Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and Biological Evaluation of Some Novel Retinoid Derivatives

Author(s): Dilan Konyar*, Egemen Foto, Fatma Zilifdar Foto and Mehmet Erdem Buyukbingol

Volume 21, Issue 14, 2024

Published on: 20 October, 2023

Page: [2926 - 2938] Pages: 13

DOI: 10.2174/0115701808243556231017055256

Price: $65

Abstract

Background: As cancer stands as a significant global health concern, many heterocyclic compounds that are more effective in cancer cells than healthy cells are being investigated for their selective anticancer potentials. One such compound is fenretinide, a synthetic derivative of retinoic acid that has a broad spectrum of cytotoxic activity against primary tumor cells, cell lines, and/or xenografts of various cancers. In this context, bexarotene and its derivatives, synthesized from hybridization of the fenretinide, are expected to possess a potential anticancer activity.

Objective: The objective of the present study was to investigate the synthesis of novel amid-derived and bexarotene-based compounds, as well as to assess their cytotoxic effects in different cancer cell lines. Methods: This study involved the synthesis of twelve novel retinoid derivatives (6-17) in a six-step process. The cytotoxic activities of these compounds were assessed against various cancer cell lines, such as A549 (human lung carcinoma), HeLa (human cervical cancer), MCF7 (human breast adenocarcinoma), and WiDr (human colon adenocarcinoma). The chemical structures of these compounds were elucidated through their elemental analysis, mass spectrometry (ESI+, ESI-), as well as 1H-NMR and 13C-NMR spectroscopic data.

Results: The obtained cell toxicity results indicated that compounds 6, 8, 11, 12, 13, 14, and 17 were found to exhibit the strongest cytotoxic activity in above mentioned cancer cell lines. The IC50 values for active compounds, 11 and 12, were determined as 2.38μM and 2.29μM, respectively. Remarkably, these compounds displayed higher cytotoxic activity in the WiDr cell line related to positive control, camptothecin (CPT). Moreover, compounds 14 and 17 demonstrated very similar level of cytotoxic activity to CPT, indicating their potential for antitumoral applications upon further studies.

Conclusion: While compounds 11, 12, 14, and 17 indicated a very comparable anticancer activity to CPT, compounds 6, 8, 11 and 12 showed more selective anticancer effect against cancer cells than noncancerous cells. In accordance with the findings of the present study, they can be evaluated as primary candidates for further studies, specifically as RXRα-targeted anticancer agents.

[1]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Motamedi, M.; Chehade, A.; Sanghera, R.; Grewal, P. A clinician’s guide to topical retinoids. J. Cutan. Med. Surg., 2022, 26(1), 71-78.
[http://dx.doi.org/10.1177/12034754211035091] [PMID: 34292058]
[3]
Sanz, M.J.; Albertos, F.; Otero, E.; Juez, M.; Morcillo, E.J.; Piqueras, L. Retinoid X receptor agonists impair arterial mononuclear cell recruitment through peroxisome proliferator-activated receptor-γ activation. J. Immunol., 2012, 189(1), 411-424.
[http://dx.doi.org/10.4049/jimmunol.1102942] [PMID: 22661092]
[4]
Germain, P.; Chambon, P.; Eichele, G.; Evans, R.M.; Lazar, M.A.; Leid, M.; De Lera, A.R.; Lotan, R.; Mangelsdorf, D.J.; Gronemeyer, H. International union of pharmacology. LX. Retinoic acid receptors. Pharmacol. Rev., 2006, 58(4), 712-725.
[http://dx.doi.org/10.1124/pr.58.4.4] [PMID: 17132850]
[5]
Cazzaniga, M.; Varricchio, C.; Montefrancesco, C.; Feroce, I.; Guerrieri-Gonzaga, A. Fenretinide (4-HPR): a preventive chance for women at genetic and familial risk? J. Biomed. Biotechnol., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/172897] [PMID: 22500077]
[6]
de Lera, A.R.; Bourguet, W.; Altucci, L.; Gronemeyer, H. Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat. Rev. Drug Discov., 2007, 6(10), 811-820.
[http://dx.doi.org/10.1038/nrd2398] [PMID: 17906643]
[7]
Gudas, L.J.; Tang, X.H.; Kwame, O.; Survalek, A. Combination therapy for head and neck cancer. U. S. Patent PCT/US2015/019528, March 09, 2015.
[8]
Tang, X.H.; Osei-Sarfo, K.; Urvalek, A.M.; Zhang, T.; Scognamiglio, T.; Gudas, L.J. Combination of bexarotene and the retinoid CD1530 reduces murine oral-cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide. Proc. Natl. Acad. Sci. USA, 2014, 111(24), 8907-8912.
[http://dx.doi.org/10.1073/pnas.1404828111] [PMID: 24927566]
[9]
Wagner, C.E.; Jurutka, P.W.; Marshall, P.A.; Groy, T.L.; van der Vaart, A.; Ziller, J.W.; Furmick, J.K.; Graeber, M.E.; Matro, E.; Miguel, B.V.; Tran, I.T.; Kwon, J.; Tedeschi, J.N.; Moosavi, S.; Danishyar, A.; Philp, J.S.; Khamees, R.O.; Jackson, J.N.; Grupe, D.K.; Badshah, S.L.; Hart, J.W. Modeling, synthesis and biological evaluation of potential retinoid X receptor (RXR) selective agonists: novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). J. Med. Chem., 2009, 52(19), 5950-5966.
[http://dx.doi.org/10.1021/jm900496b] [PMID: 19791803]
[10]
Kelloff, G.J.; Crowell, J.A.; Boone, C.W.; Steele, V.E.; Lubet, R.A.; Greenwald, P.; Alberts, D.S.; Covey, J.M.; Doody, L.A.; Knapp, G.G.; Nayfield, S.; Parkinson, D.R.; Prasad, V.K.; Prorok, P.C.; Sausville, E.A.; Sigman, C.C. Chemoprevention Branch and Agent Development Committee. National Cancer Institute. Strategy and planning for chemopreventive drug development: Clinical development plans. J. Cell. Biochem., 1994, 56(S20), 55-62.
[http://dx.doi.org/10.1002/jcb.240560906] [PMID: 7616753]
[11]
Cobleigh, M.A.; Dowlatshahi, K.; Deutsch, T.A.; Mehta, R.G.; Moon, R.C.; Minn, F.; Benson, A.B., III; Rademaker, A.W.; Ashenhurst, J.B.; Wade, J.L. III Phase I/II trial of tamoxifen with or without fenretinide, an analog of vitamin A, in women with metastatic breast cancer. J. Clin. Oncol., 1993, 11(3), 474-477.
[http://dx.doi.org/10.1200/JCO.1993.11.3.474] [PMID: 8445423]
[12]
Modiano, M.R.; Dalton, W.S.; Lippman, S.M.; Joffe, L.; Booth, A.R.; Meyskens, F.L. Jr Phase II study of Fenretinide (N-[4-Hydroxyphenyl]retinamide) in advanced breast cancer and melanoma. Invest. New Drugs, 1990, 8(3), 317-319.
[http://dx.doi.org/10.1007/BF00171846] [PMID: 2148744]
[13]
Ulukaya, E.; Pirianov, G.; Kurt, M.A.; Wood, E.J.; Mehmet, H. Fenretinide induces cytochrome c release, caspase 9 activation and apoptosis in the absence of mitochondrial membrane depolarisation. Cell Death Differ., 2003, 10(7), 856-859.
[http://dx.doi.org/10.1038/sj.cdd.4401242] [PMID: 12815470]
[14]
Simeone, A.M.; Ekmekcioglu, S.; Broemeling, L.D.; Grimm, E.A.; Tari, A.M. A novel mechanism by which N-(4-hydroxyphenyl) retinamide inhibits breast cancer cell growth: the production of nitric oxide. Mol. Cancer Ther., 2002, 1(12), 1009-1017.
[PMID: 12481423]
[15]
Ohlmann, C.H.; Jung, C.; Jaques, G. Is growth inhibition and induction of apoptosis in lung cancer cell lines by fenretinide [N-(4-hydroxyphenyl)retinamide] sufficient for cancer therapy? Int. J. Cancer, 2002, 100(5), 520-526.
[http://dx.doi.org/10.1002/ijc.10525] [PMID: 12124800]
[16]
Appierto, V.; Tiberio, P.; Villani, M.G.; Cavadini, E.; Formelli, F. PLAB induction in fenretinide-induced apoptosis of ovarian cancer cells occurs via a ROS-dependent mechanism involving ER stress and JNK activation. Carcinogenesis, 2009, 30(5), 824-831.
[http://dx.doi.org/10.1093/carcin/bgp067] [PMID: 19325135]
[17]
Messner, M.C.; Cabot, M.C. Cytotoxic responses to N-(4-hydroxyphenyl)retinamide in human pancreatic cancer cells. Cancer Chemother. Pharmacol., 2011, 68(2), 477-487.
[http://dx.doi.org/10.1007/s00280-010-1504-9] [PMID: 21072519]
[18]
Li, X.; Ling, W.; Pennisi, A.; Khan, S.; Yaccoby, S. Fenretinide inhibits myeloma cell growth, osteoclastogenesis and osteoclast viability. Cancer Lett., 2009, 284(2), 175-181.
[http://dx.doi.org/10.1016/j.canlet.2009.04.022] [PMID: 19446953]
[19]
Reynolds, C.P.; Matthay, K.K.; Villablanca, J.G.; Maurer, B.J. Retinoid therapy of high-risk neuroblastoma. Cancer Lett., 2003, 197(1-2), 185-192.
[http://dx.doi.org/10.1016/S0304-3835(03)00108-3] [PMID: 12880980]
[20]
Claudio Viegas-Junior,; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[21]
Boehm, M.F.; Heyman, R.A. Compounds having selective activity for retinoid x receptors, and means for modulation of processes mediated by retinoid X receptors. European Patent EP0678087B1, March 17,, 1999.
[22]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[23]
Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst. Excip. Relat. Methodol., 2021, 46, 273-307.
[http://dx.doi.org/10.1016/bs.podrm.2020.07.005] [PMID: 33461699]
[24]
Dobrotkova, V.; Chlapek, P.; Mazanek, P.; Sterba, J.; Veselska, R. Traffic lights for retinoids in oncology: molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer, 2018, 18(1), 1059.
[http://dx.doi.org/10.1186/s12885-018-4966-5] [PMID: 30384831]
[25]
Li, Y.; Zhang, Y.; Hill, J.; Shen, Q.; Kim, H.T.; Xu, X.; Hilsenbeck, S.G.; Bissonnette, R.P.; Lamph, W.W.; Brown, P.H. The Rexinoid LG100268 prevents the development of preinvasive and invasive estrogen receptor negative tumors in MMTV-erbB2 mice. Clin. Cancer Res., 2007, 13(20), 6224-6231.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2681] [PMID: 17947490]
[26]
Cao, M.; Royce, D.B.; Risingsong, R.; Williams, C.R.; Sporn, M.B.; Liby, K.T. The Rexinoids LG100268 and LG101506 Inhibit Inflammation and Suppress Lung Carcinogenesis in A/J Mice. Cancer Prev. Res. (Phila.), 2016, 9(1), 105-114.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0325] [PMID: 26554632]
[27]
Moerland, J.A.; Zhang, D.; Reich, L.A.; Carapellucci, S.; Lockwood, B.; Leal, A.S.; Krieger-Burke, T.; Aleiwi, B.; Ellsworth, E.; Liby, K.T. The novel rexinoid MSU-42011 is effective for the treatment of preclinical Kras-driven lung cancer. Sci. Rep., 2020, 10(1), 22244.
[http://dx.doi.org/10.1038/s41598-020-79260-8] [PMID: 33335263]
[28]
Hacioglu, C.; Kar, F.; Kacar, S.; Sahinturk, V.; Kanbak, G. Bexarotene inhibits cell proliferation by inducing oxidative stress, DNA damage and apoptosis via PPARγ/NF-κB signaling pathway in C6 glioma cells. Med. Oncol., 2021, 38(3), 31.
[http://dx.doi.org/10.1007/s12032-021-01476-z] [PMID: 33599853]
[29]
Keepers, Y.P.; Pizao, P.E.; Peters, G.J.; van Ark-Otte, J.; Winograd, B.; Pinedo, H.M. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur. J. Cancer Clin. Oncol., 1991, 27(7), 897-900.
[http://dx.doi.org/10.1016/0277-5379(91)90142-Z] [PMID: 1834124]
[30]
Balaraman, S.; Nayak, N.; Subbiah, M.; Elango, K.P. Synthesis and antiviral study of novel 4-(2-(6-amino-4-oxo-4,5-dihydro-1H-pyrrolo[2,3-d]pyrimidin-3-yl)ethyl)benzamide derivatives. Med. Chem. Res., 2018, 27(11-12), 2538-2546.
[http://dx.doi.org/10.1007/s00044-018-2256-z]
[31]
Gujarati, N.A.; Zeng, L.; Gupta, P.; Chen, Z.S.; Korlipara, V.L. Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(20), 4698-4704.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.009] [PMID: 28916341]
[32]
Kaur, A.; Pathak, D.P.; Sharma, V.; Narasimhan, B.; Sharma, P.; Mathur, R.; Wakode, S. Synthesis, biological evaluation and docking study of N-(2-(3,4,5-trimethoxybenzyl)benzoxazole-5-yl) benzamide derivatives as selective COX-2 inhibitor and anti-inflammatory agents. Bioorg. Chem., 2018, 81, 191-202.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.007] [PMID: 30138907]
[33]
Lu, K.; Cai, L.; Zhang, X.; Wu, G.; Xu, C.; Zhao, Y.; Gong, P. Design, synthesis, and biological evaluation of novel substituted benzamide derivatives bearing a 1,2,3-triazole moiety as potent human dihydroorotate dehydrogenase inhibitors. Bioorg. Chem., 2018, 76, 528-537.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.025] [PMID: 29316525]
[34]
Perin, N.; Roškarić, P.; Sović, I.; Boček, I.; Starčević, K.; Hranjec, M.; Vianello, R. Amino-substituted benzamide derivatives as promising antioxidant agents: A combined experimental and computational study. Chem. Res. Toxicol., 2018, 31(9), 974-984.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00175] [PMID: 30109922]
[35]
Thirumurugan, K.; Lakshmanan, S.; Govindaraj, D.; Daniel Prabu, D.S.; Ramalakshmi, N.; Arul Antony, S. Design, synthesis and anti-inflammatory activity of pyrimidine scaffold benzamide derivatives as epidermal growth factor receptor tyrosine kinase inhibitors. J. Mol. Struct., 2018, 1171, 541-550.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.003]
[36]
Vandyck, K.; Rombouts, G.; Stoops, B.; Tahri, A.; Vos, A.; Verschueren, W.; Wu, Y.; Yang, J.; Hou, F.; Huang, B.; Vergauwen, K.; Dehertogh, P.; Berke, J.M.; Raboisson, P. Synthesis and Evaluation of N -Phenyl-3-sulfamoyl-benzamide Derivatives as Capsid Assembly Modulators Inhibiting Hepatitis B Virus (HBV). J. Med. Chem., 2018, 61(14), 6247-6260.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00654] [PMID: 29906396]
[37]
Wei, M.; Peng, X.; Xing, L.; Dai, Y.; Huang, R.; Geng, M.; Zhang, A.; Ai, J.; Song, Z. Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-1-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur. J. Med. Chem., 2018, 154, 9-28.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.005] [PMID: 29775937]
[38]
Arno, M.C.; Simpson, J.D.; Blackman, L.D.; Brannigan, R.P.; Thurecht, K.J.; Dove, A.P. Enhanced drug delivery to cancer cells through a pH-sensitive polycarbonate platform. Biomater. Sci., 2023, 11(3), 908-915.
[http://dx.doi.org/10.1039/D2BM01626E] [PMID: 36533676]
[39]
Istivan, T.S.; Pirogova, E.; Gan, E.; Almansour, N.M.; Coloe, P.J.; Cosic, I. Biological effects of a de novo designed myxoma virus peptide analogue: evaluation of cytotoxicity on tumor cells. PLoS One, 2011, 6(9)e24809
[http://dx.doi.org/10.1371/journal.pone.0024809] [PMID: 21949758]
[40]
Rath, K.S.; Naidu, S.K.; Lata, P.; Bid, H.K.; Rivera, B.K.; McCann, G.A.; Tierney, B.J.; ElNaggar, A.C.; Bravo, V.; Leone, G.; Houghton, P.; Hideg, K.; Kuppusamy, P.; Cohn, D.E.; Selvendiran, K. HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. Cancer Res., 2014, 74(8), 2316-2327.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2433] [PMID: 24590057]
[41]
Okada, J.; Sunaga, N.; Yamada, E.; Saito, T.; Ozawa, A.; Nakajima, Y.; Okada, K.; Pessin, J.E.; Okada, S.; Yamada, M. FAM83G is a novel inducer of apoptosis. Molecules, 2020, 25(12), 2810.
[http://dx.doi.org/10.3390/molecules25122810] [PMID: 32570757]
[42]
Hardman, J.G.; Limbird, L.E., The Pharmacological Basis of Therapeutics, 10th ed; McGraw-Hill: New York, 2001.
[43]
Koch, A.; Tamez, P.; Pezzuto, J.; Soejarto, D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J. Ethnopharmacol., 2005, 101(1-3), 95-99.
[http://dx.doi.org/10.1016/j.jep.2005.03.011] [PMID: 15878245]

© 2024 Bentham Science Publishers | Privacy Policy