Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

A Review of Proposed Mechanisms in Rheumatoid Arthritis and Therapeutic Strategies for the Disease

Author(s): Rupali Mohite and Gaurav Doshi*

Volume 24, Issue 3, 2024

Published on: 20 October, 2023

Page: [291 - 301] Pages: 11

DOI: 10.2174/0118715303250834230923234802

Price: $65

Abstract

Rheumatoid arthritis (RA) is characterized by synovial edema, inflammation, bone and cartilage loss, and joint degradation. Patients experience swelling, stiffness, pain, limited joint movement, and decreased mobility as the condition worsens. RA treatment regimens often come with various side effects, including an increased risk of developing cancer and organ failure, potentially leading to mortality. However, researchers have proposed mechanistic hypotheses to explain the underlying causes of synovitis and joint damage in RA patients. This review article focuses on the role of synoviocytes and synoviocytes resembling fibroblasts in the RA synovium. Additionally, it explores the involvement of epigenetic regulatory systems, such as microRNA pathways, silent information regulator 1 (SIRT1), Peroxisome proliferatoractivated receptor-gamma coactivator (PGC1-α), and protein phosphatase 1A (PPM1A)/high mobility group box 1 (HMGB1) regulators. These mechanisms are believed to modulate the function of receptors, cytokines, and growth factors associated with RA. The review article includes data from preclinical and clinical trials that provide insights into potential treatment options for RA.

Graphical Abstract

[1]
Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun., 2020, 110, 102400.
[http://dx.doi.org/10.1016/j.jaut.2019.102400] [PMID: 31980337]
[2]
Miller, D.R. Treatment options for rheumatoid arthritis. Drug Top., 1999, 143(9), 53-62.
[3]
Abbasi, M.; Mousavi, M.J.; Jamalzehi, S.; Alimohammadi, R.; Bezvan, M.H.; Mohammadi, H.; Aslani, S. Strategies toward rheumatoid arthritis therapy : The old and the new. J. Cell. Physiol., 2019, 234(7), 10018-10031.
[http://dx.doi.org/10.1002/jcp.27860] [PMID: 30536757]
[4]
Giannini, D.; Antonucci, M.; Petrelli, F.; Bilia, S.; Alunno, A.; Puxeddu, I. One year in review 2020: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol., 2020, 38(3), 387-397.
[http://dx.doi.org/10.55563/clinexprheumatol/3uj1ng] [PMID: 32324123]
[5]
Köhler, B.M.; Günther, J.; Kaudewitz, D.; Lorenz, H.M. Current therapeutic options in the treatment of rheumatoid arthritis. J. Clin. Med., 2019, 8(7), 938.
[http://dx.doi.org/10.3390/jcm8070938] [PMID: 31261785]
[6]
Synoviocytes F like, Yoshitomi H. Regulation of immune responses and fibroblast-like synovi-cytes. Front. Immunol., 2019, 10, 1395.
[7]
Garner, R.; Ding, T.; Deighton, C. Management of rheumatoid arthritis. Medicine, 2014, 42(5), 237-242.
[PMID: 24857552]
[8]
Okada, Y.; Eyre, S.; Suzuki, A.; Kochi, Y.; Yamamoto, K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis., 2019, 78(4), 446-453.
[http://dx.doi.org/10.1136/annrheumdis-2018-213678] [PMID: 30530827]
[9]
Ogata, A.; Kato, Y.; Higa, S.; Yoshizaki, K. IL-6 inhibitor for the treatment of rheumatoid arthritis: A comprehensive review. Mod. Rheumatol., 2019, 29(2), 258-267.
[http://dx.doi.org/10.1080/14397595.2018.1546357] [PMID: 30427250]
[10]
Harrington, R.; Al Nokhatha, S.A.; Conway, R. Jak inhibitors in rheumatoid arthritis: An evidence-based review on the emerging clinical data. J. Inflamm. Res., 2020, 13, 519-531.
[http://dx.doi.org/10.2147/JIR.S219586] [PMID: 32982367]
[11]
Fonseca, LJS; Da; Nunes-Souza, V.; Goulart, MOF; Rabelo, L.A. Oxidative stress in rheumatoid arthritis: What the future might hold regarding novel biomarkers and add-on therapies. Oxid. Med. Cell. Longev., 2019, 2019, 7536805.
[12]
Philippou, E.; Petersson, S.D.; Rodomar, C.; Nikiphorou, E. Rheumatoid arthritis and dietary interventions: Systematic review of clinical trials. Nutr. Rev., 2021, 79(4), 410-428.
[http://dx.doi.org/10.1093/nutrit/nuaa033] [PMID: 32585000]
[13]
Lwin, M.N.; Serhal, L.; Holroyd, C.; Edwards, C.J. Rheumatoid arthritis: The impact of mental health on disease: A narrative review. Rheumatol. Ther., 2020, 7(3), 457-471.
[http://dx.doi.org/10.1007/s40744-020-00217-4] [PMID: 32535834]
[14]
Fang, Q.; Zhou, C.; Nandakumar, K.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/3830212] [PMID: 32256192]
[15]
Pope, J.E.; Choy, E.H. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin. Arthritis Rheum., 2021, 51(1), 219-229.
[http://dx.doi.org/10.1016/j.semarthrit.2020.11.005] [PMID: 33385862]
[16]
Patel, JP; Kumar, N; Srinivasa, K; Gande, A; Anusha, M; Dar, H The role of biologics in rheumatoid arthritis: A narrative review. Cureus, 2023, 15(1), e33293.
[http://dx.doi.org/10.7759/cureus.33293]
[17]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Miller, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[18]
Zamanpoor, M. The genetic pathogenesis, diagnosis and therapeutic insight of rheumatoid arthritis. Clin. Genet., 2019, 95(5), 547-557.
[http://dx.doi.org/10.1111/cge.13498] [PMID: 30578544]
[19]
Holers, V.M.; Kuhn, K.A.; Demoruelle, M.K.; Norris, J.M.; Firestein, G.S.; James, E.A.; Robinson, W.H.; Buckner, J.H.; Deane, K.D. Mechanism‐driven strategies for prevention of rheumatoid arthritis. Rheumatol. Autoimmun., 2022, 2(3), 109-119.
[http://dx.doi.org/10.1002/rai2.12043] [PMID: 36312783]
[20]
Chen, Q.; Xu, H.; Tan, C. Research progress in the pathogenesis of rheumatoid arthritis. Acta Med. Mediter., 2021, 37(5), 2441-2443.
[21]
Makkar, R.; Behl, T.; Bungau, S.; Kumar, A.; Arora, S. Understanding the role of inflammasomes in rheumatoid arthritis. Inflammation, 2020, 43(6), 2033-2047.
[http://dx.doi.org/10.1007/s10753-020-01301-1] [PMID: 32712858]
[22]
Wang, S.; Zhou, Y.; Huang, J.; Li, H.; Pang, H.; Niu, D. Advances in experimental models of rheumatoid arthritis. Eur. J. Immunol., 2023, 53(1), e2249962.
[PMID: 36330559]
[23]
Ferro, M.; Charneca, S.; Dourado, E.; Guerreiro, C.S.; Fonseca, J.E. Probiotic supplementation for rheumatoid arthritis: A promising adjuvant therapy in the gut microbiome era. Front. Pharmacol., 2021, 12, 711788.
[http://dx.doi.org/10.3389/fphar.2021.711788] [PMID: 34366867]
[24]
Harshita, ; Angana Naskar, ; Kunal Datta, ; Urmistha Sarkar, ; Tania Khatoon, Rheumatoid arthrities: Etiology pathophysiology and modern treatments. Int. J. Res. Appl. Sci. Biotech.y, 2022, 9(3), 32-39.
[http://dx.doi.org/10.31033/ijrasb.9.3.7]
[25]
Tu, J.; Huang, W.; Zhang, W.; Mei, J.; Zhu, C.; Anderson, A.E. A tale of two immune cells in rheumatoid arthritis: The crosstalk between macrophages and t cells in the synovium. Front Immunol, 2021, 12, 655477.
[26]
Alam, J.; Jantan, I.; Bukhari, S.N.A. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed. Pharmacother., 2017, 92, 615-633.
[http://dx.doi.org/10.1016/j.biopha.2017.05.055] [PMID: 28582758]
[27]
Fearon, U; Hanlon, MM; Wade, SM; Fletcher, JM Altered metabolic pathways regulate synovial inflammation in rheumatoid arthritis. Clin Exp Immunol, 2019, 197(2), 170-180.
[http://dx.doi.org/10.1111/cei.13228]
[28]
Serhal, L.; Lwin, M.N.; Holroyd, C.; Edwards, C.J. Rheumatoid arthritis in the elderly: Characteristics and treatment considerations. Autoimmun. Rev., 2020, 19(6), 102528.
[http://dx.doi.org/10.1016/j.autrev.2020.102528] [PMID: 32234572]
[29]
van Vollenhoven, R. Treat-to-target in rheumatoid arthritis : Are we there yet? Nat. Rev. Rheumatol., 2019, 15(3), 180-186.
[http://dx.doi.org/10.1038/s41584-019-0170-5] [PMID: 30700865]
[30]
Boutet, M.A.; Courties, G.; Nerviani, A.; Le Goff, B.; Apparailly, F.; Pitzalis, C.; Blanchard, F. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun. Rev., 2021, 20(3), 102758.
[http://dx.doi.org/10.1016/j.autrev.2021.102758] [PMID: 33476818]
[31]
Karami, J.; Aslani, S.; Tahmasebi, M.N.; Mousavi, M.J.; Sharafat Vaziri, A.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M. Epigenetics in rheumatoid arthritis; fibroblast‐like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol. Cell Biol., 2020, 98(3), 171-186.
[http://dx.doi.org/10.1111/imcb.12311] [PMID: 31856314]
[32]
Han, D.; Fang, Y.; Tan, X.; Jiang, H.; Gong, X.; Wang, X.; Hong, W.; Tu, J.; Wei, W. The emerging role of fibroblast‐like synoviocytes‐mediated synovitis in osteoarthritis: An update. J. Cell. Mol. Med., 2020, 24(17), 9518-9532.
[http://dx.doi.org/10.1111/jcmm.15669] [PMID: 32686306]
[33]
Wu, Z.; Ma, D.; Yang, H.; Gao, J.; Zhang, G.; Xu, K. Fibroblast-like synoviocytes in rheumatoid arthritis: Surface markers and phenotypes. Int. Immunopharmacol., 2020, 2021, 93.
[PMID: 33529910]
[34]
Meng, Q.; Qiu, B. Exosomal MicroRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 Expression. Front. Physiol., 2020, 11, 441.
[http://dx.doi.org/10.3389/fphys.2020.00441]
[35]
Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev., 2010, 233(1), 233-255.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00859.x] [PMID: 20193003]
[36]
Angelini, J.; Talotta, R.; Roncato, R.; Fornasier, G.; Barbiero, G.; Dal Cin, L.; Brancati, S.; Scaglione, F. JAK-inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future. Biomolecules, 2020, 10(7), 1002.
[http://dx.doi.org/10.3390/biom10071002] [PMID: 32635659]
[37]
Liu, S; Ma, H; Zhang, H; Deng, C; Xin, P Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin. Immunol., 2021, 230, 108793.
[http://dx.doi.org/10.1016/j.clim.2021.108793]
[38]
Nygaard, G.; Firestein, G.S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol., 2020, 16(6), 316-333.
[http://dx.doi.org/10.1038/s41584-020-0413-5] [PMID: 32393826]
[39]
De Oliveira, P.G.; Farinon, M.; Sanchez-lopez, E.; Miyamoto, S. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front. Immunol., 2019, 10, 1-8.
[40]
Fang, G.; Zhang, Q.; Pang, Y.; Thu, H.E.; Hussain, Z. PT laboratory of zhuang medicine prescriptions basis and application research, guangxi. J. Control. Release, 2019.
[41]
Deane, K.D.; Holers, V.M. The natural history of rheumatoid arthritis. Clin. Ther., 2019, 41(7), 1256-1269.
[http://dx.doi.org/10.1016/j.clinthera.2019.04.028] [PMID: 31196652]
[42]
Bustamante, MF; Garcia-carbonell, R; Whisenant, KD; Guma, M Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther., 2017, 19(1), 110.
[http://dx.doi.org/10.1186/s13075-017-1303-3]
[43]
Niederer, F.; Ospelt, C.; Brentano, F.; Hottiger, M.O.; Gay, R.E.; Gay, S.; Detmar, M.; Kyburz, D. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann. Rheum. Dis., 2011, 70(10), 1866-1873.
[http://dx.doi.org/10.1136/ard.2010.148957] [PMID: 21742641]
[44]
Mousavi, M.J.; Karami, J.; Aslani, S.; Tahmasebi, M.N.; Vaziri, A.S.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M. Transformation of fibroblast‐like synoviocytes in rheumatoid arthritis; from a friend to foe. Auto Immun. Highlights, 2021, 12(1), 3.
[http://dx.doi.org/10.1186/s13317-020-00145-x] [PMID: 33546769]
[45]
Taams, L.S. Interleukin-17 in rheumatoid arthritis: Trials and tribulations. J. Exp. Med., 2020, 217(3), 1-7.
[46]
Simon, L.S.; Taylor, P.C.; Choy, E.H.; Sebba, A.; Quebe, A.; Knopp, K.L. The Jak / STAT pathway: A focus on pain in rheumatoid arthritis. Semin. Arthritis Rheum., 2021, 51, 278-284.
[47]
Deane, K.D.; Holers, V.M. Rheumatoid arthritis pathogenesis, prediction, and prevention: An emerging paradigm shift. Arthritis Rheumatol., 2021, 73(2), 181-193.
[http://dx.doi.org/10.1002/art.41417] [PMID: 32602263]
[48]
Shen, P.; Lin, W.; Ba, X.; Huang, Y.; Chen, Z.; Han, L.; Qin, K.; Huang, Y.; Tu, S. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J. Ethnopharmacol., 2021, 279, 114213.
[http://dx.doi.org/10.1016/j.jep.2021.114213] [PMID: 34023442]
[49]
Liu, H.Y.; Chang, C.F.; Lu, C.C.; Wu, S.C.; Huang, B.; Cheng, T.L.; Lin, S.Y.; Ho, C.J.; Lee, M.J.; Yang, C.D.; Wang, Y.C.; Li, J.Y.; Liu, P.C.; Wei, C.W.; Kang, L.; Chen, C.H. The role of mitochondrial metabolism, AMPK-SIRT mediated pathway, LncRNA and MicroRNA in osteoarthritis. Biomedicines, 2022, 10(7), 1477.
[http://dx.doi.org/10.3390/biomedicines10071477] [PMID: 35884782]
[50]
Jiang, F.; Zhou, H.Y.; Zhou, L.F.; Zeng, W.; Zhao, L.H. IRF9 affects the TNF-induced phenotype of rheumatoid-arthritis fibroblast-like synoviocytes via regulation of the SIRT-1/NF-κB signaling pathway. Cells Tissues Organs, 2020, 209(2-3), 110-119.
[http://dx.doi.org/10.1159/000508405] [PMID: 32772027]
[51]
Li, G.; Xia, Z.; Liu, Y.; Meng, F.; Wu, X.; Fang, Y.; Zhang, C.; Liu, D. SIRT1 inhibits rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and inflammatory response via suppressing NF-κB pathway. Biosci. Rep., 2018, 38(3), BSR20180541.
[http://dx.doi.org/10.1042/BSR20180541]
[52]
Ouboussad, L.; Burska, A.N.; Melville, A.; Buch, M.H. Synovial tissue heterogeneity in rheumatoid arthritis and changes with biologic and targeted synthetic therapies to inform stratified therapy. Front. Med., 2019, 6, 45.
[http://dx.doi.org/10.3389/fmed.2019.00045] [PMID: 30941350]
[53]
Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.027] [PMID: 28870631]
[54]
Jiao, F.; Gong, Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/6782872] [PMID: 33014276]
[55]
Elibol, B.; Kilic, U. High Levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front. Endocrinol., 2018, 9, 614.
[http://dx.doi.org/10.3389/fendo.2018.00614] [PMID: 30374331]
[56]
Tardito, S.; Martinelli, G.; Soldano, S.; Paolino, S.; Pacini, G.; Patane, M.; Alessandri, E.; Smith, V.; Cutolo, M. Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun. Rev., 2019, 18(11), 102397.
[http://dx.doi.org/10.1016/j.autrev.2019.102397] [PMID: 31520798]
[57]
Chen, C.; Zhou, M.; Ge, Y.; Wang, X. SIRT1 and aging related signaling pathways. Mech. Ageing Dev., 2020, 187, 111215.
[http://dx.doi.org/10.1016/j.mad.2020.111215] [PMID: 32084459]
[58]
Zia, A.; Sahebdel, F.; Farkhondeh, T.; Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Samarghandian, S. A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int. J. Biol. Macromol., 2021, 188, 52-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.013] [PMID: 34364937]
[59]
Khayatan, D; Razavi, SM; Arab, ZN; Khanahmadi, M; Momtaz, S Regulatory effects of statins on sirt1 and other sirtuins in cardiovascular diseases. Life, 2022, 12(5), 760.
[http://dx.doi.org/10.3390/life12050760]
[60]
Otsuka, R; Sakata, H; Murakami, K; Kano, M; Endo, S; Toyozumi, T SIRT1 expression is a promising prognostic biomarker in esophageal squamous cell carcinoma: A systematic review and meta-analysis. Cancer Diagn Progn, 2022, 133, 126-133.
[61]
Wang, F.; Yao, S.; Xia, H. SIRT1 is a key regulatory target for the treatment of the endoplasmic reticulum stress-related organ damage. Biomed. Pharmacother., 2020, 130(1277), 110601.
[http://dx.doi.org/10.1016/j.biopha.2020.110601] [PMID: 32784049]
[62]
de Gregorio, E.; Colell, A.; Morales, A.; Marí, M. Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease. Int. J. Mol. Sci., 2020, 21(11), 3858.
[http://dx.doi.org/10.3390/ijms21113858] [PMID: 32485811]
[63]
D’Angelo, S.; Mele, E.; Di Filippo, F.; Viggiano, A.; Meccariello, R. Sirt1 Activity in the brain: Simultaneous effects on energy homeostasis and reproduction. Int. J. Environ. Res. Public Health, 2021, 18(3), 1243.
[http://dx.doi.org/10.3390/ijerph18031243] [PMID: 33573212]
[64]
Woo, S.J.; Lee, S.M.; Lim, H.S.; Hah, Y.S.; Jung, I.D.; Park, Y.M.; Kim, H.O.; Cheon, Y.H.; Jeon, M.G.; Jang, K.Y.; Kim, K.M.; Park, B.H.; Lee, S.I. Myeloid deletion of SIRT1 suppresses collagen-induced arthritis in mice by modulating dendritic cell maturation. Exp. Mol. Med., 2016, 48(3), e221.
[http://dx.doi.org/10.1038/emm.2015.124] [PMID: 26987484]
[65]
Wang, R.; Dong, Z.; Lan, X.; Liao, Z.; Chen, M. Sweroside alleviated LPS-induced inflammation via SIRT1 mediating NF-κB and FOXO1 signaling pathways in RAW264.7 cells. Molecules, 2019, 24(5), 872.
[http://dx.doi.org/10.3390/molecules24050872] [PMID: 30823686]
[66]
Samimi, L.; Farhadi, E.; Tahmasebi, M.N.; Jamshidi, A.; Vaziri, A.; Mahmoudi, M. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Auto Immun. Highlights, 2020, 11(1), 11.
[http://dx.doi.org/10.1186/s13317-020-00135-z]
[67]
Hao, L.; Wan, Y.; Xiao, J.; Tang, Q.; Deng, H.; Chen, L. A study of Sirt1 regulation and the effect of resveratrol on synoviocyte invasion and associated joint destruction in rheumatoid arthritis. Mol. Med. Rep., 2017, 16(4), 5099-5106.
[http://dx.doi.org/10.3892/mmr.2017.7299] [PMID: 28849139]
[68]
Zhou, J.J.; Ma, J.D.; Mo, Y.Q.; Zheng, D.H.; Chen, L.F.; Wei, X.N.; Dai, L. Down-regulating peroxisome proliferator-activated receptor-gamma coactivator-1beta alleviates the proinflammatory effect of rheumatoid arthritis fibroblast-like synoviocytes through inhibiting extracellular signal-regulated kinase, p38 and nuclear factor-kappaB activation. Arthritis Res. Ther., 2014, 16(5), 472.
[http://dx.doi.org/10.1186/s13075-014-0472-6] [PMID: 25367151]
[69]
Ma, J.D.; Jing, J.; Wang, J.W.; Mo, Y.Q.; Li, Q.H.; Lin, J.Z.; Chen, L.F.; Shao, L.; Miossec, P.; Dai, L. Activation of the peroxisome proliferator–activated receptor γ coactivator 1β/NFATc1 pathway in circulating osteoclast precursors associated with bone destruction in rheumatoid arthritis. Arthritis Rheumatol., 2019, 71(8), 1252-1264.
[http://dx.doi.org/10.1002/art.40868] [PMID: 30802366]
[70]
Scarpulla, R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(7), 1269-1278.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.019] [PMID: 20933024]
[71]
Ishii, K.; Fumoto, T.; Iwai, K.; Takeshita, S.; Ito, M.; Shimohata, N.; Aburatani, H.; Taketani, S.; Lelliott, C.J.; Vidal-Puig, A.; Ikeda, K. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat. Med., 2009, 15(3), 259-266.
[http://dx.doi.org/10.1038/nm.1910] [PMID: 19252502]
[72]
Finck, B.N.; Kelly, D.P. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J. Clin. Invest., 2006, 116(3), 615-622.
[http://dx.doi.org/10.1172/JCI27794] [PMID: 16511594]
[73]
Chen, H.; Fan, W.; He, H.; Huang, F. PGC-1: A key regulator in bone homeostasis. J. Bone Miner. Metab., 2022, 40(1), 1-8.
[http://dx.doi.org/10.1007/s00774-021-01263-w] [PMID: 34424416]
[74]
Li, Y.Q.; Jiao, Y.; Liu, Y.N.; Fu, J.; Sun, L.K.; Su, J. PGC‐1α protects from myocardial ischaemia‐reperfusion injury by regulating mito-nuclear communication. J. Cell. Mol. Med., 2022, 26(3), 593-600.
[http://dx.doi.org/10.1111/jcmm.16236] [PMID: 33470050]
[75]
Maik-Rachline, G.; Lifshits, L.; Seger, R. Nuclear P38: Roles in physiological and pathological processes and regulation of nuclear translocation. Int. J. Mol. Sci., 2020, 21(17), 6102.
[http://dx.doi.org/10.3390/ijms21176102] [PMID: 32847129]
[76]
Xu, S.; Feng, Y.; He, W.; Xu, W.; Xu, W.; Yang, H.; Li, X. Celastrol in metabolic diseases: Progress and application prospects. Pharmacol. Res., 2021, 167, 105572.
[http://dx.doi.org/10.1016/j.phrs.2021.105572] [PMID: 33753246]
[77]
Ashrafizadeh, M; Ahmadi, Z; Mohammadinejad, R; Afshar, E. Tangeretin: A mechanistic review of its pharmacological and therapeutic effects. J. Basic Clin. Physiol. Pharmacol., 2020, 31(4), JbCPR-2019-0196.
[78]
Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int. J. Mol. Sci., 2019, 20(18), 4472.
[http://dx.doi.org/10.3390/ijms20184472] [PMID: 31510091]
[79]
He, F.; Ru, X.; Wen, T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci., 2020, 21(13), 4777.
[http://dx.doi.org/10.3390/ijms21134777] [PMID: 32640524]
[80]
Lv, S.; Li, X.; Zhao, S.; Liu, H.; Wang, H. The role of the signaling pathways involved in the protective effect of exogenous hydrogen sulfide on myocardial ischemia-reperfusion injury. Front. Cell Dev. Biol., 2021, 9, 723569.
[http://dx.doi.org/10.3389/fcell.2021.723569] [PMID: 34527675]
[81]
Kim, Y.G.; Sohn, D.H.; Zhao, X.; Sokolove, J.; Lindstrom, T.M.; Yoo, B.; Lee, C.K.; Reveille, J.D.; Taurog, J.D.; Robinson, W.H. Role of protein phosphatase magnesium-dependent 1A and anti-protein phosphatase magnesium-dependent 1A autoantibodies in ankylosing spondylitis. Arthritis Rheumatol., 2014, 66(10), 2793-2803.
[http://dx.doi.org/10.1002/art.38763] [PMID: 24980965]
[82]
Smith, S.R.; Schaaf, K.; Rajabalee, N.; Wagner, F.; Duverger, A.; Kutsch, O.; Sun, J. The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Sci. Rep., 2018, 8(1), 902.
[http://dx.doi.org/10.1038/s41598-017-18832-7] [PMID: 29343725]
[83]
Cappelli, L.C.; Thomas, M.A.; Bingham, C.O., III; Shah, A.A.; Darrah, E. Immune checkpoint inhibitor–induced inflammatory arthritis as a model of autoimmune arthritis. Immunol. Rev., 2020, 294(1), 106-123.
[http://dx.doi.org/10.1111/imr.12832] [PMID: 31930524]
[84]
Shang, L.; Wang, L.; Shi, X.; Wang, N.; Zhao, L.; Wang, J.; Liu, C. HMGB1 was negatively regulated by HSF1 and mediated the TLR4/MyD88/NF-κB signal pathway in asthma. Life Sci., 2020, 241, 117120.
[http://dx.doi.org/10.1016/j.lfs.2019.117120] [PMID: 31825792]
[85]
Aulin, C.; Lassacher, T.; Palmblad, K.; Harris, H. Early stage blockade of the alarmin HMGB1 reduces cartilage destruction in experimental OA. Osteoarthritis Cartilage, 2020, 28(5), 698-707.
[http://dx.doi.org/10.1016/j.joca.2020.01.003] [PMID: 31982563]
[86]
Wenzhao, L.; Jiangdong, N.; Deye, S.; Muliang, D.; Junjie, W.; Xianzhe, H.; Mingming, Y.; Jun, H. Dual regulatory roles of HMGB1 in inflammatory reaction of chondrocyte cells and mice. Cell Cycle, 2019, 18(18), 2268-2280.
[http://dx.doi.org/10.1080/15384101.2019.1642680] [PMID: 31313630]
[87]
Taniguchi, N.; Kawahara, K.I.; Yone, K.; Hashiguchi, T.; Yamakuchi, M.; Goto, M.; Inoue, K.; Yamada, S.; Ijiri, K.; Matsunaga, S.; Nakajima, T.; Komiya, S.; Maruyama, I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum., 2003, 48(4), 971-981.
[http://dx.doi.org/10.1002/art.10859] [PMID: 12687539]
[88]
Xue, J.; Suarez, J.S.; Minaai, M.; Li, S.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. HMGB1 as a therapeutic target in disease. J. Cell. Physiol., 2021, 236(5), 3406-3419.
[http://dx.doi.org/10.1002/jcp.30125] [PMID: 33107103]
[89]
Colavita, L.; Ciprandi, G.; Salpietro, A.; Cuppari, C. HMGB1: A pleiotropic activity. Pediatr. Allergy Immunol., 2020, 31(26), 63-65.
[http://dx.doi.org/10.1111/pai.13358] [PMID: 33236418]
[90]
Higashida, K.; Kim, S.H.; Jung, S.R.; Asaka, M.; Holloszy, J.O.; Han, D.H. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: A reevaluation. PLoS Biol., 2013, 11(7), e1001603.
[http://dx.doi.org/10.1371/journal.pbio.1001603] [PMID: 23874150]
[91]
Thirupathi, A.; Gu, Y.; Pinho, R.A. Exercise cuts both ways with ROS in remodifying innate and adaptive responses: Rewiring the redox mechanism of the immune system during exercise. Antioxidants, 2021, 10(11), 1846.
[http://dx.doi.org/10.3390/antiox10111846] [PMID: 34829717]
[92]
Srivastava, A.; Tomar, B.; Sharma, D.; Rath, S.K. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci., 2023, 319, 121432.
[http://dx.doi.org/10.1016/j.lfs.2023.121432] [PMID: 36706833]
[93]
Wei, L.; Zhang, W.; Li, Y.; Zhai, J. The SIRT1-HMGB1 axis: Therapeutic potential to ameliorate inflammatory responses and tumor occurrence. Front. Cell Dev. Biol., 2022, 10, 986511.
[http://dx.doi.org/10.3389/fcell.2022.986511] [PMID: 36081910]
[94]
Le, K.; Chibaatar Daliv, E.; Wu, S.; Qian, F.; Ali, A.I.; Yu, D.; Guo, Y. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int. Immunopharmacol., 2019, 75, 105779.
[http://dx.doi.org/10.1016/j.intimp.2019.105779] [PMID: 31362164]
[95]
Ulloa, L.; Messmer, D. High-mobility group box 1 (HMGB1) protein: Friend and foe. Cytokine Growth Factor Rev., 2006, 17(3), 189-201.
[http://dx.doi.org/10.1016/j.cytogfr.2006.01.003] [PMID: 16513409]
[96]
van Beijnum, J.R.; Buurman, W.A.; Griffioen, A.W. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis, 2008, 11(1), 91-99.
[http://dx.doi.org/10.1007/s10456-008-9093-5] [PMID: 18264787]
[97]
Chen, Y.; Sun, W.; Gao, R.; Su, Y.; Umehara, H.; Dong, L.; Gong, F. The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatology, 2013, 52(10), 1739-1747.
[http://dx.doi.org/10.1093/rheumatology/ket134] [PMID: 23584368]
[98]
Pisetsky, D.S.; Erlandsson-Harris, H.; Andersson, U. High-mobility group box protein 1 (HMGB1): An alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res. Ther., 2008, 10(3), 209.
[http://dx.doi.org/10.1186/ar2440] [PMID: 18598385]
[99]
Yang, H.; Wang, H.; Czura, C.J.; Tracey, K.J. HMGB1 as a cytokine and therapeutic target. J. Endotoxin Res., 2002, 8(6), 469-472.
[http://dx.doi.org/10.1179/096805102125001091] [PMID: 12697092]
[100]
Poniewierska-Baran, A.; Bochniak, O.; Warias, P.; Pawlik, A. Role of sirtuins in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci., 2023, 24(2), 1532.
[http://dx.doi.org/10.3390/ijms24021532] [PMID: 36675041]
[101]
Leblond, A.; Pezet, S.; Cauvet, A.; Casas, C.; Pires Da Silva, J.; Hervé, R.; Clavel, G.; Dumas, S.; Cohen-Kaminsky, S.; Bessis, N.; Semerano, L.; Lemaire, C.; Allanore, Y.; Avouac, J. Implication of the deacetylase sirtuin-1 on synovial angiogenesis and persistence of experimental arthritis. Ann. Rheum. Dis., 2020, 79(7), 891-900.
[http://dx.doi.org/10.1136/annrheumdis-2020-217377] [PMID: 32381568]
[102]
Yang, G.; Chang, C.C.; Yang, Y.; Yuan, L.; Xu, L.; Ho, C.T.; Li, S. Resveratrol alleviates rheumatoid arthritis via reducing ros and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. J. Agric. Food Chem., 2018, 66(49), 12953-12960.
[http://dx.doi.org/10.1021/acs.jafc.8b05047] [PMID: 30511573]
[103]
Lomholt, S.; Mellemkjaer, A.; Iversen, M.B.; Pedersen, S.B.; Kragstrup, T.W. Resveratrol displays anti-inflammatory properties in an ex vivo model of immune mediated inflammatory arthritis. BMC Rheumatol., 2018, 2(1), 27.
[http://dx.doi.org/10.1186/s41927-018-0036-5] [PMID: 30886977]
[104]
Resveratrol in Knee Osteoarthritis (ARTHROL). Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02905799 (accessed 21 July 2023).
[105]
Iside, C.; Scafuro, M.; Nebbioso, A.; Altucci, L. SIRT1 activation by natural phytochemicals: An overview. Front. Pharmacol., 2020, 11, 1225.
[http://dx.doi.org/10.3389/fphar.2020.01225] [PMID: 32848804]
[106]
Quercetin’s effect on bone health and inflammatory markers. Available from: https://clinicaltrials.gov/study/NCT05371340 (accessed 21 July 2023).
[107]
Senolytic drugs attenuate osteoarthritis-related articular cartilage degeneration. A clinical trial. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04210986 (accessed 21 July 2023).
[108]
Effectiveness of curcumin-based food supplement in reducing pain and inflammatory component in osteoarthritis (FENOXI-1900). Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04207021(accessed 21 July 2023).
[109]
Chao, C.C.; Huang, C.L.; Cheng, J.J.; Chiou, C.T.; Lee, I.J.; Yang, Y.C.; Hsu, T.H.; Yei, C.E.; Lin, P.Y.; Chen, J.J.; Huang, N.K. SRT1720 as an SIRT1 activator for alleviating paraquat-induced models of Parkinson’s disease. Redox Biol., 2022, 58, 102534.
[http://dx.doi.org/10.1016/j.redox.2022.102534] [PMID: 36379180]
[110]
Nishida, K.; Matsushita, T.; Takayama, K.; Tanaka, T.; Miyaji, N.; Ibaraki, K.; Araki, D.; Kanzaki, N.; Matsumoto, T.; Kuroda, R. Intraperitoneal injection of the SIRT1 activator SRT1720 attenuates the progression of experimental osteoarthritis in mice. Bone Joint Res., 2018, 7(3), 252-262.
[http://dx.doi.org/10.1302/2046-3758.73.BJR-2017-0227.R1] [PMID: 29922443]
[111]
Gurt, I.; Artsi, H.; Cohen-Kfir, E.; Hamdani, G.; Ben-Shalom, G.; Feinstein, B.; El-Haj, M.; Dresner-Pollak, R. The Sirt1 activators SRT2183 and SRT3025 Inhibit RANKL-induced osteoclastogenesis in bone marrow-derived macrophages and down-regulate Sirt3 in Sirt1 Null Cells. PLoS One, 2015, 10(7), e0134391.
[http://dx.doi.org/10.1371/journal.pone.0134391] [PMID: 26226624]
[112]
Hong, J.Y.; Fernandez, I.; Anmangandla, A.; Lu, X.; Bai, J.J.; Lin, H. Pharmacological advantage of SIRT2-selective versus pan-SIRT1–3 inhibitors. ACS Chem. Biol., 2021, 16(7), 1266-1275.
[http://dx.doi.org/10.1021/acschembio.1c00331] [PMID: 34139124]
[113]
Suzuki, K.; Hayashi, R.; Ichikawa, T.; Imanishi, S.; Yamada, T.; Inomata, M.; Miwa, T.; Matsui, S.; Usui, I.; Urakaze, M.; Matsuya, Y.; Ogawa, H.; Sakurai, H.; Saiki, I.; Tobe, K. SRT1720, a SIRT1 activator, promotes tumor cell migration, and lung metastasis of breast cancer in mice. Oncol. Rep., 2012, 27(6), 1726-1732.
[PMID: 22470132]
[114]
Chen, Y.; Zhang, M.; Cai, Y.; Zhao, Q.; Dai, W. The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE−/− mice through inhibiting vascular inflammatory response. Biochem. Biophys. Res. Commun., 2015, 465(4), 732-738.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.066] [PMID: 26296466]
[115]
Long term evaluation of sarilumab in rheumatoid arthritis patients. Available from: https://clinicaltrials.gov/study/NCT01146652 (accessed 21 July 2023).
[116]
Turosz, N.; Chęcińska, K.; Chęciński, M.; Kamińska, M.; Nowak, Z.; Sikora, M.; Chlubek, D. A scoping review of the use of pioglitazone in the treatment of temporo-mandibular joint arthritis. Int. J. Environ. Res. Public Health, 2022, 19(24), 16518.
[http://dx.doi.org/10.3390/ijerph192416518] [PMID: 36554400]
[117]
Wang, R.C.; Jiang, D.M. PPAR-γ agonist pioglitazone affects rat gouty arthritis by regulating cytokines. Genet. Mol. Res., 2014, 13(3), 6577-6581.
[http://dx.doi.org/10.4238/2014.August.28.2] [PMID: 25177938]
[118]
Effects of administration of fostamatinib on blood concentrations of pioglitazone in healthy subjects. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01309854 (accessed 21 July 2023).
[119]
Fan, K.J.; Wu, J.; Wang, Q.S.; Xu, B.X.; Zhao, F.T.; Wang, T.Y. Metformin inhibits inflammation and bone destruction in collagen- induced arthritis in rats. Ann. Transl. Med., 2020, 8(23), 1565.
[http://dx.doi.org/10.21037/atm-20-3042] [PMID: 33437764]
[120]
Nojima, I.; Wada, J. Metformin and its immune-mediated effects in various diseases. Int. J. Mol. Sci., 2023, 24(1), 755.
[http://dx.doi.org/10.3390/ijms24010755] [PMID: 36614197]
[121]
Gharib, M.; Elbaz, W.; Darweesh, E.; Sabri, N.A.; Shawki, M.A. Efficacy and safety of metformin use in rheumatoid arthritis: A randomized controlled study. Front. Pharmacol., 2021, 12(September), 726490.
[http://dx.doi.org/10.3389/fphar.2021.726490] [PMID: 34630103]
[122]
Methotrexate and metformin in rheumatoid arthritis patients. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01309854 (accessed 21 July 2023).
[123]
Topical use of 20% beta caryophyllene alone and in combination with 0.025% capsaicin for pain caused by osteoarthritis of the knee. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03152578 (accessed 21 July 2023).
[124]
VanPatten, S.; Al-Abed, Y. High mobility group box-1 (HMGb1): Current wisdom and advancement as a potential drug target. J. Med. Chem., 2018, 61(12), 5093-5107.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01136] [PMID: 29268019]
[125]
Feng, Y.; Mei, L.; Wang, M.; Huang, Q.; Huang, R. Anti-inflammatory and pro-apoptotic effects of 18beta-glycyrrhetinic acid In Vitro and In Vivo models of rheumatoid arthritis. Front. Pharmacol., 2021, 12, 681525.
[http://dx.doi.org/10.3389/fphar.2021.681525] [PMID: 34381358]
[126]
Huang, Q.C.; Wang, M.J.; Chen, X.M.; Yu, W.L.; Chu, Y.L.; He, X.H.; Huang, R.Y. Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis? Oncotarget, 2016, 7(2), 1193-1202.
[http://dx.doi.org/10.18632/oncotarget.6200] [PMID: 26498361]
[127]
Yang, R.; Yuan, B.C.; Ma, Y.S.; Zhou, S.; Liu, Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm. Biol., 2017, 55(1), 5-18.
[http://dx.doi.org/10.1080/13880209.2016.1225775] [PMID: 27650551]
[128]
Conway, E.M.; Nowakowski, B. Biologically active thrombomodulin is synthesized by adherent synovial fluid cells and is elevated in synovial fluid of patients with rheumatoid arthritis. Blood, 1993, 81(3), 726-733.
[http://dx.doi.org/10.1182/blood.V81.3.726.bloodjournal813726] [PMID: 7678998]
[129]
Li, Y.H.; Kuo, C.H.; Shi, G.Y.; Wu, H.L. The role of thrombomodulin lectin-like domain in inflammation. J. Biomed. Sci., 2012, 19(1), 34.
[http://dx.doi.org/10.1186/1423-0127-19-34] [PMID: 22449172]
[130]
Vincent, J.L.; Francois, B.; Zabolotskikh, I.; Daga, M.K.; Lascarrou, J.B.; Kirov, M.Y.; Pettilä, V.; Wittebole, X.; Meziani, F.; Mercier, E.; Lobo, S.M.; Barie, P.S.; Crowther, M.; Esmon, C.T.; Fareed, J.; Gando, S.; Gorelick, K.J.; Levi, M.; Mira, J.P.; Opal, S.M.; Parrillo, J.; Russell, J.A.; Saito, H.; Tsuruta, K.; Sakai, T.; Fineberg, D. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy. JAMA, 2019, 321(20), 1993-2002.
[http://dx.doi.org/10.1001/jama.2019.5358] [PMID: 31104069]
[131]
Phase 3 safety and efficacy study of ART-123 in subjects with severe sepsis and coagulopathy. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01598831 (accessed 21 July 2023).
[132]
Saroha, A.; Biswas, S.; Chatterjee, B.P.; Das, H.R. Altered glycosylation and expression of plasma alpha-1-acid glycoprotein and haptoglobin in rheumatoid arthritis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(20), 1839-1843.
[http://dx.doi.org/10.1016/j.jchromb.2011.04.024] [PMID: 21601539]
[133]
A diagnostic accuracy study testing fecal biomarkers in comparison to endoscopic examination. Available from: https://clinicaltrials.gov/study/NCT04849936 (accessed 21 July 2023).
[134]
Ji, Y.R.; Chen, Y.; Chen, Y.N.; Qiu, G.L.; Wen, J.G.; Zheng, Y.; Li, X.F.; Cheng, H.; Li, Y.H.; Li, J. Dexmedetomidine inhibits the invasion, migration, and inflammation of rheumatoid arthritis fibroblast-like synoviocytes by reducing the expression of NLRC5. Int. Immunopharmacol., 2020, 82, 106374.
[http://dx.doi.org/10.1016/j.intimp.2020.106374] [PMID: 32163856]
[135]
Phase IIa study of redirected autologous T Cells engineered to contain anti-CD19 attached to TCRz and 4-signaling domains in patients with chemotherapy relapsed or refractory CD19+ lymphomas. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02030834 (accessed 21 July 2023).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy