, M.B. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Mol. Plant, 2011, 4(1), 157-170.
[http://dx.doi.org/10.1093/mp/ssq061] [PMID: 20943811]
[34]
Delporte, F.; Pretova, A.; du Jardin, P.; Watillon, B. Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma, 2014, 251(6), 1455-1470.
[http://dx.doi.org/10.1007/s00709-014-0647-7] [PMID: 24763701]
[35]
Siddiqui, Z.H.; Abbas, Z.K.; Ansari, M.W.; Khan, M.N. The role of miRNA in somatic embryogenesis. Genomics, 2019, 111(5), 1026-1033.
[http://dx.doi.org/10.1016/j.ygeno.2018.11.022] [PMID: 30476555]
[36]
Jin, L; Yarra, R; Zhou, L; Zhao, Z; Cao, H. miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3 Biotech, 2020, 10(11), 495.
[37]
Zhang, S.; Zhou, J.; Han, S.; Yang, W.; Li, W.; Wei, H.; Li, X.; Qi, L. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem. Biophys. Res. Commun., 2010, 398(3), 355-360.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.056] [PMID: 20599742]
[38]
Luo, Y.C.; Zhou, H.; Li, Y.; Chen, J.Y.; Yang, J.H.; Chen, Y.Q.; Qu, L.H. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett., 2006, 580(21), 5111-5116.
[http://dx.doi.org/10.1016/j.febslet.2006.08.046] [PMID: 16959252]
[39]
Qin, Z; Li, J; Zhang, Y; Xiao, Y; Zhang, X; Zhong, L Genomewide identification of microRNAs involved in the somatic embryogenesis of Eucalyptus. G3 Genes|Genomes|Genetics., 2021, 11(4)
[40]
Sabana, A.A.; Rajesh, M.K.; Antony, G. Dynamic changes in the expression pattern of miRNAs and associated target genes during coconut somatic embryogenesis. Planta, 2020, 251(4), 79.
[http://dx.doi.org/10.1007/s00425-020-03368-4] [PMID: 32166498]
[41]
Szyrajew, K.; Bielewicz, D.; Dolata, J.; Wójcik, A.M.; Nowak, K.; Szczygieł-Sommer, A.; Szweykowska-Kulinska, Z.; Jarmolowski, A.; Gaj, M.D. MicroRNAs are intensively regulated during induction of somatic embryogenesis in arabidopsis. Front. Plant Sci., 2017, 8, 18.
[http://dx.doi.org/10.3389/fpls.2017.00018] [PMID: 28167951]
[42]
Shen, Y.; Jiang, Z.; Lu, S.; Lin, H.; Gao, S.; Peng, H.; Yuan, G.; Liu, L.; Zhang, Z.; Zhao, M.; Rong, T.; Pan, G. Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem. Biophys. Res. Commun., 2013, 441(2), 425-430.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.113] [PMID: 24183719]
[43]
Yang, X.; Wang, L.; Yuan, D.; Lindsey, K.; Zhang, X. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J. Exp. Bot., 2013, 64(6), 1521-1536.
[http://dx.doi.org/10.1093/jxb/ert013] [PMID: 23382553]
[44]
Wu, X.M.; Liu, M.Y.; Ge, X.X.; Xu, Q.; Guo, W.W. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta, 2011, 233(3), 495-505.
[http://dx.doi.org/10.1007/s00425-010-1312-9] [PMID: 21103993]
[45]
Shi, Q.F.; Long, J.M.; Yin, Z.P.; Jiang, N.; Feng, M.Q.; Zheng, B.; Guo, W.W.; Wu, X.M. miR171 modulates induction of somatic embryogenesis in citrus callus. Plant Cell Rep., 2022, 41(6), 1403-1415.
[http://dx.doi.org/10.1007/s00299-022-02865-y] [PMID: 35381869]
[46]
Long, J.M.; Liu, C.Y.; Feng, M.Q.; Liu, Y.; Wu, X.M.; Guo, W.W. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J. Exp. Bot., 2018, 69(12), 2979-2993.
[http://dx.doi.org/10.1093/jxb/ery132] [PMID: 29659948]
[47]
Su, Y.H.; Liu, Y.B.; Zhou, C.; Li, X.M.; Zhang, X.S. The microRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant Cell Tissue Organ Cult., 2016, 124(2), 405-417. [PCTOC]
[http://dx.doi.org/10.1007/s11240-015-0903-3]
[48]
Yao, Y.; Guo, G.; Ni, Z.; Sunkar, R.; Du, J.; Zhu, J.K.; Sun, Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol., 2007, 8(6), R96.
[http://dx.doi.org/10.1186/gb-2007-8-6-r96] [PMID: 17543110]
[49]
Paul, M.J.; Nuccio, M.L.; Basu, S.S.; Are, G.M. Are GM crops for yield and resilience possible? Trends Plant Sci., 2018, 23(1), 10-16.
[http://dx.doi.org/10.1016/j.tplants.2017.09.007] [PMID: 28969999]
[50]
Zhang, J.P.; Yu, Y.; Feng, Y.Z.; Zhou, Y.F.; Zhang, F.; Yang, Y.W.; Lei, M.Q.; Zhang, Y.C.; Chen, Y.Q. MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol., 2017, 175(3), 1175-1185.
[http://dx.doi.org/10.1104/pp.17.01169] [PMID: 28904074]
[51]
Song, Z.; Zhang, L.; Wang, Y.; Li, H.; Li, S.; Zhao, H.; Zhang, H. Constitutive expression of miR408 improves biomass and seed yield in arabidopsis. Front. Plant Sci., 2018, 8, 2114.
[http://dx.doi.org/10.3389/fpls.2017.02114] [PMID: 29422907]
[52]
Zhao, XY; Hong, P; Wu, JY; Chen, XB; Ye, XG; Pan, YY The tae-miR408-mediated control of tatoc1 genes transcription is required for the regulation of heading time in wheat. plant physiology, 2016, 170(3), 1578-1594.
[53]
Zhang, Y.C.; Yu, Y.; Wang, C.Y.; Li, Z.Y.; Liu, Q.; Xu, J.; Liao, J.Y.; Wang, X.J.; Qu, L.H.; Chen, F.; Xin, P.; Yan, C.; Chu, J.; Li, H.Q.; Chen, Y.Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol., 2013, 31(9), 848-852.
[http://dx.doi.org/10.1038/nbt.2646] [PMID: 23873084]
[54]
Gupta, O.P.; Meena, N.L.; Sharma, I.; Sharma, P. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol. Biol. Rep., 2014, 41(7), 4623-4629.
[http://dx.doi.org/10.1007/s11033-014-3333-0] [PMID: 24682922]
[55]
Gao, F.; Wang, K.; Liu, Y.; Chen, Y.; Chen, P.; Shi, Z.; Luo, J.; Jiang, D.; Fan, F.; Zhu, Y.; Li, S. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants, 2015, 2(1), 15196.
[http://dx.doi.org/10.1038/nplants.2015.196] [PMID: 27250748]
[56]
Li, T.; Ma, L.; Geng, Y.; Hao, C.; Chen, X.; Zhang, X. Small RNA and degradome sequencing reveal complex roles of miRNAs and their targets in developing wheat grains. PLoS One, 2015, 10(10), e0139658.
[http://dx.doi.org/10.1371/journal.pone.0139658] [PMID: 26426440]
[57]
Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci., 2011, 30(6), 491-507.
[http://dx.doi.org/10.1080/07352689.2011.615687]
[58]
Kumar, R.R.; Rai, R.D. Can wheat beat the heat: Understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.). Cereal Res. Commun., 2014, 42(1), 1-18.
[http://dx.doi.org/10.1556/CRC.42.2014.1.1]
[59]
Ding, Y.; Huang, L.; Jiang, Q.; Zhu, C. MicroRNAs as important regulators of heat stress responses in plants. J. Agric. Food Chem., 2020, 68(41), 11320-11326.
[http://dx.doi.org/10.1021/acs.jafc.0c03597] [PMID: 32870674]
[60]
Kumar, R.R.; Pathak, H.; Sharma, S.K.; Kala, Y.K.; Nirjal, M.K.; Singh, G.P.; Goswami, S.; Rai, R.D. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct. Integr. Genomics, 2015, 15(3), 323-348.
[http://dx.doi.org/10.1007/s10142-014-0421-0] [PMID: 25480755]
[61]
Ravichandran, S.; Ragupathy, R.; Edwards, T.; Domaratzki, M.; Cloutier, S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics, 2019, 20(1), 488.
[http://dx.doi.org/10.1186/s12864-019-5799-6] [PMID: 31195958]
[62]
Stief, A.; Altmann, S.; Hoffmann, K.; Pant, B.D.; Scheible, W.R.; Bäurle, I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell, 2014, 26(4), 1792-1807.
[http://dx.doi.org/10.1105/tpc.114.123851] [PMID: 24769482]
[63]
Matthews, C.; Arshad, M.; Hannoufa, A. Alfalfa response to heat stress is modulated by microRNA156. Physiol. Plant., 2019, 165(4), 830-842.
[http://dx.doi.org/10.1111/ppl.12787] [PMID: 29923601]
[64]
Guan, Q.; Lu, X.; Zeng, H.; Zhang, Y.; Zhu, J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J., 2013, 74(5), 840-851.
[http://dx.doi.org/10.1111/tpj.12169] [PMID: 23480361]
[65]
Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS One, 2016, 11(5), e0156362.
[http://dx.doi.org/10.1371/journal.pone.0156362] [PMID: 27223810]
[66]
Ding, J.; Huang, Z.; Zhu, M.; Li, C.; Zhu, X.; Guo, W. Does cyclic water stress damage wheat yield more than a single stress? PLoS One, 2018, 13(4), e0195535.
[http://dx.doi.org/10.1371/journal.pone.0195535] [PMID: 29630647]
[67]
Hajyzadeh, M.; Turktas, M.; Khawar, K.M.; Unver, T. miR408 overexpression causes increased drought tolerance in chickpea. Gene, 2015, 555(2), 186-193.
[http://dx.doi.org/10.1016/j.gene.2014.11.002] [PMID: 25445265]
[68]
Mishra, S.; Sahu, G.; Shaw, B.P. Integrative small RNA and transcriptome analysis provides insight into key role of miR408 towards drought tolerance response in cowpea. Plant Cell Rep., 2022, 41(1), 75-94.
[http://dx.doi.org/10.1007/s00299-021-02783-5] [PMID: 34570259]
[69]
Hang, N.; Shi, T.; Liu, Y.; Ye, W.; Taier, G.; Sun, Y.; Wang, K.; Zhang, W. Overexpression of OS‐MICRORNA408 enhances drought tolerance in perennial ryegrass. Physiol. Plant., 2021, 172(2), 733-747.
[http://dx.doi.org/10.1111/ppl.13276] [PMID: 33215699]
[70]
Mutum, R.D.; Balyan, S.C.; Kansal, S.; Agarwal, P.; Kumar, S.; Kumar, M.; Raghuvanshi, S. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J., 2013, 280(7), 1717-1730.
[http://dx.doi.org/10.1111/febs.12186] [PMID: 23399101]
[71]
Balyan, S.; Kumar, M.; Mutum, R.D.; Raghuvanshi, U.; Agarwal, P.; Mathur, S.; Raghuvanshi, S. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Sci. Rep., 2017, 7(1), 15446.
[http://dx.doi.org/10.1038/s41598-017-15450-1] [PMID: 29133823]
[72]
Ghorecha, V.; Patel, K.; Ingle, S.; Sunkar, R.; Krishnayya, N.S.R. Analysis of biochemical variations and microRNA expression in wild (Ipomoea campanulata) and cultivated (Jacquemontia pentantha) species exposed to in vivo water stress. Physiol. Mol. Biol. Plants, 2014, 20(1), 57-67.
[http://dx.doi.org/10.1007/s12298-013-0207-1] [PMID: 24554839]
[73]
Ban, Q.; Liu, G.; Wang, Y. A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J. Plant Physiol., 2011, 168(5), 449-458.
[http://dx.doi.org/10.1016/j.jplph.2010.08.013] [PMID: 20951468]
[74]
Cai, Y.; Li, Y.; Liang, G. FIT and BHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis. Plant Cell Environ., 2021, 44(5), 1679-1691.
[http://dx.doi.org/10.1111/pce.14000] [PMID: 33464620]
[75]
Akdogan, G.; Tufekci, E.D.; Uranbey, S.; Unver, T. miRNA-based drought regulation in wheat. Funct. Integr. Genomics, 2016, 16(3), 221-233.
[http://dx.doi.org/10.1007/s10142-015-0452-1] [PMID: 26141043]
[76]
Bakhshi, B.; Fard, E.M.; Gharechahi, J.; Safarzadeh, M.; Nikpay, N.; Fotovat, R.; Azimi, M.R.; Salekdeh, G.H. The contrasting microRNA content of a drought tolerant and a drought susceptible wheat cultivar. J. Plant Physiol., 2017, 216, 35-43.
[http://dx.doi.org/10.1016/j.jplph.2017.05.012] [PMID: 28575745]
[77]
Yadav, A.; Kumar, S.; Verma, R.; Narayan, S.; Jatan, R.; Lata, C.; Rai, S.P.; Shirke, P.A.; Sanyal, I. Overexpression of PGPR responsive chickpea miRNA166 targeting ATHB15 for drought stress mitigation. Plant Cell Tissue Organ Cult., 2023, 154(2), 381-398. [PCTOC]
[http://dx.doi.org/10.1007/s11240-023-02458-x]
[78]
Zhang, J.; Zhang, H.; Srivastava, A.K.; Pan, Y.; Bai, J.; Fang, J.; Shi, H.; Zhu, J.K. Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol., 2018, 176(3), 2082-2094.
[http://dx.doi.org/10.1104/pp.17.01432] [PMID: 29367235]
[79]
Shi, G.; Fu, J.; Rong, L.; Zhang, P.; Guo, C.; Xiao, K. TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance. J. Integr. Agric., 2018, 17(11), 2369-2378.
[http://dx.doi.org/10.1016/S2095-3119(17)61879-3]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy